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Abstract

Background

Prediction models should be externally validated to assess their performance before imple-

mentation. Several prediction models for coronavirus disease-19 (COVID-19) have been

published. This observational cohort study aimed to validate published models of severity

for hospitalized patients with COVID-19 using clinical and laboratory predictors.

Methods

Prediction models fitting relevant inclusion criteria were chosen for validation. The outcome

was either mortality or a composite outcome of mortality and ICU admission (severe dis-

ease). 1295 patients admitted with symptoms of COVID-19 at Kings Cross Hospital (KCH)

in London, United Kingdom, and 307 patients at Oslo University Hospital (OUH) in Oslo,

Norway were included. The performance of the models was assessed in terms of discrimi-

nation and calibration.
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Results

We identified two models for prediction of mortality (referred to as Xie and Zhang1) and two

models for prediction of severe disease (Allenbach and Zhang2). The performance of the

models was variable. For prediction of mortality Xie had good discrimination at OUH with an

area under the receiver-operating characteristic (AUROC) 0.87 [95% confidence interval

(CI) 0.79–0.95] and acceptable discrimination at KCH, AUROC 0.79 [0.76–0.82]. In predic-

tion of severe disease, Allenbach had acceptable discrimination (OUH AUROC 0.81 [0.74–

0.88] and KCH AUROC 0.72 [0.68–0.75]). The Zhang models had moderate to poor discrim-

ination. Initial calibration was poor for all models but improved with recalibration.

Conclusions

The performance of the four prediction models was variable. The Xie model had the best

discrimination for mortality, while the Allenbach model had acceptable results for prediction

of severe disease.

Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was discovered in Wuhan,

China in December 2019. The virus was shown to cause viral pneumonia, later designated as

coronavirus disease 2019 (COVID-19) [1]. The disease has evolved as a pandemic with an

extensive amount of severe cases with high mortality [2]. Several biomarkers, clinical and epi-

demiological parameters have been associated with disease severity [3, 4]. Practical tools for

prediction of prognosis in COVID-19 patients are still lacking in clinical practice [5, 6]. We

observed that many laboratory tests are ordered for patients with COVID-19 due to their pre-

dictive value. Very likely, there is redundancy in the information from the different tests and it

could be possible to improve the prediction by using a multivariable model and reducing the

number of redundantly ordered tests. Prediction models can be crucial to prioritize patients

needing hospitalization, intensive care treatment, or future individualized therapy.

Since the onset of the pandemic, the number of prediction models for COVID-19 patients

has been continuously growing [7]. Prediction models should be validated in different popula-

tions with a sufficient number of patients reaching the outcome before implementation [8–

10]. A validation study of 22 prediction models at one site was recently published [6]. Interest-

ingly, this study found that none of the models performed better than oxygen saturation alone,

even though the performance at the original study sites in most cases was much better.

This study aimed to validate published prediction models of severity and mortality for hos-

pitalized patients based on laboratory and clinical values in COVID-19 cohorts from London

(United Kingdom) and Oslo (Norway).

The study is reported according to the guidelines in “Transparent reporting of a multivariable

prediction model for individual prognosis or diagnosis” (TRIPOD) [11] and has also followed

recommendations from “Prediction Model Risk of Bias Assessment Tool” (PROBAST) [12].

Methods

Study design and participants

The study was performed as a retrospective validation study with adult patients hospitalized

with COVID-19. Two cohorts were included: (1) Oslo University Hospital (OUH) in Norway,
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(2) Kings Cross Hospital (KCH) in London, United Kingdom. The patients included were all

adult inpatients testing positive for SARS-CoV-2 by real-time polymerase chain reaction

(RT-PCR) with symptoms consistent with COVID-19 at admission. SARS-CoV-2 -positive

patients admitted for conditions not related to COVID-19 were excluded, e.g. pregnancy-

related conditions or trauma. Patients referred from other hospitals were also excluded, as we

did not have access to measurements from the first hospital admission.

OUH cohort. OUH is a large urban university hospital. Patients admitted between 6th

March and 31th December 2020 were included. The OUH project protocol was approved by

the Regional Ethical Committee of South East Norway (Reference 137045). All patients with

confirmed COVID-19 were included in the quality registry “COVID19 OUS”, approved by the

data protection officer (Reference 20/08822). Informed consent was waived because of the

strictly observational nature of the project. Demographics, clinical variables and hospital stay

information were manually recorded in the registry and merged with laboratory results

exported from the laboratory information system in Microsoft Excel.

KCH cohort. In the KCH cohort patients were admitted between 23rd February to 1st

May 2020 at two hospitals (King’s College Hospital and Princess Royal University Hospital) in

South East London (UK) of Kings College Hospital NHS Foundation Trust.

Data (demographics, emergency department letters, discharge summaries, lab results, vital

signs) were retrieved from components of the electronic health record (EHR) using a variety

of natural language processing (NLP) informatics tools belonging to the CogStack ecosystem

[13]. The study adhered to the principles of the UK Data Protection Act 2018, UK National

Health Service (NHS) information governance requirements, and the Declaration of Helsinki.

De-identified data from patients admitted to KCHFT were analysed under London SE

Research Ethics Committee approval (reference 18/LO/2048) granted to the King’s Electronic

Records Research Interface (KERRI) which waives the consent requirements. Specific work on

COVID-19 on the de-identified data was approved by the KERRI committee which included

patients and the Caldicott Guardian in March 2020 and reaffirmed in May 2020. Data from

this cohort has been published in prior studies [14, 15].

Selection of prediction models

A literature search was performed to select prediction models for validation. Published articles

or preprint manuscripts were included until 29.05.2020. A structured search was performed in

PubMed with the words “COVID-19” and “prediction model” or “machine learning” or “prog-

nosis model”. Prediction models included in the review by Wynants et al. [7] published April

7th 2020 were also investigated, as well as search for articles/preprints citing Wynants et. al.

using Google Scholar 18.05.2020.

The inclusion criteria for selection of multivariable prediction models were: (1) Symptom-

atic hospitalized patients over 18 years with PCR confirmed COVID-19; (2) outcomes includ-

ing respiratory failure or intensive care unit (ICU) admission or death or composite outcomes

of these. (3) The predictive models had to include at least one laboratory test as we wanted to

explore models that combined clinical and laboratory variables (4). All variables had to be

available in the datasets and the model had to be described in adequate detail.

Missing values

Predictive variables were collected from the admission to the emergency department (ED). If

not available in the ED, the first available values within 24 hours from hospital admission were

used. Missing values (i.e. no recorded values within 24 hours) were imputed using both simple

(k-nearest neighbors (KNN) and random forest) and multiple imputation (Bayesian ridge and
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Gaussian process) [16, 17], using the multivariate imputation by chained equations method

implemented in the Python function IterativeImputer available in the scikit-learn package, ver-

sion 0.24.2 [18].

Statistical analyses and performance measurements for the prediction

models

Univariate comparisons between patients with ‘mild’ versus ‘severe’ disease were carried out

for continuous (Wilcoxon rank-sum test) and binary (X2 test) measures. Severe disease was

defined as transfer to ICU or in-hospital mortality.

Validation of the selected prediction models was assessed with discrimination and calibra-

tion as recommended in TRIPOD [11]. Discrimination is the ability of the model to differenti-

ate between those who do or do not experience the outcome. It is commonly estimated by

concordance index (c-index) which is identical to the area under the receiver-operating char-

acteristic curve (AUROC) for models with binary endpoints. The discrimination for the mod-

els at OUH and KCH was also compared to the discrimination in the original development

cohort and to the external validation by Gupta et al. [6]. Calibration is the agreement between

the observed outcomes and the outcome predictions from the model. It is preferably reported

by a calibration plot, intercept and slope.

The mortality rate and the rate of ‘poor outcome’ varied between the cohorts. The models

were therefore recalibrated by adjusting the intercept of the logistic regression models accord-

ing to the frequency of outcomes at each study site [19]. Validation of the recalibration was

not performed. All statistical analyses were conducted in Python 3.7 and R 3.4 [20].

Results

Selection of prediction models

Four publications comprising five prediction models met our inclusion criteria [14, 21–23].

The inclusion process is illustrated in Fig 1. However, since one of the models was developed

at KCH and validated at OUH in a previous publication [14], only four models are presented

here. The four models are referred to as ‘Xie’[21], ‘Zhang1’, ‘Zhang2’[22] and ‘Allenbach’[23].

Information on the predictor variables and outcomes of the four models are summarized in

Table 1.

All predictors were measured at hospital admission. Treatment of missing values in the

development cohorts was not well described and imputation methods were not mentioned.

The Xie model had hospital mortality as the only outcome. Zhang presented two models with

different outcomes: (1) Mortality and (2) Composite outcome of mortality or ‘poor outcome’.

Poor outcome was defined as acute respiratory distress syndrome (ARDS), intubation or extra-

corporeal membrane oxygenation (ECMO) treatment, ICU admission or death. The Allen-

bach model used a composite outcome of transfer to ICU or mortality within 14 days of

hospital admission. There were no details of the censoring date in the original studies. Mortal-

ity during the hospital stay was used for the OUH cohort and for the KCH cohort hospital

mortality at data collection time.

All prediction models were based on multiple logistic regression and presented coefficients

and intercepts for the different variables that enabled the calculation of risk prediction for our

cohorts. Allenbach additionally provided an 8-point scoring system derived from the logistic

regression model. However, we chose to use the regression model for calculation as this retains

as much information as possible.
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Description of the cohorts

Patient characteristics for the three development cohorts and the KCH and OUH cohorts are

shown in S1 Table.

Since the three models use different outcomes and timeframes, the number of patients

included in each validation is not the same. An overview of missing values is presented in

Table 2. Missing values were imputed via simple imputation and multiple imputations [17].

Preliminary analyses showed no differences between AUROCs calculated with different

Fig 1. Selection of prediction models for validation.

https://doi.org/10.1371/journal.pone.0255748.g001

Table 1. Predictors and outcomes in the four prediction models.

Zhang models Xie model Allenbach model

Country of

development cohort

China China France

Predictors Age, sex, neutrophil count, lymphocyte count, platelets

count, CRP and creatinine at admission.

Age, LDH, SpO2, lymphocyte count

(log, due to extreme value).

CRP (per 100mg/L), age, lymphocyte

count, WHO scale (22) by admission.

Outcome 1. Mortality 1. Hospital mortality 1. ICU transfer or death by 14 days after

admission.2. Poor outcome, defined as developing ARDS, receiving

intubation or ECMO treatment, ICU admission and death.

CRP; C-reactive protein, LDH; lactate dehydrogenase, SpO2; Peripheral oxygen saturation, WHO; World Health Organization, ICU; Intensive care unit, NEWS2;

National Early Warning score 2, eGFR; estimated glomerular filtration rate, ECMO; extracorporeal membrane oxygenation, ARDS; acute respiratory distress syndrome.

https://doi.org/10.1371/journal.pone.0255748.t001
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imputation methods (see S2 Table). Thus, the simple imputation method k-nearest neighbor

was used for the rest of this paper. At KCH the number of missing values was very high for

LDH (87.8%) and relatively high for SpO2 (33.3%) and WHO scale (33.8%).

The OUH cohort consisted of 307 patients while the KCH cohort consisted of 1295 patients

(S1 Fig). For the OUH cohort median age was 60 years with 57% males, while in the KCH

cohort the median age was 69 with 59% males. In the OUH cohort, 32 patients died in the hos-

pital (10.4%), while 333 (26.8%) had died at the hospital by data collection time in the KCH

cohort. For the composite outcome death or ICU transfer, the number of patients with the out-

come was 66 (21.5%) at OUH and 419 (33.7%) at KCH.

The percentage of patients with hypertension and diabetes was higher in the KCH cohort

(54% and 35%, respectively) than in the OUH cohort (34% and 21%, respectively). The patients

at KCH also had higher levels of CRP, creatinine, LDH, and possibly a lower number of lym-

phocytes than the OUH patients; all of which are known predictors for severe COVID-19.

In Table 3, univariate associations are presented for mild/moderate and severe groups for

the KCH and OUH cohorts. In general, the same variables were predictive for severe disease at

Table 2. Validation of the four prediction models.

Zhang1 Zhang2 Xie Allenbach

Validation Dev. Validation Dev. Validation Dev. Validation Dev.

Oslo London Wuhan Oslo London Wuhan Oslo London Wuhan Oslo London Paris

Participants, n 307 1244 775 307 1244 775 307 1286 299 307 1248 152

Outcome, n (%) 32 (10) 333 (27) 33 (4.3) 66 (22) 419 (34) 75 (9.7) 32 (10) 333 (26) 155 (52) 62 (20) 389 (31) 47

(32)

Missing values

Predictors (%)

• ALC 3.9 4.6 � 3.9 4.6 � 3.9 7.7 � 3.9 4.9 �

• ANC 3.9 4.7 NA 3.9 4.7 NA NA NA NA NA NA NA

• Platelets NA 4.5 NA NA 4.5 NA NA NA NA NA NA NA

• CRP NA 3.3 NA NA 3.3 NA NA NA NA NA 3.6 NA

• LDH NA NA NA NA NA NA 12.4 87.8 NA NA NA NA

• Crea. NA 3.5 NA NA 3.5 NA NA NA NA NA NA NA

• SaO2 NA NA NA NA NA NA NA 33.3 NA NA NA NA

• WHO NA NA NA NA NA NA NA NA NA NA 33.8 NA

Outcome (%) None 0.07 NA None 4.1 0.065 None 0.07 NA None 3.8 0.03

AUROC (C-index) 0.72

[0.62–

0.82]

0.64

[0.60–

0.68]

0.91 0.77

[0.70–

0.84]

0.67

[0.64–

0.70]

0.88 0.87

[0.79–

0.95]

0.79 [0.76–

0.82]

0.89

[0.86–

0.93]

0.81

[0.74–

0.88]

0.72

[0.68–

0.75]

0.79

Calibration Slope 0.57

[0.27–

0.87]

0.37

[0.18–

0.56]

0.98

[0.24–

1.72]

1.18

[0.59–

1.77]

0.75

[0.58–

0.92]

1.04

[0.79–

1.29]

0.86

[0.71–

1.00]

1.03 [0.89–

1.17]

1.00

[0.77–

0.26]

1.03

[0.79–

1.28]

0.76

[0.62–

0.89]

0.89

Calibration

intercept

0.04

[-0.01–

0.09]

0.17

[0.10–

0.23]

0.19

[-0.10–

0.48]

-0.02

[-0.17–

0.12]

0.10

[0.04–

0.16]

0.01

[-0.13–

0.15]

-0.02

[-0.05–

0.01]

-0.04

[-0.09–

0.01]

0.00

[-0.33–

0.33]

0.00

[-0,06–

0.07]

0.09

[0.04–

0.14]

-0.06

Calibration before

recal.;slope

0.47

[0.24–

0.71]

0.38

[0.18–

0.58]

- 1.56

[0.68–

2.43]

0.92

[0.66–

1.17]

- 0.53

[0.29–

0.77]

0.87 [0.73–

1.00]

- 1.19

[0.94–

1.45]

0.87

[0.70–

1.00]]

-

Calibration before

recal.; intercept

0.03

[-0.02–

0.08]

0.17

[0.11–

0.24]

- 0.01

[-0.13–

0.15]

0.16

[0.10–

0.22]

- -0.06

[-0.16–

0.03]

-0.12

[-0.19-

-0.06]

- 0.02

[-0.04–

0.07]

0.12

[0.07–

0.17]

-

� Information missing.

Dev. = Development, ALC = Absolute lymphocyte count, ANC = Absolute neutrophil count, Crea. = Creatinine, recal. = recalibration.

https://doi.org/10.1371/journal.pone.0255748.t002
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KCH and OUH; except for ischemic heart disease, temperature and platelets which were asso-

ciated with severe disease at OUH, but not KCH.

Performance of the prediction models

The validation of the four prediction models with both the OUH and KCH cohorts is pre-

sented in terms of discrimination (AUROC) and calibration (slope and intercept) in Table 2

and Figs 2 and 3, respectively. For the models predicting mortality, the Xie model had the

highest AUROC both in the KCH cohort (0.79; 95% CI 0.76–0.82) and the OUH cohort (0.87;

95% CI 0.79–0.95). The Zhang1 model had a lower AUROC at both KHC (0.64; 95% CI 0.60–

0.68) and OUH (0.72; 95% CI 0.62–0.82).

For ‘severe disease’, discrimination was highest in the Allenbach model with AUROCs 0.72

(95% CI 0.68–0.75) for KCH and 0.81 (95% CI 0.74–0.88) for OUH. For the Zhang2 model,

the AUROC was 0.67 (95% CI 0.64–0.70) for KCH and 0.77 (95% CI 0.70–0.84) for OUH. For

the Xie and Allenbach models, discrimination at OUH was similar to the development cohorts

(Fig 2). We compared the AUROCs between the KCH and OUH cohorts using the bootstrap

method implemented in the pROC R package [24]. The results indicated that there was a sta-

tistically significant difference in the AUROCs between KCH and OUH for the Xie model

(p = 0.01), Allenbach model (p = 0.009), and the Zhang2 model (p = 0.007), but not for the

Zhang1 model (p = 0.140).

The calibration plots are shown in Fig 3 (after recalibration). S3 Fig shows the calibration

results before and after recalibration for the Xie and Allenbach models. Recalibration will not

render models with poor discrimination more useful. Thus, we focused on the recalibration of

the Xie and Allenbach models as these had the best discrimination. Recalibration improved the

predictions for both the Xie and Allenbach models at OUH and the Xie model at KCH, and

the slope and intercept were acceptable for both models at both hospitals after recalibration.

Continuous variables in median [IQR] and categorical variables in number (percent). P-

values are calculated with the Pearson X2 test for categorical variables, and with the Wilcoxon

Table 3. Univariate analysis of predictors in mild/moderate and severe disease.

OUH cohort KCH cohort

N Mild/Moderate disease Severe disease P-value N Mild/moderate disease Severe disease P-value

Age 307 55 [46–70] 68 [58–78] <0.01 1295 67 [53–82] 75 [62–86] <0.01

Male sex (%) 307 129 (54) 46 (70) 0.02 1295 463 (56) 271(65) 0.01

Hypertension (%) 307 75 (31) 29 (44) 0.05 1295 428 (52) 244 (58) 0.04

Diabetes (%) 307 46 (19) 18 (27) 0.15 1295 282 (34) 154 (37) 0.40

Ischemic heart disease (%) 307 20 (8) 13 (20) 0.01 1295 105 (13) 66 (16) 0.17

Chronic lung disease (%) 307 61 (25) 22 (33) 0.19 1295 82 (10) 52 (12) 0.22

Days at hospital 307 5.0 [2.0–9.0] 16.5 [8.0–24.0] <0.01 854 7.0 [3.0–12.0] 16.0 [10.5–31.1] <0.01

Temperature (celcius) 306 37.1 [36.5–37.8] 37.8 [36.8–38.8] <0.01 864 36.9 [36.6–37.4] 37.0 [36.6–37.5] 0.22

Resp/min (highest) 303 22 [18–28] 28 [22–32] <0.01 860 19 [18–20] 20 [19–24] <0.01

NEWS2 score 299 4 [2–6] 7 [5–10] <0.01 815 2 [1–4] 4 [2–6] <0.01

SpO2 1 307 96.0 [93.0–98.0] 92.0 [87.3–95.0] <0.01 858 96.0 [95.0, 98.0] 96.0 [94.0, 97.0] <0.01

CRP (mg/L) 307 34 [10–74] 93 [45–154] <0.01 1203 73 [33–128] 118 [59–196] <0.01

Creatinine (μmol/L) 307 77 [64–94] 97 [71–128] <0.01 1200 87 [69–118] 108 [83–166] <0.01

LDH (U/L) 269 237 [188–305] 329 [242–499] <0.01 157 349 [277–431] 532 [393–706] <0.01

Neutrophils (10^9/L) 295 4.0 [2.0–5.9] 5.7 [2.8–7.9] <0.01 1186 5.1 [3.6–7.2] 6.4 [4.5–8.8] <0.01

Lymphocytes (10^9/L) 295 1.1 [0.8–1.6] 0.8 [0.6–1.1] <0.01 1187 1.0 [0.7–1.3] 0.9 [0.6–1.3] <0.01

Platelets (10^9/L) 307 215 [173–279] 179 [135–244] <0.01 1188 214 [165–269] 205 [153–272] 0.15

https://doi.org/10.1371/journal.pone.0255748.t003
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rank-sum test for continuous variables. SaO2 value under oxygen treatment was registered if

oxygen was applied, there are also values for patients without oxygen in this registration. ICU;

intensive care unit, ACE; angiotensin converting enzyme, NEWS; National early warning

score, CRP; C-reactive protein. LDH; Lactate dehydrogenase, eGFR; estimated glomerular fil-

tration rate.

Discussion

In this study, we validated four prediction models for prognosis in hospitalized COVID-19

patients from London, UK and Oslo, Norway. We found varying performance of the models

in the two cohorts. The models performed better in the OUH cohort with similar discrimina-

tion to the original studies. The Xie and Allenbach models had the best performance for pre-

diction of death and severe disease, respectively.

Initial calibration was poor for all models, but improved after recalibration of the intercept

according to the frequency of the outcome in our cohorts. This improves the accuracy of the

prediction for each patient without affecting the discrimination and is recommended in sev-

eral publications [5, 11, 19]. Local or possibly regional/national recalibration is likely to be

important for COVID-19 prediction models since there is a large variation in the frequency of

severe disease and death in different studies. However, ideally the local recalibration should

also be tested for optimism using methods for internal validation such as bootstrapping or

cross validation.

In some cases, we found poorer discrimination in the validation cohorts compared to the

development cohorts. This is consistent with past evidence showing discrimination in develop-

ment cohorts to be better than at external validation due to overfitting and differences in char-

acteristics of the cohorts [25]. The cohorts in the original studies and at KCH and OUH had

many differences such as mortality, age and frequencies of severe disease and comorbidities.

UK and Norway differ in the structures of their healthcare systems, and the incidence of

Fig 2. Discrimination of the models at the different sites. AUROCs from validation of the four models at the KCH

and OUH cohorts, and the original AUROC from development cohorts [21–23]. Also shown are the results from the

external validation of the Xie and Zhang models by Gupta et al. [6]. Lines represent the 95% CIs of the AUROCs. For

the development cohorts only Xie reported confidence intervals.

https://doi.org/10.1371/journal.pone.0255748.g002
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Fig 3. Calibration plots for OUH and KCH after recalibration.

https://doi.org/10.1371/journal.pone.0255748.g003
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COVID-19 has been far higher in the UK. These factors may have affected the selection of

patients for hospital and ICU admission, which might have resulted in a more homogenous

patient population in regards to severity at KCH. It is to be expected that discrimination will

be less good when the population is more homogenous.

The findings underline the importance of validation at several external sites. This is particu-

larly true for a new disease like COVID-19, with rapidly developing treatment guidelines, and

with an overwhelming effect on healthcare resources in some locations, but not at others.

The Xie model had the best results compared to the other models. The differences in the

performance of the prediction models might have several reasons. Firstly, the predictors used

in one model might have better predictive value than predictors used in others. SaO2, which is

included in the Xie model, is a strong clinical indicator of the severity of disease, and often

indicates a need for ICU transfer. Secondly, there might be weaknesses in the models, as bias is

common in prediction models [12]. To date, only the Allenbach study is published in a peer-

reviewed journal, while Xie and Zhang are preprints. Thirdly, criteria for ICU admittance

might vary across sites. The fact that we and other studies generally find better discrimination

for mortality than for severe disease (often defined by ICU admittance) supports this hypothe-

sis. For instance, patients with short life expectancy will often not be admitted to the ICU, but

given oxygen therapy in a hospital ward and transferred to nursing homes for palliative care.

These patients, not fulfilling the criteria for severe disease, often have predictors that indicate

severe disease at admission.

Many prediction models have been published, but few have been systematically validated

[26]. To our knowledge, only one study to date has validated COVID-19 prediction models;

Gupta et al recently validated 22 prognostic models [6], including the Xie and Xhang models.

For the OUH cohort, we found substantially better discrimination for the Xie and Allenbach

models for the prediction of mortality and severe disease, respectively. The performance of the

models at KCH was more similar to the results in the Gupta study, also performed at a London

hospital. The rate of severe disease, mortality and the characteristics of the London cohorts are

quite similar which might explain the similar performance at these two sites.

Several other prediction models have been recently published, such as models based on

NEWS2 or the ISARIC model [14, 27]. The AUROCs of the models are in the range of 0.75 to

0.80, which is not a substantial improvement over single univariate predictors of severity.

Thus, the finding that the Xie and Allenbach models perform well at both the original study

site and at our validation cohort at OUH might indicate that it is possible to achieve higher

AUROCs with relatively simple prediction models.

Our study has several strengths. Validation was performed at two sites in different countries

with consistent inclusion and exclusion criteria. We included all eligible patients admitted to

the hospital during the study period therefore the cohorts should be representative of the study

sites. Moreover, the study was conducted and reported according to the TRIPOD guidelines.

However, there are also some weaknesses. Firstly, the OUH cohort is not very large with rela-

tively few patients meeting the outcomes. Some publications recommend including at least

100 patients with the relevant outcome [10]. However, studies with lower numbers may still

contain useful information. Furthermore, the KCH cohort is probably one of the largest

cohorts analyzed in prediction models for severe COVID-19 in hospital. Secondly, Gupta et al.

included 22 models in their validation study, while we ended our inclusion of models in May

2020, and included only four models in this study. Whereas it could be interesting to include

more models we think that the results for the Xie and Allenbach models at OUH indicate that

further studies of these models could be interesting. Thirdly, there was a relatively high num-

ber of missing values for LDH and SpO2 at KCH. It is uncertain how much this affected the

results. Both are included in the Xie model and SpO2 is a strong predictor for mortality, while
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LDH is probably a weaker predictor (6). The number of missing values at OUH was low and

probably did not affect the validation.

In conclusion, following the TRIPOD guidelines, our study validated developed models for

prediction of prognosis in COVID-19, and showed that these models have a variable perfor-

mance in different cohorts. The Xie model and Allenbach model clearly had the best perfor-

mance, and we suggest that these models should be included in future studies of COVID-19

prediction models. However, the performance of these models at our two validation sites was

not similar, which underlines the importance of external validation of prediction models at

several study sites before their implementation in the clinical practice.

Supporting information

S1 Table. Patient characteristics of the development/validation cohorts.

(DOCX)

S2 Table. Different methods of imputation.

(DOCX)

S1 Fig. Flowchart of the included patients at OUH for validation of the four prediction

models.

(JPEG)

S2 Fig. Flowchart of included patientes in the KCH cohort for validation of the four pre-

dcition models.

(JPEG)

S3 Fig. Results for calibration of the Xie and Allenbach models at KCH and OUH before

and after recalibration.

(JPEG)

S1 Checklist. TRIPOD checklist.

(DOCX)

Acknowledgments

We would like to thank Prof. Anne Ma Dyrhol Riise and Dr. Ane M. Andersson at the

Department of Infectious Diseases, OUH, for their support with the quality registry

“COVID19 OUS”.

Author Contributions

Conceptualization: Kristin E. Wickstrøm, Valeria Vitelli, Aleksander R. Holten, Kristian
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