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IMPROVEMENTS FOR EIGENFUNCTION AVERAGES:
AN APPLICATION OF GEODESIC BEAMS

YAIZA CANZANI AND JEFFREY GALKOWSKI

ABSTRACT. Let (M, g) be a smooth, compact Riemannian manifold and {¢»} an
L?-normalized sequence of Laplace eigenfunctions, —Agpx = A2¢py. Given a smooth
submanifold H C M of codimension k > 1, we find conditions on the pair (M, H),
even when H = {z}, for which

n—1

\/HmdaH):O(%) or |¢A<w>|:0(\j%),

as A — oo. These conditions require no global assumption on the manifold M and
instead relate to the structure of the set of recurrent directions in the unit normal
bundle to H. Our results extend all previously known conditions guaranteeing im-
provements on averages, including those on sup-norms. For example, we show that
if (M, g) is a surface with Anosov geodesic flow, then there are logarithmically im-
proved averages for any H C M. We also find weaker conditions than having no
conjugate points which guarantee /log A improvements for the L norm of eigen-
functions. Our results are obtained using geodesic beam techniques, which yield a
mechanism for obtaining general quantitative improvements for averages and sup-
norms.

1. INTRODUCTION

On a smooth compact Riemannian manifold without boundary of dimension n,
(M, g), we consider sequences of Laplace eigenfunctions {¢,} solving

(—Ag = X)¢x =0, ol zz(ary = 1.

We study the average oscillatory behavior of ¢, when restricted to a submanifold
H C M without boundary. In particular, we examine the behavior of the integral
average || g Prdog as A — oo, where o is the volume measure on H induced by the
Riemannian metric. Since we allow H to consist of a single point, our results include
the study of sup-norms [|x|| e s -

The study of these quantities has a long history. In general

1

/H ordon = O T)  and  [élleeqy, = ONT), (L1)

where k is the codimension of H, and H is any smooth embedded submanifold. The

sup-norm bound in ([1.1)) is a consequence of the well known works [Ava56] Lev52)
[Hor68]. The bound on averages was first obtained in [Goo83|] and [Hej82], for the case
in which H is a periodic geodesic in a compact hyperbolic surface. The general bound

in (1.1)) for integral averages was proved by Zelditch in [Zel92, Corollary 3.3].
1
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Since it is easy to find examples on the round sphere which saturate the esti-
mate , it is natural to ask whether the bound is typically saturated, and to
understand conditions under which the estimate may be improved.

In [CG19, |Gall9l [CGTI8, [(GT17], the authors (together with Toth in the latter
two cases) gave bounds on integral averages based on understanding microlocal con-
centration as measured by defect measures (see [Zwol2, Chapter 5] or |Gér91] for a
description of defect measures). In particular, [CG19] gave a new proof of and
studied conditions on ({¢,}, H) guaranteeing

/ drdoy =o(A'T). (1.2)
H

These conditions generalized and weakened the assumptions in [SZ02, [STZ11), [CS15]
SXZ17, Wym17,[Wym20a, Wym19, |GT17, |Gal19, [CGT18, Bér77, [SZ16al, [SZ16b] which
guarantee at least the improvement (1.2). However, the results in [CG19] neither

recovered the bound
cZ) dog = O )\kQI 1.3
/ A0 H /71 Y ) ( . )

obtained in [SXZ17, Wym20al, Wym20b|] under various conditions on H when M has
non-positive curvature, nor recovered the improvement on sup-norms given in [Bér77,
Bonl7, [Ran78] when k = n and M has no conjugate points. In the present article, we
address such quantitative improvements.

To the authors’ knowledge, this article improves and extends all existing bounds
on averages over submanifolds for eigenfunctions of the Laplacian, including those on
L norms (without additional assumptions on the eigenfunctions; see Remark [1| for
more detail on other types of assumptions). The estimates from [CG20a] imply those
of [CG19] and therefore can be used to obtain all previously known improvements of
the form . In this article, we make the geometric arguments necessary to apply
geodesic beam techniques and improve upon the results of [Wym20bl, [Wym20a),[SXZ17,
Bér77, [Bonl7, Ran78§].

These improvements are possible because the geodesic beam techniques developed
in [CG20a] give an explicit bound on averages over submanifolds, H, which depends
only on microlocal information about ¢, near the unit conormal bundle to H, SN*H.
In particular, microlocally near the conormal bundle to H, the quasimodes are decom-
posed into what we call geodesic beams: ¢) = Zje 7 X, ¢ near H. Each geodesic

beam, X, ¢y, is obtained by localizing ¢, to a length ~ 1 geodesic tube 7; of radius

R(\) ~ A~1/2%9 around a geodesic through SN*H. The contributions of these tubes
are then estimated using an energy estimate due to Koch-Tataru-Zworski [KTZ07].
After recombining, the estimate reads (for the case H = {x})

|6a(z)] < CR(A)D2A=D/2 3" 17, All L2 (ar)-
jeT

This estimate requires no assumptions on the geometry of H or M and is purely local.
It is only with this bound in place that [CG20a] applies Egorov’s theorem to log A time



in order to obtain a purely dynamical estimate (see also Theorem [5)) of the form

g]/2
|1(|)g‘)\|1/2>”¢>\HL2(M)7 (1.4)

where Ujcg7; is non-self looping for log A time (see ) and J = GUB. See
Section for a more detailed explanation of the techniques which includes estimates
similar to which allow for multiple non-looping sets, and [CG20a] for the proofs
of these analytic statements.

In this article, we apply dynamical arguments to draw conclusions about the pairs
((M,g), H) supporting eigenfunctions with maximal averages. While previous works
on eigenfunction averages rely on explicit parametrices for the kernel of the half wave-
group for large times, the authors’ techniques [GT17, [Gall9, [CGT18, [CGI19l [CG20a],
show that improvements can be effectively obtained by understanding the microlocal-
ization properties of eigenfunctions.

[a(@)] < CRO)D/2X=D/2 ()12 4

Remark 1. Note that in this paper we study averages of relatively weak quasimodes
for the Laplacian with no additional assumptions on the functions. This is in contrast
with results which impose additional conditions on the functions such as: that they be
Laplace eigenfunctions that simultaneously satisfy additional equations [IS95] [GT20,
Tac19]; that they be eigenfunctions in the very rigid case of the flat torus [Bou93,
Gro85]; or that they form a density one subsequence of Laplace eigenfunctions [JZ16].

We now state the main results of this article. In order to match the language
of [CG20a], we will semiclassically rescale, setting h = A~! and sending h — 07.
Relabeling, ¢y as ¢y, the eigenfunction equation becomes

(—h*Ag = 1), =0,  [lgnllz2 =1.
We also recall the notation for the semiclassical Sobolev norms:
2 o 2
HUHHSd(M) = <(—h Ay + 1)5u,u>L2(M). (1.5)

Let = denote the collection of maximal unit speed geodesics for (M, g). For m a
positive integer, r > 0, t € R, and x € M define

CUSULIEES {7 € Z:7(0) = z, 3 at least m conjugate points to x in y(t — r,t + 7‘)},

where we count conjugate points with multiplicity. Next, for a set V C M write

et = v v e 2P
eV

n—1,r¢,

Note that if 7, — 01 as |t| — oo, then saying that x € Cy " for ¢ large indicates
that x behaves like a point that is maximally self-conjugate. This is the case for every
point on the sphere. The following result applies under the assumption that this does
not happen and obtains quantitative improvements in that setting.

Theorem 1. Let V C M and assume that there exist tg > 0 and a > 0 so that

inf d(z,CP 1t >y, ort >t
eV ( T ) — It f = 0



4 YAIZA CANZANI AND JEFFREY GALKOWSKI

with vy = %e‘at. Then, there exist C > 0 and hg > 0 so that for 0 < h < hg and
] log h1
o VBT g,

u e D(M)
\/1og h—1 HZ§3<M>> .

In fact a generalization of Theoremholds not just for H = {z}, but for any H C M
of large enough codimension.

1-n
|ul| oo vy < Ch ™2 (

Theorem 2. Let H C M be a closed embedded submanifold of codimension k > "7“
and assume that there exist tg > 0 and a > 0 such that

d(H, C?fﬁn*l’”’t) >y, fort > tg (1.6)

with ry = Le=. Then, there exists C > 0, so that for all w € C°(H) the following
holds. There exists hg > 0 such that for all0 < h < hy and u € D'(M),

_ u —1
| / wudo,| < Ch'F ]l Mooy . 8RTy pan, 1y ‘s
H log h—1 h H, 7 (M)

Remark 2. One should think of the assumption in Theorem [1| as ruling out maximal
self-conjugacy of a point with itself uniformly up to time oco. In fact, in order to obtain
an L bound of o(hl_Tn) on u(x), it is enough to assume that there is not a positive
measure set of directions A C S;M so that for each element £ € A there is a sequence
of geodesics starting at x in the direction of £ with length tending to infinity along
which z is maximally conjugate to itself.

Before stating our next theorem, we recall that if (M, g) has strictly negative sec-
tional curvature, then it also has Anosov geodesic flow [Ano67]. Also, both Anosov
geodesic flow and non-positive sectional curvature imply that (M, g) has no conjugate
points [K1i74].

When (M, g) is non-positively curved (indeed when it has no focal points), if every
geodesic encounters a point of negative curvature, then (M, g) has Anosov geodesic
flow [Ebe73al, Corollary 3.4]. In particular, there are manifolds for which the curvature
is positive in some places while the geodesic flow is Anosov. However, even in non-
positive curvature some geodesics may fail to encounter negative curvature and thus the
geodesic flow may not be Anosov. To study this situation, we introduce an integrated
curvature condition inspired by that in [SXZI17]: There are 7' > 0, and ¢, > 0 so that
for every geodesic «y of length ¢ > T in the universal cover (M, §) of (M, g), and for all
0<s<1,

Kdvg < —ce ®V° (1.8)

where Q. (s) := {x € M : d(z,v) < s}, and K is the scalar curvature for (M, §). Note
that, unlike the curvature conditions in [SXZ17], the assumption in ([1.8)) allows the
curvature to vanish in open sets so long as no geodesic lies entirely in such an open
set. Moreover, it allows the curvature to vanish to infinite order at the geodesic.
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Theorem 3. Let (M, g) be a smooth, compact Riemannian surface. Let H C M be a
closed embedded curve or a point. Suppose one of the following assumptions holds:

A. (M,g) has Anosov geodesic flow.

B. (M, g) has non-positive curvature and satisfies the integrated curvature condi-
tion (1.8]), and H is a geodesic.

Then, there exists C > 0 so that for all w € CX°(H) the following holds. There is
ho > 0 so that for 0 < h < hg and u € D'(M)

- [ N
)/ wudos| < OB oo (22 4 VOB p2n, ) o ) (19)
H V9og h—1 h H. 2 (M)
Remark 3. In fact, the proof Theorem [3|B| shows that it is enough to have (1.8)) for
every geodesic v normal to H.

For manifolds of arbitrary dimensions, we also obtain quantitative improvements for
averages in a variety of situations.

Theorem 4. Let (M, g) be a smooth, compact Riemannian manifold of dimension n
and H C M be a closed embedded submanifold of codimension k. Suppose one of the
following assumptions holds:

n+1

A. (M,g) has no conjugate points and H has codimension k > "Z=.

B. (M, g) has no conjugate points and H is a geodesic sphere.

C. (M, g) is non-positively curved and has Anosov geodesic flow, and H has codi-
mension k > 1.

D. (M,g) is non-positively curved and has Anosov geodesic flow, and H is totally
geodesic.

E. (M,g) has Anosov geodesic flow and H is a subset of M that lifts to a horo-
sphere in the universal cover.

Then, there exists C > 0 so that for all w € C°(H) the following holds. There is
ho > 0 so that for 0 < h < hg and u € D'(M)

_ [Jull V1og h—1
| / wudop| < Ch' [lw]oo (=22l 4+ V280 (-8, — D es ). (110)
H v/logh Hyf (M)

We note here that Theoremincludes the bounds of [SXZ17] as a special case (see
Remark (12| for an explanation). The bounds in [Wym20al, Wym20b] are special cases of
Theorem BE, Theorem and the results of Theorem@below (see the discussion that
follows Theorem@. We also note that for any smooth compact embedded submanifold,
Hy C M, satisfying one of the conditions in Theorem [4] there is a neighborhood U of
Hy, in the C™ topology, so that the constants C' and hy in Theorem [ are uniform
over H € U and w taken in a bounded subset of CS°(H). In particular, the sup-norm
bounds from [Bér77, [Bonl7, [Ran78] are a special case of Theorem Similar to
the o(h%) bounds in [CG19|, we conjecture that holds whenever (M, g) is a
manifold with Anosov geodesic flow, regardless of the geometry of H.

Geodesic beam techniques can also be used to study LP norms of eigenfunctions [CG20D]
and to give quantitatively improved remainder estimates for the kernel of the spectral
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projector and for Kuznecov sum type formulae [CG20c|. The authors are currently
studying how to give polynomial improvements for L°° norms on certain manifolds
with integrable geodesic flow. To our knowledge the only other case where polynomial
improvements are available is in [IS95] for Hecke-Maase forms on arithmetic surfaces
or when (M, g) is the flat torus [Bou93, [Gro85].

1.1. Results on geodesic beams. The main estimate from [CG20a] gives control
on eigenfunction averages in terms of microlocal data. We now review the necessary
notation to state that result.

Let p(z,&) = [€]4(z) defined on T*M and consider the geodesic flow on T* M,

@t = exp(tHp). (1.11)
Next, fix a hypersurface
My, C T*™M transverse to H, with SN*H C Hy, (1.12)
define ¥ : R x Hy, — T*M by U(t,q) = ¢vi(q), and let
TinjH

Given A C T*M define

i=sup{7 < 1: W|(_;;)xpy s injective}. (1.13)

AT = @A)

[t <t
For » > 0 and A C SN*H we define

Al(r) =A%, Avi={p€Hs:d(p,A) <r}. (1.14)

where d denotes the distance induced by the Sasaki metric on TM (see e.g. Appendix@
or [Blal0, Chapter 9] for an explanation of the Sasaki metric).
Throughout the paper we adopt the notation

K, >0 (1.15)

for a constant so that all sectional curvatures of H are bounded by K,, and the second
fundamental form of H is bounded by K,,. Note that when H is a point, we may take
K,, to be arbitrarily close to 0.

We next recall [CG20a, Theorem 11] which controls eigenfunction averages by covers
of AQN*H(h‘S) by “good” tubes that are non self-looping and “bad” tubes whose number
is controlled. In fact, Theorems and [4] are reduced to a purely dynamical argument
together with an application of Theorem

For 0 <ty < Tp, we say that A C T*M is [ty, Tp] non-self looping if

To —to
Uednd=0 o U @na=0 (1.16)
t=to t=—Tp

We define the mazximal expansion rate

. 1
Apax = lim sup mlog 2}3}5 Hd(pt(xa g)” (117)

[t| =00



Then, the Ehrenfest time at frequency h=! is

log h~ !
T.(h) = T

(1.18)

Note that Apax € [0,00) and if Apax = 0, we may replace it by an arbitrarily small
positive constant.

Definition 1. Let A € SN*H, r > 0, 7 > 0, and {pj}j-\il Cc A. We say that the
collection of tubes {A7 (r)}j\f:rl is a (7,7)-cover of a set A C SN*H provided

Ny
A(3r) € | A, ().
j=1

It will often be useful to have a notion of (7,r) cover of SN*H without too many
overlapping tubes. To that end, we make the following definition.
Definition 2. Let A ¢ SN*H, r > 0, ® > 0, and {pj}év;'l C A. We say that the
collection of tubes {A;j(r)}é.v:rl is a (D, 7,7)-good cover of a set A C SN*H provided
that it is a (7,7)-cover for A and there exists a partition {J;}7_, of {1,..., N,} so that
for every £ € {1,...,D}

AT (3r)NAL(Br) =0 ijeds i#j

We recall that [CG20al, Proposition 3.3] shows the existence of ©,, > 0, depending
only on n, so that for all sufficiently small (7,7) there are of (D,,7,r) good covers of
SN*H. We will use this fact freely throughout this article.

For convenience we state [CG20a, Theorem 11]. The theorem involves many param-
eters. These provide flexibility when applying the theorem, but make the statement
involved. We refer the reader to the comments after the statement of the theorem for
a heuristic explanation of its contents.

Theorem 5 (J[CG20al, Theorem 11]). Let H C M be a submanifold of codimension k.
Let0 < 6 < 5, N >0 and {wp};, withwy, € SsNC(H). There exist positive constants
70 = 70(M, 9,7, 5, H), Ro = Ro(M,g,Kg,k,7,;), Cni depending only on n and k,
and hg = ho(M, g,6, H), and for each 0 < 7 < 7y there exist C = C(M,g,7,0,, H) >0
and Cy = Cy(M, g, N, 7,0, {wp}n, H) > 0, so that the following holds.

Let 8h% < R(h) < Ry, 0 < a < 1—_2limsup,,_, loi‘;oggh), and suppose {A7. (R(h))};vz”l
J

is a (D,7,R(h)) cover of SN*H for some © > 0.
In addition, suppose there exist B C {1,..., Ny} and a finite collection {Gy}locr C
{1, ce ,Nh} with

In(wy) C BU U Gr,

el

where

Tuwn) =14+ AT R() N 7w~ (supp ) # 0}, (119)
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and so that for every ¢ € L there exist t; = ty(h) > 0 and Ty = Ty(h) < 2aT.(h) so
that

U A:j (R(h)) s [te, Ty] non-self looping for ¢ == exp(tHje, ).

J€Ge
Then, for u € D'(M) and 0 < h < hy,

n—1 1
[} Cr D wnll R(h) 2 [ 1 Gelte)?
e /H wntdo| < 1 SRS RIS

T2 ter T}

n—1 1
Cog®|wnll R0 T~ (1GelteT1)?
+ ; > I(=h*Ag = D)ull 4,
T2 teL
-1 —h? — k—3
+ Ch wnlloo | (=28 = V)ul v
N 2
™ (lull gy, + 11280 = Dl ).

Here, the constant C,, depends on {wp}n, only through finitely many Ss seminorms of
wp,. The constants 19, C, Cy,, ho depend on H only through finitely many derivatives of
its curvature and second fundamental form.

Remark 4. The estimates in Theorem [5| are uniform in H. For a precise description
see [CG20a, Theorem 11]. In particular, when H = {z} and w = 1, then k = 0 and
| [y whudog] is replaced with [|ul|poo(p(zp8))-

(h?) by
SN*H

sets with appropriate structure. To understand the statement, we first ignore the extra
structure requirement and assume (—h2Ag — 1)u = 0. With these simplifications, and
ignoring an h* HUHL2<M) term, if there is a cover of A7 (R®) by “good” sets {Gy(h)}rer

and a “bad” set B(h) with Gy, [t¢(h),T;(h)] non-self looping, the estimate reads

Theorem [5 reduces estimates on averages to construction of covers of A7

1 L
k-1 Cnellwll 1 (O (GO)] 287
W] [ wudo] < S (o, (B 4 3 B O
H T2 el 17 (h)
where o, denotes the volume induced on SN*H by the Sasaki metric on 7™M and for

A C T*M, we write oy,.,, (A) = 04y (ANSN*H). The additional structure required on
the sets Gy and B is that they consist of a union tubes A7, (h®) for some 0 < § < % and
that Ty(h) < 2(1 — 20)T¢(h). With this in mind, Theorem |5 should be thought of as
giving non-recurrent condition on SN*H which guarantees quantitative improvements
over (|L.1). This type of non-recurrence was exploited in |[GT20] to understand L
norms for eigenfunctions at the umbillic points of the tri-axial ellipsoid, a quantum-
completely integrable situation. Taking t,, Ty, Gy and B to be h-independent can be
used to recover the dynamical consequences in [CG19, [Gall9] (see [GallS]).

Remark 5. Note that it is possible to use Theorem [5|to obtain quantitative estimates
1—k 1—-k
which are strictly between O(h™2 ) and O(h™2 /y/log h=1). For example, this happens
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if r; is replaced by e.g. a~lte=a in (1.6). We expect that the construction in [BP96]
can be used to generate examples where this type of behavior is optimal.

1.2. Manifolds with no focal points or Anosov geodesic flow. In parts
and of Theorem (4] we assume either that (M, g) has no focal points or
that it has Anosov geodesic flow. We show that these structures allow us to construct
non-self looping covers away from the points Sy C SN*H at which the tangent space
to SN*H splits into a sum of stable and unstable directions. To make this sentence
precise we introduce some notation.

If (M, g) has no conjugate points, then for any p € S*M there exist a weak stable
subspace EY(p) C T,5*M and a weak unstable subspace E*(p) C T,5*M so that

dey - EX(p) = EX(e:(p)),
and
|dpi(v)| < Clv] forv e EY andt — £oo.
(see e.g. [Ebe73al, Proposition 2.13] which is based on [Gre58]) We also define the stable
(+) and unstable (—) subspaces as Ey(p) = E¥(p) N (RH,)" where the orthogonal
complement is taken with respect to the Sasaki metric. These subspaces then have the
property that
T,5"M = (E+(p) + E—(p)) ® RHp(p).
While this particular decomposition happens to be an orthogonal sum, throughout
the article we will use A = A7 ® Ay to mean direct sum i.e. that A = A; + Ay and
A1 NAy = {O}

We recall that a manifold has no focal points if for every geodesic v, and every
Jacobi field Y (t) along v with Y (0) = 0 and Y'(0) # 0, Y (t) satisfies L[|V (¢)[> > 0
for ¢ > 0, where || - || denotes the norm with respect to the Riemannian metric. In
particular, if (M, g) has non-positive curvature, then it has no focal points (see e.g.
[Ebe73al, page 440]). It is also known that if (M, g) has no focal points then (M, g)
has no conjugate points and that F1(p) vary continuously with p. (See for example
[Ebe73al, Proposition 2.13 and remarks thereafter].) See e.g. [Rug07, [Ebe73b| [PesT7]
for further discussions of manifolds without focal points.

The geodesic flow is said to be Anosov [Ano67] if there exist E4(p) C T,5*M and
B > 0 so that for all p € S*M,

ldey(v)] < BeTB|v|,  veEL(p), t-—+oo, (1.20)

and

T,8"M = E_(p) ® E_(p) ® RH). (1.21)
Recall that a manifold with Anosov geodesic flow does not have conjugate points [KIi74]
and hence we use the same notation Ey(p) as in that case. In fact, a manifold has
Anosov geodesic flow if and only if it has no conjugate points and holds [Ebe73al,
Theorem 3.2]. One consequence of having Anosov geodesic flow is that the spaces
E.(p) are Holder continuous in p [KH95, Theorem 19.1.6].

In order to find examples of manfiolds with Anosov geodesic flow, we recall that any
manifold with no focal points in which every geodesic encounters a point of negative
curvature has Anosov geodesic flow [Ebe73al Corollary 3.4]. In particular, the class of
manifolds with Anosov geodesic flows includes those with negative curvature [Ano67].
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Below we write

Na(p) = T,(SNH) 1 Ex(p), (1.22)
and define the mixzed and split subsets of SN*H respectively by
My = {p € SN*H : N_(p) # {0} and N, (p) # {0}}, (1.23)
S i={p € SN'H : T,(SN'H) = N_(p) + Ny (p) }. (1.24)
Then we write
Ag = MpgnNSy (1.25)

where we will use Ag when considering manifolds with Anosov geodesic flow and Sy
when considering those with no focal points.
In what follows, ™ continues to be the canonical projection = : SN*H — H.

Theorem 6. Let H C M be a closed embedded submanifold of codimension k. Suppose
that A C H and one of the following two conditions holds:

e (M,g) has no focal points and 7= (A) NSy = .
e (M,g) has Anosov geodesic flow and 7~ (A) N Ay = 0.

Then, there exists C > 0 so that for all w € C°(H) with suppw C A the following
holds. There exists hg > 0 so that for 0 < h < hg and u € D'(M)

_ [[ul Vlogh—1
\/ wudos| < OB'T oo | — 200 1 VOB y g2,y s ).
H V1og h—1 h Ho 7 (M)

Theorem |§| also comes with some uniformity over the constants (C, hg). In particular,
for (Ao, Hyp) satisfying one of the conditions in Theorem@, there is a neighborhood U of
(Ao, Ho) in the C* topology so that the constants (C, hg) are uniform for (A, H) € U
and w in a bounded subset of C'2°. Here and below when we refer to the C'*° topology
on (A, H) we mean the following. Fix coordinate charts {U;}; near Hp such that
Hy C U;U; and in each Uj, Hy is given by {(2/, ") | ' = 0}. We define a neighborhood
basis near (Ao, Hy) by saying for ¢,k that (A, H) is ¢ close to Hy if H is given by
{(2/,2") | 2’ = f(2")} for some f € C* with | f| o+ < e and

sup inf d(x,y)+ sup inf d(z,y) < e.
€A YEAD zcAg YEA

Note in particular that since Fy(p) are continuous in p, if (Ao, Hp) satisfies the as-

sumptions of Theorem @ then for € > 0 small enough, k large enough, and (A, H), ¢, k

close to (Ao, Hy), the pair (A, H) satisfies the assumptions of Theorem []

We note that the conclusion of Theorem [6] holds when (M, g) is a surface with
Anosov geodesic flow, since in this case Ay = () regardless of H. To see this note that
if dim M = 2, then Sy = Ag since dim7,(SN*H) = 1. Indeed, it is not possible to
have both N, (p) # {0} and N_(p) # {0} unless N (p) = N_(p) = T,(SN*H) and
hence Sy C Apg. Moreover, in the Anosov case, since E1(p) N E_(p) = {0}, Ag = 0.

In [Wym17, [Wym20a] Wyman works with (M, g) non-positively curved (and hence
having no focal points), dimM = 2 and H = {v(s)} a curve. He then imposes the
condition that for all s the curvature of v, k(s), avoids two special values k(7/(s))



11

determined by the tangent vector to «y(s). He shows that under this condition, when
¢y, is an eigenfunction of the Laplacian,

1
/7¢>hda7 o( = h_l).

We note that if k,(s) = k+(9/(s)), then the lift of v to the universal cover of M is
tangent to a stable or unstable horosphere at v(s), and x(s) is equal to the curvature
of that horosphere. Since this implies that T(, ) ,/(s))SN™7 is stable or unstable, the
condition there is that S, = (). Thus, the condition Sy = () is the generalization to
higher codimensions and more general geometries of that in [Wym17, [Wym20a].

We also point out that through a small improvement in a dynamical argument, we
have replaced the set

Ny =Sy UMpyg

in [CG19, Theorem 8] with Sz when considering manifolds without focal points.

1.3. Outline of the paper. Sections [2] and |3| build technical tools for constructing
non-self looping covers. Then, Sections [4 and [5] apply these tools to build non-self
looping covers under certain geometric assumptions. In particular, Theorems [1| and
are proved in Section [} In Section [5, we prove Theorem [6] and the remaining cases
in Theorem [4] The reader will find below that there are many parameters explicitly
named in the propositions. We understand that keeping track of these may be painful
(and encourage the reader to treat them as some positive constant in most cases).
However, it is important to keep of track of the dependence of our estimates on many
of these constants e.g. in the proof of Theorem [T}

1.4. Index of Notation. In general we denote points in T*M by p, and vectors in
T,(T*M) in boldface (e.g. v € T,(T*M)). Sets of indices are denoted in calligraphic
font (e.g Z). When position and momentum need to be distinguished we write p =
(x,€) for x € M and £ € T M. Next, we list symbols that are used repeatedly in the
text along with the location where they are first defined.

o1 111 Amax  (T17 F, 6p
Hs, 1.12 T,(h) (118 W
o 1.13 Ni(p) (L22 Ji
AT(r) (14 My 1.23 D
K, .15 Si 1.24 C,
B 1.20 A 1.25 h
H™(M) (L5
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2. PARTIAL INVERTIBILITY OF dg;|rsn+g AND LOOPING SETS

The aim of this section is to study the set of geodesic loops in SN*H under conditions
on the structure of the set of conjugate points of (M, g). However, we work in the
general setting in which the Hamiltonian flow is not necessarily the geodesic one. We
do this since we plan to use the results for general Hamiltonian flows in future work.
In particular, let p € S™ be real valued with

| = [€[™/C, gl =C

and define ¢y := exp(tH,) and X, = {p =0} N N*H so that in the case p = [{], — 1,
Yy, = SN*H. We assume that H is conormally transverse for p in the sense that for
any defining functions f1,... fi for H, i.e. f; € C*°(M;R) with H ={z € M | f;(x) =
0,7=1,...,k} and df;|g are linearly independent, we have

k
N*H C {p # 0} U J{H,fi # 0}, (2.1)
=1

Note that with this definition the 7, as in (1.13|) continues to make sense for general
p and conormally transvers H. For such H, we define rg : T*M — R by rg(p) =
d(m(p), H), and let
J, = inf lim |H
o= df I [ Hyra(ee(p))]
We now fix once and for all a defining function F : T*M — R"*! for ¥y, and 0p >0
so that:

For ¢ € T*M with d(q,%, ) < 0F,
o %, =F10)

H,
o 3d(q,%y,) < [F(g)| < 2d(g,%,,),
e dF(q) has a right inverse R, (q) with ||R.(q)| <2, (2.2)

o < 2.
. ﬁ%(\a F(q)|) <2

Define also 9 : R x T*M — R**!

Y(t, p) = F o pi(p). (2.3)

Working under the assumption that the set of conjugate points can be controlled and
that the dimension of dim H < "Tfl will allow us to say that if ¢4, (po) is exponentially
close to X, = SN*H for some time to and some py € SN*H, then there exists a
tangent vector w € T},)SN*H for which the restriction

AWty po) - ROE X RW = Ty o0y R (2.4)

has a left inverse whose norm we control. This is proved in Lemma and is the
cornerstone in the proof of Theorems [2| and Note, however, that asking (2.4) to
hold is a very general condition that may not need the control of the structure of the
set of conjugate points. We will use this in Section

The goal of this section is to prove Proposition below, whose purpose is to control
the number of tubes that emanate from a subset of ¥, and loop back to %, . This is
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done under the assumption that the restriction of di, ,.) in has a left inverse.
To state this proposition we first need a lemma that describes a convenient system of
coordinates near 3, . The statement of this lemma is illustrated in Figure

Observe that by [DG14 (C.3)] for any A > Apax and « multiindex, there exists
Cyip.o > 0 depending only on M, p, « so that

0% < C,, el (2.5)

Lemma 2.1 (Coordinates near Y, ). There exists T = 11(M,p,J,) > 0 and ¢ =
co(M,p,T;,) so that for A > Ayaq the following holds. Let po € Xy, , to € R be so that

e there evists w = w(to, po) € Tp, %, so that the restriction

dP(ty,p) : ROy X Rw — Tw(tO,PO)Rn+1
has left inverse Ly p0) with || L, po) |l < A for some A > 1,

2Altg|
i d(SOtO(pO)?E ) <m1n{16 2Atg 76F}
Then, points p in a nezghborhood of po can be written in coordinates p = p(y1, ..., Y2n),
with po = p(0,...,0) and ¥, = {yn = - -+ = y2n = 0}, so that

So). o) < Iy — /| < 2d(p(y). p(0).

In addition, there exists a smooth real valued function f defined in a neighborhood of

. —3A :
0 € R?" 1 50 that letting ry, := Bec;A‘;O‘ and 0 <r < ﬁe’wo'no, if
0

ly| < 74, and d(pe(p(y)), ) <7 for somet € [to — 71,t0 + 71],

then
ly1 — f(ya, - y2n)| < 2(1 + co) Ar and |0y, f| < oAbl

Y1

XH.[}

//

(o)

Ficure 1. Hlustration of the statement in Lemma 2.1 when H is a
curve and M 1is a surface.
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Proof. Since di)(y, ) : RO; x Rw — R"™*! has a left inverse, we may find an orthogonal
matrix O such that O o F' = (f1,..., foy1) and with F = (f1, fa),

U:RxT*M —R?% Ut p) = Foplp),

the restriction d¥ : R9; x Rw — R? is invertible with inverse L having ||L| < A. Note
that since O is orthogonal, O o F' is a defining function satisfying (2.2)) with the same
dr. Moreover, since

At p0) * ROt = T (tg,p0) R™

has a left inverse, L1 € R with |Li| < 27! := Ay we may choose O so that with
\IJ( ) = (\Ifl(t p) ‘lfz(t p)), we have |8t\1/1(t0,p0)’ > Aal and at\Ifg(to,po) =0.

Let (t,y) = (t,¥1,Y2y -+, Yn—1,Yn, - - - Y2n) be coordinates on R x T*M near (tg, po)
so that (t9,0) = (to, po), 9y, — W/||w|| at (t0,0), and (yn,Yn+1,.--,y2n) define 3,
Finally, let § = e?toly. We will work with these coordinates on R x T*M for the
remainder of the proof.

Applymg the implicit function theorem (see Lemma with g = ¢, x1 = ¢
and f R x R x R — R with f(xo,:vl,xg) = llll(wo,xl) — x9 gives that there
exists a neighborhood U C R?" x R of (0,29), where 23 := ¥y (t9,0), and a function
2o =t:U — R, so that for (g,x2) € U,

xo = W1 (g, 22),9)

t0,00)

with

1,
|8:v2t| < Ao, 12}%§n|8 t| < 645‘40’

where ¢,, is a positive constant depending only on (M, p). Here, the ty independent
bounds follow from the chain rule. Moreover, we have |8t2g fl< M2 192f] < Me apnq

N ; 64n ? 64n ?
|05, f| < 532 for all j =1,...,2n. Then, working with

8

8 o 32 8 2
p A0’ i {Cf/[ AT Ay AO} 2= arpAD

C

M, M, > M, 5
By = 32p7 By = 6471:’ By =0, By = 647]7?’ By =1,

for 7o, 71,79 and By, B, Bs, B1, By as in Lemma we obtain that U can be chosen
so that B(0,71) x B(x9,72) C U. In particular, it follows that if

~ . 0
[t =t < o° S i< mm{cgf:fx37 ﬁ} |39 — 29| < m (2.6)

then
|47, 22) — (5, 0)| < Aolxa.
Next, since d¥ : R9; x Rw — R? is invertible with inverse L satisfying || L|| < A, we
have |95, f| "1 <AeMol where now we write f for

f(gv Z2, ZL‘3) = qu(t(ga l’2), g) — Z3-

Next, we write § = (¢1,%’) and once again apply the implicit function theorem
(Lemma [A.1)) with 29 = 71, 71 = (z2,7'), ¥3 € R, to see that there exists U C R*" x R
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of (0,29), with 2§ = Ws(to, 0), and a function xg = y; : U — R, so that for (§',23) € U,

I3 = \112 (t(yl (glu T2, x3)) g/’ IQ) ) 5’1 (gl7 x2, $3)7 Ql>
with

0,31 < A0l 105,51 < coAetl max 195,1] < g At
SIS

where ¢q is a positive constant depending only on (M, p, Ap), so that |8(2 | < o

and |8y, f|, |03 f] < 20 forall j =2,...,2n. Without loss of generality we assume
that ¢y > ¢ ’pAo and that ¢o > 1. Then, working with

—Altgl . 32¢—2Altgl  ge—Altol 2e—2Altol
__ 8e _ e e _ 2e
To = A 1 = min { chQ ’ T oA ) Ty = Az
— < — R, — 0 R, —
By = 33, By = g, By =0, By = gt By =1,

for o, 71,79 and By, B, Bs, B1, By as in Lemma we obtain that U can be chosen
so that B((x3,0),7r1) x B(z3,72) C U. In particular, it follows that if

Altgl —2A[tg] —Altg| 0 —Altg|
Fil < B0 N5 wa — aB)] < min {2700 SR g — g < 225500
(2.7)
then
iyl (g/) x2, x3) - S’l(gla x2, 0)| < AeAit()l i$3|
Note that this can be done since by assumption ¢y > 1 and
—2A[tg|
10 — 2| = [Pa(to, po)| < 2d(pt(p0), Syr,) < 2ecoAzU - (2.8)
It follows, after undoing the change § = eMtoly, that if
. —2Altg| —Altg| —Alt|
o max{|zo — 29|, |23 — 23|} < mm{CM,jAS’ 326ch2 ol SecoAO , 2ec0A20 },

. ge—2Altgl  32¢—3Altgl  ge—2Altgl 39— Altol  ge—Altol
o iyi <m1n{ ecOA ’ echQ ) ecOA ’ c]%e[ A2 ’ Cle\/[’pAo }
8
then
iy, 22, 23) = y1(y',0,0)] < (1+ co)A| (w2, x3)].
Next, note that since d(¢¢(p(y)), Xy ,) <7 and r < 16221‘4?, then
0 0 2¢—2Altol
|0 — 25| < x| + |23] < 2d(pe(p(Y))s Byr,) + 2d(010(00)s By ) < 2oz
and similarly, |z3 — 29| < 26:2250‘. In addition, we can assume ¢, > 1. Since
¢ > c Ao, with the above definition of 7;,, we obtain that if r < ieAit()'rto and

lyl < ?”to, then
ly1(y/, 22, 23) — y1(y/,0,0)| < 2(1+ ¢o) Ar.

To finish the argument, we note that we may define f(y') := y1(v/,0,0) satisfying
0y f| < coderMol as claimed. Where, as argued in (2.8), this can be done since

e—2Altg]

10— 29 < 2 oz and using that A > 1, ¢g > ¢, Ao.
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O

Remark 6. We proceed to study the number of looping directions and prove the main
result of this section. In what follows ¢y denotes the constant from Lemma, [2.1

Proposition 2.2. Let 0 < tg < Tp, 0 < ¢ < dp,a >0, A > Apoe, ¢ >0, B € R,
ACX,,, and B C A a ball of radius R > 0 satisfy the following assumption: for all

(t,p) € [to, To] X B such that d(¢:(p), A) < ée~ U, there exists w € 1,%, , for which
the restriction

Az p) : ROy x Rw — Ty yR™H!
has left inverse L 5y with || L p || < cePlt,

There ezist a1 = a1(M,p) > 0 and as = as(M,p,c, ¢ 06p,T,) so that the following
holds.

Let ro, 71,79 > 0 satisfy
_ATOT

)

ro <71, ry < oqra, ry < min{R, 1, aye 10}, ro < %e

where vy = max{a,3A +20}. Let 0 < 19 < T”L#H, 0<7 <79, and {pj}é-vzl CXy, bea
family of points so that

N
AL () N AR(ro) 20, Aj(ro) € |J A7 (),
j=1

and {A;j (rl)};.v:l can be divided into ® sets of disjoint tubes.
Then, there exist a partition of the indices G U B = {1,...,N} and a constant
Co = Co(M,p,k,c,5,3,,) >0 so that

e Ujeg AZJ_ (r1) is mon-self looping for times in [to, To]. Moreover,

a(aatro), U Uwla] (1) > 2n.

te[to,To] JEG

o |B| < CoD ry B Ty AW+,
1
Remark 7. Note that we will typically apply Proposition With {A;j (r1)}; asubset
of a (Dp,7,7) good cover for ¥, . In this case the constant © can be absorbed into
Co since it depends only on n.

Proof. Let 1 = 11(M,p,J,,) be the minimum of 1 and the constant from Lemma
and let L be the largest integer with L < %(To —to) + 1. Cover [to, Tp] by

L

[t07T0] C U [3[ - %7‘9@ + %]7
=0

where s; :=to+ (£ + 3)71. We claim that for each £ =0, ..., L there exists a partition
of indices Gy U By, = {1,..., N} so that

’I“QRn*l
n—1
™

1By| < Co® e A+B)lsl (2.9)
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and
sp+3
d{Aaro), U (A7 () | = Fra—Coro Yk Gy (2.10)
s:szf% s
Here,

Cy = sup {[deil@)l : g € Aygy(e0), [t < 4},

where €9 > R is a constant independent of rg, 71,72, R. The result then follows from
setting

L
B::UBg and G:={1,...,N}\B,
£=0

together with asking for a; < ﬁ so that Cirg — C4rg > 2r1. Note that the
S S S

adjustment depends only on (M, p).

We have reduced the proof of the lemma to establishing the claims in and
. We next explain that it suffices to prove with A7 (ro) replaced by A. To
see this, let {¢;} be so that

J
(=37 + m1470), 37 + 71 + o] = (It — 3t + ),
j=1

where J is the largest integer with J < (67 + 2r9)/7 + 2. Note that since 7 < 79 < 1,
ro < % and 71 depends only on (M, p,J,, ), the same is true for J. Fix ¢ € {1,...,L}.
We claim that for each j € {1, ..., J} there exists a partition g§ U b§ ={1,...,N} with

n—1
|[)§| < 009%64(/\4'5)\5@\’ (2.11)
™
and
Sg+tj+%
d(A, U gpt(p)> > 1o for all p e U A7, (r1). (2.12)
t=sp+t;— kegt

Suppose the claims in (2.11)) and (2.12]) hold and let
J
By:=|J b and Ge={1,....,N}\B,.
j=1

Then, by construction, after possibly adjusting Cg to take into account the bound on
J (which only depends on (M, p,J,,)), we obtain that also holds. To derive (2.10))
suppose p € A7 (rq) for some k € G. In particular, since k € gﬁ forall j=1,...,J,
relations yield that

Sp+3T7+T14+710

ia U ab)zre

t=sy—317—T1—"70
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. . eps 1
In particular, using the definition of Cy, that 7 <7, <1, and ro < 3

Sp+27+71 ro
d<A2+TO7 U Sot(/))) > Il
t=sp—27—T1 5

and this proves (2.10) after using the definition of C's once again.
We have then reduced the proof of the proposition to establishing the claims in

(2.11) and (2.12)). Fix £ € {1,...,L}, j € {1,...,J}, and set
§:= 8¢+ 1.

To prove these claims we start by covering B by balls BS C T*M of radius Rg > 0 (to
be determined later) and centers in B,

I
Bc | B,
a=1

so that I, < Canfle_(n_l) for some C,, > 0. Fix B and suppose there exists
po € B such that

ATy, ) <o and  d(A, ) @ilpo)) <7 (2.13)

Then there exists 5 € [s—5, s+ %] with d(ps(po), A) < ra. Next, since d(po, %, ,) < 7o,
there exists p, € X, with

3(pa) € Bles(po), cy,eFmo),  d(po, pa) < 70,
for some ¢, , > 0. In addition, letting Ts = CM’peAE'rg,

d(Xy,, p3(pa)) < d(A, p5(pa)) < d(A, ps(po)) + d(ws(po), ps(p)) < r2 + Ts.

_ 3  min{é & 1
We then assume that ag < e min{§, °F, 32c(2)02} so that
L e2A+B)18
ro + Ts < min 66_“|5|, — 55 OF
16¢c

where ¢q is from Lemma Then, by assumption there exists w = w(3, pa) € 1), %y,
so that the restriction dis ) : ROy x Rw — Tw(gvpa)Rn—i_l has left inverse L3 ,,) with
I Lz pu) |l < cePl3l. By Lemmathe points p in a neighborhood of p,, can be written in
coordinates p = p(y1, ..., y2n) With po = p(0,...,0) and ¥, = {y, = --- = yo, = 0}
so that 3d(p(y), p(y)) < |y — /| < 2d(p(y), p(y')). Let

Qe—(3A+26)|3]
¥ R
2§

These coordinates are built with the property that there exists a smooth real valued

function f defined in a neighborhood of 0 € R?"~! so that if 0 < r < ﬁ@AE'T‘g,

ly| < rs and d(ei(p(y)),Xy,) <r for somet € [5 — 7,8+ Tl],
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XHJ)
- T
#3(po) o
L]
©3(pa)

B(pk,r1) with k € B

FI1GURE 2. Illustration, when n = 3, of the covering balls that intersect
B? and loop back for times s near s.

then

ly1 — f(y2, .. -y2n)| < 2(1 + co)cemg'r and |8yjf] < ¢ cePI3l Al

Assume oy < ﬁ so that ry < ﬁe/\'g'rg. Since 5 € [s — 5,5 + 5], we may choose
r:=ry to get that, if p = p(y) € B(¥,,,r0) satisfies d(p, pa) < % and

-
s+?1

d(ZH’p, U wt(p))<r2, (2.14)

then with § = (yn, ... y2n)
|y1 - f(y27 s 7yn7170)| < ‘yl - f(y2a s aynflag” + |8yjf(y27' : 'ayn71a0)||g|

< 2(1 + ¢g)eePBlrg + coeeP ISl o,

< Coemg'rQ.
Here, we have used that the assumption ry < %e‘ATorg implies eX¥12rg < 75, and we
have written Cy = (2 + 3¢g)c. Also, we used that |y| < 2d(p(y), p(v2,...,Yn-1,0)) =

2d(p(y), EH,p)S 2ro.
Next, we let Rg = &

p € By,

and use that as < ﬁ to obtain that since py € B, for
0

T3
d(p, pa) < d(po, pa) + d(p, po) < 1o+ 2Rs < 5 (2.15)

In particular, (2.15)) implies
* T3
By C{peT™M : d(ppa) < 5}
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Therefore, we have showed that if p € B; N B(%, ,70) satisfies (2.14)), then p €
U, NB(%, ,,r0) where

us = {p: ly1 — F(y2, s Yn—1,0)| < Coe®lra,  d(p, pa) < %}

This is illustrated in Figure Next, note that, the number of disjoint tubes in
{A;_(rl)}Nzl that intersect U5 N B(X,, ,79) is controlled by the number of disjoint
j J Pa P

balls in the collection {B(p;, 7’1)}?[:1 that intersect U; N Y, . In addition, for each
j €{1,..., N} the intersection B(p;,r1)NY,  is entirely contained in Z;{ja Nn%, , where

i ) .
Upsa:{p: 1 — F(y2s s yn—1,0)| < Coe®llratdry,  d(p, pa) < §+4r1}.

In particular,

vol(Us, M%) < (Coe™llry + 4ry) / V1I+IVIPdys.. . dyn1.

B(0,%5 +4r1)

Hence, the number of disjoint balls in the collection {B(p;, rl)}j.v:l that intersect U, N

¥, , 1s controlled by

2v/n — 1 coe(CoeP U™y 1 4y ) B+ Isl+m0) (% T e

Here, we used the bound |9y, f| < co ceBHMISI and that P8l < Bllsl+m),
Finally, note that since ag < ﬁ and v > 3A + 28, by choosing a1 < 1, we have
0

r1 < min{rg,rs}. Hence, the number of disjoint balls in the collection {B(pj,rl)}é-v:l
that intersect U; N Y,  is controlled by ewﬁ6(25+A)‘5|r217?_2r1_(n_1) up to a con-
stant that depends only on (M,p,k,c,J,). In addition, note that in the collection

{A7, (1) j-vzl there are © sets of disjoint tubes of radius r1. Therefore, since there are
I, < C’nR”_lRS_("_l) balls B, for s = s, 4+ t; we can build b§ so that

sett;+3
pé¢ A0 = d<A, U wt(p)) > 12,
keb§ t=sp+t;— 3

and so that for some Co = Co(M,p,k,c,3,73,) >0

6(25+A)|s|r2T7~1—2Rn—1
5

T{LilR?il

65| < CoD

. . n—2 n—1
Here, we have used that 2B < 28 gince 1 < 1. Using that ;fnfl = 87“ and

adjusting Cp, we obtain (2.11]). This concludes the proofs of the claims in (2.11) and
@.12).

n
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3. CONTRACTION OF ©¢ AND NON-SELF LOOPING SETS

The proofs of Theorems [4] and [6] hinge on controlling how the geodesic flow changes
the volume of sets contained in SN*H. As in the previous section, we work with a
general Hamiltonian p such that H is conormally transverse for p. Let

Jt = dsot’TPEH,p : TpEH,p — ngt(szHm). (31)

When the Hamiltonian flow is assumed to be Anosov, we have that for Ay C Sy \
My, we can split Ag into pieces A o such that there is Cy > 1 satisfying

sup | det J;| < Coe™ /%, +t > 0. (3.2)
PEAL 0
The analysis in this section will be used in Section [5] to prove Theorem [6] and in
particular, to handle Sg \ My. This, for instance, is the step which allows us to show
that averages over subsets of horospheres have improvements.

Note, however, that the condition in is very general and that it may hold
in situations where the Hamiltonian flow is not Anosov. For example, such an esti-
mate holds for the geodesic flow at the umbillic points of the triaxial ellipsoid (see
e.g. [GT20]). This section is dedicated to study the structure of the set of looping
tubes under the assumption that holds.

By , there exists C, > 0 depending only on (M, p), so that for all A > Apax

dof| <C. MU teR, 3.3
(%)
Let D > 1 be so that
—A(+7 )
_AD . (e injH /7 oy 1}
e <m1n{7,—,f , (3.4)
C, 474

where ay = a1(M, p) is the constant introduced in Proposition
Definition 3. Let A9 C %, , €0 >0, F >0, to : [e0,00) — [1,00), and Tp > 1 . If the

following conditions are satisfied, we say that
Ag can be (g9, to, F )-controlled up to time 7.
Let € > €9, A > Apax,
0< Ry < e H AL 0 < 79 < Ry,
and balls {B(),i}fil C X, , centered in Ay with radii {ROJ}ZJ\L1 C [ro, Ro]. Then, for
0<7< %’EHJH and all
N

Ay C U By,; C Ag and 0<r< %B_FATO’I“(),
i=1

there are balls {By . }x C %, with radii {Ry}x C [0, $Ro] so that
(1) AZI\UkBLk(r) is non self-looping for times in [ty(e), To],

(2) SpRY <X Ry,

(3) infy Ry > e PAT0inf; Ry ;.
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We observe that when we write A1\ Uy By, we mean Aj N (g, \ Uk Bi ).
Note that Definition [3|is vacuous if Ty < to(ep).

Lemma 3.1. There exists F > 0 depending only on (M,p, K,,) so that for every
monotone decreasing function f : [0,00) — [0,00) with f € L*([0,00)) and A > Apax,
there exists a function to : (0,00) — [1,00) with the following properties.
If Ag C X, is so that
sup |det Ji| < f(|t]) (3.5)
pEAD

for all t € (0,Ty) or for all t € (=T, 0), then, for all g > 0,
Ag can be (g9, to, F )-controlled up to time Ty

in the sense of Definition[3 Furthermore, in addition to conditions (1), (2) and (3)
in Definition [3 being satisfied, either

To
T T _
U @t(AAl\ngl’k@")) N AEHyp\UkBI,k(T> =0,
t=i0(€)
or
—to(é‘)
T T _
U SOt(AA1\UkB1,k (r)n AEH,p\Ukél,k (r) = 0.
t=—To
Note that the last conclusion of Lemma 3.1 differs from condition (1) in Definition
since we insist that, after flowing, not only does A” (r) not self-intersect (as in

A\Ug By N
(1) of Definition |3} but it does not even intersect ¥, \ UpB1 .

Proof. We prove the case in which (3.5 holds for all ¢ € (0,7p) (the case in which it
holds for all ¢ € (—Tp,0) is identical after sending ¢t — —t). Let A > Apax and to be
large enough so that to > 7., + 2 and

C:peAe_DA(tO_TiﬂiH_l) <1, (3.6)
where C, is as in (3.4). We will assume, without loss of generality, that f(|t|) > C%)e_At.
Define

to: (0,50) = [1,0) to<e>=mf{szto: /°°f<s>dsg€j;gf},

where
o= 23— lyn—l and = C¢eA.

Here, to(c) > 2 since to > 7., +2 > 2.
Fix g9 > 0 and let € > gp. Let 0 < 7 < 37, Ro > 0,0 < rg < Ro and let
{Boi}iL, C %, be a collection of balls centered in Ay with radii {Ro;}Y, C [ro, Ro).

Let Ay ¢ UY, Bpiand 0 < r < 1. Foreachi € {1,..., N} let {I(),i,j}jy:il be a collection
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of disjoint intervals Ip;; C [to(e) — 27 — r,To + 27 + 7] so that Ti“iH < |y, ;] < T“gH
and

N;
{t € [to(e) =27 —r, To+ 27+ 7] = @i(A,,(r) N AE r) # 0} < | Toay,
and (3.7)
U (A%, (r ﬂAg
telo,;,j
Forie {1,...,N} and j € {1,...,N;} define
D()J‘J = U o ABOz ﬂAE (38)
telo,;,j

We claim that for each pair (i, 7)
Li
Do,ij C U A% (1) (3.9)
(=1
where {Bo7i7j7g}£L:i’{ are balls centered in X,  with radii Ro; ;¢ := ye DAt Ry ; satis-
fying
LijRi 5, < af(toi) Ry (3.10)
(see Figure[3|for an illustration of this covering), where tg; j := min{t : ¢ € Io;;}. Note
that to;; > 1 for all (i, j) since r < 1 and to(e) > to > 7, +2, and so to(e) —27 —7 >
f()(&“) — Tojm —1>1.
Note that, since we take 0 < r < Ry < F “te " AT0 if we let F, = F,(M,p, K,,) large
enough and assume F > f, then 3, ' is almost flat as a submanifold of T"M at scale
Ry. In particular, we have

B(p, 3R) ﬂAZ (r) C AOB(pvR)(r),
for all p € ZH’p and 0 < R < Ry. Here we are using B to denote a ball in T*M and B
to denote a ball in 35, . Therefore, it suffices to show that
Ll,]

Do,y € | Bosijie- (3.11)
(=1

where {BO,i,j,Z}gLi{ C T*M are balls with radii Roije = %Ro,i,j,ﬂ with Ry ¢ as in
(13.10]).

Let po; € Ag be the center of By; and fix j € {1,...,N;}. To prove the claim in
(3.11) fix ¢, = € o, so that @1, (po i) € AO ( ). Observe that choosing coordinates

near po; and P (poi), we have for ¢ near tpo and p near pg;,
N

wi(p) = @i(po,i) + dee(p — po,i) + O(lp — p07i|262A\t|).
If |p = poi| < Ros and p € X, , this gives

0i(p) = @i(poi) + Ji(p — poi) + O(Raiem'tl).
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Illustration of a contracting ball and the cover by much

FIGURE 3.
smaller balls for the proof of Lemma [3.1

Now, let {)\;(£)}?=]' be the singular values of J; ordered so that A\;(t) < Ait1(t). Then,
modulo perturbations controlled by R(Q)ezAm, the set ¢(Bo,;) is an n — 1 dimensional

ellipsoid with axes of length \;(t)Rp ;. Also, observe that

oAt A
<A(t) < Apma(t) < Cle™,

c, -

where C is as in (3.3). Since ty(¢) > 1, we note that e~A(ED-1) < & This ensures
0

that e PA < % for all t > ty(e).
©
Also, note that there exists a constant a,, > 0 so that for all i € {1,..., N} and
pE @tpOi(A%O’i (r)) we have d(p, ¢, (Bosi)) < oy € to.ir. Define F by
D+1,F},

F = max{8a,, ,

and from now on work with Ry < %e_FA‘T()'. Then, if 0 < r < %e_FATOT‘O, we have
that r is small enough so that aM’peATor < tePATorg. In pLarticular, aM’peAt’)O’ir <
te DA Ry, for alli € {1,...,N} and there are points {g/},"] C 1, , (Bo.i) so that

Liyj
(3.12)

(pt/’O,i (AOBQ‘,L' (T)) C U B(q£7 %e_DAtO’i’jRO,i)7
=1
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where the balls in the right hand side are balls in T*M. Furthermore,
vol(gy,, (Bo,)) < vol(Bo)(| det(Jy,, )| + Gy, RN
< Cug; (f(tpo.) + OMPRZ #teo-s)

for some C,, > 0 and C,; > 0. Next, adjust £ so that F? > C,C,, . Then, since
£t = Lo,

VO]((,Otp (BO z)) < 2C Rgz 1f( POi)'

Observe that by (3.4) and t,,, — i“jH < toj < tpy,s we have e DML < Xy (L)
Therefore, using that to;; < {,,, again, the points {qg} P ” can be chosen so that

f— s — Li y —_ ..
L; jCr(ge P01 Ry 1)1 < 2ol (@tpo,i(Bo,z’) ﬂ Ui Bge, ge DAtO’”Ro,i)>
< ACh Ry f(tog)- (3.13)

Note that this yields L; ;(ze PAMoid)n=1 < 4f(tg; ;).
Since |Ip; ;| < 1, it follows that for every choice of indices ¢, (4, j) we have

. —DAtg i ; A —DAto ,
dlam( U ¢y, Blas ge Mo Rog)) n AT ) = C etem PO Ry i< Ro,z‘
tEIO,i,j

(3.14)

where in the last inequality, we use the definition of D. Without loss of generality, we
may assume that C, > 4 (redefining D in the process) and hence that v = iq’ eA>1
(see ) This implies that we can find a point pg; ;¢ € ¥, so that the ball
Bo,ije C T*M of center pg; j¢ and radius Ro; ¢ = %fye_DAtO’i»j Roy; = %Ro’m’g contains
the set in whose diameter is being bounded. Thus, by the definition of Do ;
together with , we conclude that and hold. Also, by the definition
of R je, the definition of a, and , for each choice of (3, j)

L;
-1 —1/,—DAtg; ; -1 -1
Ryie=Ligy" (e P00 Rog)" ™t < af (to ) Ry

/=1

and hence (3.10]) holds. Therefore, from the definition of ty(e) it follows that

SRy, <) fltoig) Ryt < 74—0‘ f(s)ds S Ryt < sZROZ . (3.15)

i,]f Z] injH tO(E) i

where to get the second inequality we used that t0,i7j+1 t0,i,j = Tz /4 implies

D fto) < Ty (s)ds

j (®)

Let k = k(i,7,¢) be an index reassignment and write Bl,k = By, ¢ and Ry} =
Ry ; je. Note that by the definition of Ry ; ;. in (3.10) and the first inequality in (3.6))
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we know Ry j < iRo- In addition, U; jDg;; C UkBLk. According to (3.7)) and (3.8)
we proved that

To+27+r
0 0 B
U (pt(AAl\Ukél,k(T)) N AZH,p\Ukél,k (r) =0. (3.16)

t=to(e)—27—7
We claim that this implies

To

t p( )<pt(AA1\Uk 5, ()N AZHW\UR 5., (N =0. (3.17)
=t{p(e

Indeed, if p belongs to the set in (3.17)), then there exist times t € [to(e)—7—r, To+7+7],
s € [-7 —r,7 + ], and points qp, 1€ Hyx, (see (1.12))) with
d(qo, A1\ U B1g) <, d(q1, %y, \ Ur Big) <r

so that p = ¢1(q0) = ps(q1). Let 7/ € [—7,7] be so that |s — 7| < r. Then, ¢_./(p) =
ws—7(q1) = pr—r(qo) belongs to the set in since |s — 7| < rand t — 7' €
[to(e) — 27 — r, To + 27 + r|. This means that if the set in is empty, then so is
the set in . Finally, implies that

LN UG, ()
k

is non self looping for times in [ty(g), Tp]. Furthermore, (3.15)) now reads

DR <) Ry
%

k

g

Lemma 3.2. Let E C %, be a ball of radius § > 0. Let g > 0, to : [g0, +00) —
[1,+00), Tp > 0, and F > 0, have the property that E can be (g¢, to, F )-controlled up

to time Ty in the sense of Definition E Let 0 <m < % be a positive integer,

0< Ry < min{%e” ATO, 1%}, O0<r < %e*(’ +2D)ATOR0,

and Ey C E with d(Ey, E°) > Ry. Let 0 < 7 < %TMH and suppose that A:_(rl) s a
J
(D, 7,71) good cover of ¥, and set

€= {j e (L., Ny} s A) (1) N AR, (%) # 0.

Then, there exist C,, , > 0 depending only on (M, p) and sets {Ge}j~y C {1,... Ny },
Bc{l,...N,,} so that

£ C Bu@gg,
£=0
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. U A7 (r1) s [to, 27Ty] non-self looping for every £ € {0,...,m},  (3.18)

1€Gy
o |Gy < CM’pﬁsédn_lr%*" for every € € {0,...,m}, (3.19)
o B <G, Degem (3.20)

Proof. Choose balls {Boﬂ}fil centered in Ey so that Ey C Uf\il By,; where By ; has
radius Ry ; = R built so that NRg_1 < C,6" 1. This can be done since Ry < 1‘5—0. Let
ro := e 2PATO Ry Since E can be (g, ty, I )-controlled up to time Ty, for

0<r< /;e—FAToroz%e—(FwD)ATORO

there are balls {By . }x C ¥, , of radii {Ryx}r C [0, 1 Ro), so that

infRy > e PATO Ry > 1, > RY <eNRpY,
k
and with Gy := ATEO\ B (r) non-self-looping for times in [ty(c), Tp|, where we have set

E, = Ukél,k. Note that we may assume that Ey N Bl,k # () for all k. Now, since
Ry < iRo, the ball B’l,k is centered at a distance no more than %Ro from Ey. So,
letting 7 := U By}, with By, the ball of radius 2R, with the same center as BLk,
we have
d(E1,E°) > d(Eo, E°) — 2Ry > (1 — 3)R.

Next, we set T} := 27Ty and use that Ey can be (€0, to, F )-controlled up to time
Ty (indeed up to time 27%). By definition £y C |J, Bix and Ry < FlemFATo <
F~le ! ATt Therefore, since 0 < r < f ~te FAMopy < f=le=F ATipg there are balls
{BZ,k}k C ZH’p of radii 0 < R27k < 4%R0 with

. _DAT; - —1 —1 2 -1
infRyp > ¢ PMinfRy;  and zk:ng geozk:Rfk <eNRy, (3.21)

so that G := Agl\ £ (r) is non-self-looping for times in [to(e), 1], where we have set

Ey = UkBQJg. Since we may assume that E; N BQJg # () for all k, the balls BQJg are
centered at a distance smaller than 4%R0 from Ey. In particular, letting FEy = U By,

where By, is the ball of radius 215 j, centered at the same point as jok, we have
d(E2, E) > d(Ey, E°) — 2Ry > Ro(1— 3 — %).

Continuing this way we claim that one can construct a collection of sets {G¢}}"; C

AT, (r) so that

A) Gy is non-self-looping for times in [to(e), T;] with T, = 27Ty,
B) There are balls By, By C EH’p centered at pyr € E of radii 2Ry, Ry
respectively so that

GE = Age\Ee-',—l (’I”),

where Eg = Uk: B&k and Eg = Uk: B&k.
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C) For all £ > 1, the radii satisfy sup, Ry < ﬁRO,

iIéng,k > ¢ 2PATO Ry = and ZR" < ONR” L (3.22)

The claim in (A) follows by construction of Gy. For the claim in (B), we only need to
check that the balls By are centered in E. For this, note that since Ry < szo, by
induction

0
1
d(Er, E°) > d(Er_1, E°) — 3 Ry > Rg(l - Z@ > "~ Ry.

7j=1

Remark 8. Note that this actually gives Ey C E and so all of By, is inside E (not
just its center).

We proceed to justify the first inequality in (3.22)). Note that the construction
yields that infy Ry > e DATL inf, Ry_y; for every £. Therefore, since T = 2Ty and
infy, Ry j > e~ DPAT: inf, Ry_1; (see (3.21)), we obtain

¢
_pprDo _ _1 _
ir]ingyk > He DAY Ro— e DATy(2 24)Ro > ¢ 2PAT R
Jj=0

The construction also yields that >, Ry kl < oy, RyC 1 i, for all £. Therefore, the
upper bound - on the sum of the radii follows by induction. Indeed,

—1 — —
ZRZk gstZRg’k — el NRIL
k k

Set r := br; in the above argument, and define
m
Go:={ic&: A} (rn)CGe, B:=E\|JG.

Then, since Gy is [to(g0), 27 “Tp] non-self looping, holds. Furthermore, £ C
BUJy~, Ge by construction.

We proceed to prove . Since the cover by tubes can be decomposed into ©
sets of disjoint tubes,

VO](Gg N Ago (Tl)) 1— 1 1— Z
—n n— < —n
i vol A7 (1)) <C,,or Z Ry <G, Dri e NRy T

1Ge| <D

for some C,, > 0 that depends only on (M,p). Then, ) follows since N Rgil
Cpon 1.
The rest of the proof is dedicated to obtaining (3.20)). For each ¢ note that E, C

(G¢ U Ey4q) and AL, (R) C AET (%) C Ui, (r1). We claim that for every pair of

indices (¢,4) with ATEe(gl) NAJ, (7‘1) # (), either

A;i (r1) C AEZ\E2+1(5T1) or A;i (r1)N A%EH(%) # (.
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Indeed, suppose that A (r1) NA% (%) = (. Then, there exists ¢ € Hy N A] (r1) so
K 41 N ~ !
that d(q, p;) < 71, d(q, E¢) < %2, d(q, E¢y1) > % In particular, d(q, E; \ Eey1) < %
Now, suppose that ¢1 € Hx N AJ, (r1). Then,
d(q1, B¢\ Epy1) < d(qu, pi) + d(pi q) + d(q, B\ Eri1) < By < 5y
In particular, A (r1) C A N Bps (5T1) as claimed.
Now, suppose that A7 (1) N AT@ (%) # 0. Then, since 71 < % and Ry > ro, we
’L +1 )
have
AL (r))NHs C Epyy
where Ej | = Uj%.ég+1 j- Observe then that for all £
To(m) AT () © AR () 3.23)
5 (r1) z+1(5 : (3.
1€Gy
By induction in k > 2 we assume that AL (%) N (U Uzegz (r1)>c C ATL(%)'
Note that the base case k = 1 is covered by setting ¢ = 0 in . Then, using

(3-23) with ¢ = k together with the inclusion Ej C E, C Ej (in fact the balls defining
each set have the same center and radii given respectively by Ry, %Rl,k and 2R 1)

we obtain
c
a0 (U Ume) € ag, @)
{=01i€Gy
In particular, if ¢ € B, then A%, (F)NAJ (1) C AL ().
Therefore,

B < C,,,Dri~ ZRMM <C, riegTINRy T

for some C,, that depends only on (M, p). This proves (3.20)) since NV R” ! < Cpém L
M,p
D

4. No CONJUGATE POINTS: PROOF OF THEOREMS [1] AND 2]

We dedicate this section to the proofs of Theorems [1| and We work with the
Hamiltonian p : T*"M — R given by p(z,&) = [¢|g(z,e) — 1. The Hamiltonian flow ¢,
associated to it is the geodesic flow, and for any H C M we have 3, = SN*H.

Let A > Apax, to € R, £ >0, and x € M. The study of the behavior of the geodesic
flow near SN*H under the no conjugate points assumption hinges on the fact that if
there are no more than m conjugate points (counted with multiplicity) along ¢; for
t € (to — 2¢,to + 2¢), then for every p € S;M there is a subspace V, C T,5:M of
dimension n — 1 — m so that for all v € V,,,

v < CeLelltol | (dm o det) v, te (to—e,to+e).

In particular, this yields that the restriction (dmodyy), : V, = T,

i (p)M 18 invertible
onto its image with

[(dr o dipe) | < CeLeAltol, (4.1)
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The proof of this result is included in Section [6] as Proposition [6.1] and it holds as long
as
0<e<e CAll/C (4.2)
for C' > 0, depending only on (M, g) as defined in as in Proposition
In what follows we continue to write F : T*M — R"™*! for the defining function of
SN*H satisfying ([2.2)) and we continue to work with

¥R x T*M — R™, P(t,p) = Fowilp).
The following lemma is dedicated to finding a suitable left inverse for di.

Lemma 4.1. Suppose k > "TH, A > Amax. There exists c¢,; > 0 depending only on

K, (as defined in (1.15)) such that the following holds. Let to € R and a > 0 satisfy

oH, G S
where ry = %e*a“'. Then, if po € SN*H and
d(SN™H, ¢1,(po)) < min(r4,, ¢, ),
there exists wo € T,) SN*H so that the restriction
dP(1y,p0) * ROy X Rwo = sy po) R

has left inverse Ly, ) with

C, +A)|t
| L(t0,00) | < Gy (1 +@)eCe 10
where C,, > 0 is a constant depending only on (M, g).
Note that the assumption k& > "t is needed for C;k_n_l’rto’to to be defined. The
reason why 2k —n — 1 appears in the exponent of C,, is explained in Remark @

Proof. Let F = (f1,..., fx) € C®°(M;R*) be a defining function for H ¢ M such
that dFy has right inverse R, ~with R . | <2 for all y such that d(y, H) < ¢,,;. Note
that ¢,, can be chosen uniformly depending only on K, as in (1.15). Next, define

Y :RxTM — RF, U(t, p) == F oo pp).
We claim that there exists wo € T,,SN*H so that
A1y po) : ROE x Rwg — RE

is injective and has a left inverse bounded by C,, (1 + a)eCMvg(aJrA) ol Note that this
is sufficient as this produces a left inverse for v itself.
Observe that for s € R, p € SN*H, and w € T,SN*H,

s ) (501, W) = d(F 0 )y, (s Hp + (dipr) p w). (4.3)
Note also that since H is conormally transverse for p, there exists a neighborhood
W CT*M of SN*H and ¢ > 0 so that for p € W,

d(F o )y, 5 Hpll = 5 (4.4)

N | =

In particular, the restriction 3
(1 po) : RO, — R
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has a left inverse bounded by 2.
We proceed to find wq € T,,, SN*H as claimed.

2k—n—1,r¢q,to

Suppose d(H, Cy; ) > ry,. Then, by definition, for all z € H, and every unit
speed geodesic v with (0) = z, there the number of conjugate points to = (counted
with multiplicity) along 7(to — r¢,, to + r¢,) is smaller than or equal to m := 2k —n—2
whenever d(v(tg), H) < 1. In particular, since d(p,(po), SN*H) < r4,, we have
d(7(p1,(po)), H) < 4. Therefore, by setting e = min(ry,/2,e~“Atol /C) in with
C as in ([.2)), we have that there is a n — 1 — mn dimensional subspace V,, C T, S5, M
so that dm o d(pto\vpo is invertible onto its image with

[(dm o depylv,, )M < Cetetl < C, (1 + a)eCn (@Ml (4.5)

for some C,, = > 0 depending only on (M, g), and where z¢ := 7(po).
Let
V = d(m 0 ©)t,p0) (RO X (Tpo (SN H) N V).
Note that since dimV,, = n—1-m, dimT,,SN; H = k — 1, dimS; M = n — 1,
we know that dim(7},,SN; H NV, ) >k —1—m, and so dimV > k —m. Also, the
restriction

d(T 0 ) (t9,00) : RO X (T (SN, H)N V) =V

is invertible with inverse E(to,po) satisfying
||E(t07p0) H S C]W,g(l + a)eC]\/[,g (a+A)|t0|‘

Next, there exists a neighborhood U C M of H so that for y € U, dﬁ’y :TyM — R* is
surjective with right inverse R?,. By assumption, R, is bounded by 2. Furthermore, we
may assume without loss of generality that for p € T*UNW, dr,H), lies in the range of
Ry (p)- Since dim(ran Rﬂ(%o(po))) =k, dimV >k —m, and both V' and ran R
are contained in T, nM, we know that

©ty(po))
(‘Pto (Po

dim(ran Ry (g, (po)) NV) 2 2k —m —n = 2.
Then, this guarantees the existence of wo € Ty, (SN;, H) NV, \{0}, so that

(dm o depyy ) pyWo € ran R,,(%O(po)).

Remark 9. Note that having dim(ran Rq(,, (p)) N V) = 1 would not have been
sufficient as 9; is a component we cannot ignore. It is here where we need that

2k —m —n = 2. In particular, this step explains why the assumption in the lemma is

written for the space CZLH’%’tO with m = 2k —n — 2.

Then, there exists x € R¥ so that

(d’/T o d@to)powo = RW(%tO(PO))X'

Since sup,ey || Ryl < 2,
[(dm o dpry ) oo wol| < 2|x]]
and by (4.5 we have

lwoll < G, ,ael**Vlx].
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which implies the desired claim since (dF o dr o diyy)poWo = x and so

1d(E © ) gy, (00) (dpt0) pg Wo) | > (Cy @) e TNl wg | (4.6)
Combining (4.4) and (4.6) with (4.3) gives the desired bound on the left inverse for
dy) restricted to Ry x Rwg provided we impose C,, = > 2. O

Proof of Theorem Let tg > 0, a > 6}1 so that for ¢ > t,
d<H, C]Q{k—n—l,’/‘t,t) > 1y, (47)

where 7, = *e~%. By Lemma 4.1} for t > tg, if p € SN*H and d(p:(p), SN*H) <
p ei(p
min(%e*at,cH then there exists a w = w(t,p) € T,SN*H so that di) restricted to

RO, x Rw has left inverse L(; ;) with

1
ae
)

Cum

1ot

Lol < Gy (1 +a)e

for some C,, , > 0 and any A > Ayax. For the purposes of the proof of Theorem [2| fix
A = 2Amax + 1. Let c:= (1 +a)C,, , B:=C,, (a+A), and let t1 = t1(a,tg) > to be
so that

Ll < et 1>
In particular, we may cover SN*H by finitely many balls {Bz}fi , of radius R > 0 (inde-
pendent of h) so that NR"~! < C,, vol(SN*H), and the hypotheses of Proposition
hold for each B; choosing é = a~ .

Let a1 = a1 (M, g) and ag = aa(M, g, a,0F) be as in Proposition Fix0<e< i
and set

ro := h?, r1 = h°, ro 1= a%h‘f.
Let
To(h) = blogh™t
with b > 0 to be chosen later. Then, the assumptions in Proposition hold provided

5 : 2 _—ATy ajas —v1o a1 R
h <m1n{—3ale , “He y o

where v = max{a, 3A + 28} = 5A + 2a. In particular, if we set ag := min{%, w2l
1

the assumptions in Proposition hold provided h < (%) ¢ and

log az

To(h) < %log hl (4.8)

We will choose Ty satisfying (4.8) later.
Let 0 < 70 < 7,4, Ro= Ro(n,k,g,K,;) > 0 be as in Theorem Note that

70 = T0(M, g, Ty )- Also let hg = ho(M, g) > 0 be the constant given by Theorem

1

and possibly shrink it so that ho < (24%)=. Let {p;}; C SN*H be so that {A7 (hF)};
J

is a (D, 70, h°) good cover of SN*H (existence of such a cover follows from [CG20a),
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Proposition 3.3] - see Remark . Then, for each ¢ € {1,..., K} we apply Proposi-
tion [2.2|to obtain a cover of Ag’i(h%) by tubes {A;(;j (he)}j»\[:i1 with p;; € B; and so that
{1,...,Ni} = giUBZ',
U AR (R7) is [to,To(h)] non-self looping,
J€G:
hE(n_l)‘Bi| < Col he RP1 T0€4(A+6)To
>~ a1 )

where Cy = Cy(M, g,k,a) > 0. We choose b > 0 so that b < ﬁ and (4.8) is

satisfied for all h < hg. Note that this implies that b = b(M, g,a,dr). In particular,
there exists hg = ho(70, Cp), so that for all 0 < h < hy,

he =1 |B;| < SR (4.9)

We next apply Theorem [5| § := 2¢, and R(h) := h® (not to be confused with R). If
needed, we shrink hg so that 5h%¢ < R(h) < Rg for all 0 < h < hg. We let o < 1 — 2¢
and let b be small enough so that Ty(h) < 2aT,(h) for all 0 < h < hg. We also let
B = UK, B;, and work with only one set of good indices G := Z(w)\B. We choose
te(h) = t; and Ty(h) = To(h). Note that gives

R(h)"= |B|2 < hé (KR )2 < h6C,2 vol(SN*H)z.
Since in addition

< < N < * —e(n—1)
1G] < |Zh(w)] < K(lglifg(]\fz) < vol(SN*H)Cyh ,
Let N > 0. Theoremyields the existence of constants C,, ,, > 0, C = C’(M,g, T0,E) >
0 and C, > 0 so that for all 0 < h < hg

/ wudaH‘
H

k—1

h 2

1 1 1 1 1
Cn,kvol(SN*H)inHan? e t? T3 (h)t?
< ; e e (B TR o1
Ty (h)
C 2 N 2
g Nl ll =28 = Dy s+ O™ (ul o, + (=122 = D] 2 )
(4.10)
[ Viog h=1
< Ol won | Viosh I(=h*Ag = Dl rs (4.11)
\/1ogh—1 h H_ 7 (M)

where C' = C(M, g, k,to,a,0r,vol(SN*H), 7,..,,) > 0 is some positive constant and

ho = ho(d, M, g,70,k,a,w, Ry) is chosen small enough so that the last term on the
right of (4.10) can be absorbed. Note that the ¢ dependence of C' and hg is resolved
by fixing any € < %. O

Proof of Theorem (1] Note that if H = {z} then SN*H = S*M and vol(S:M) = ¢,
for some ¢, > 0 that depends only on n. Next, note that 7., ({x}) and r can be
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chosen uniform on M and that H,ry = 2. Moreover, in this case, w = 1 and K, can
be taken arbitrarily small so Ry = Ro(n, k,p, K,) can be taken to be uniform on M.
Therefore, since the constant in (4.11) and hy depends only on

Mv 9, kv tOv a, 6Fa VOI(SN*H)7 7InjH7

all of the terms on the right hand side of (4.11]) are uniform for x € M completing the
proof of Theorem O

5. NO FOCAL POINTS OR ANOSOV GEODESIC FLOW: PROOF OF THEOREMS [4] AND

Next we analyze the cases in which (M, g) has no focal points or Anosov geodesic
flow. For p € SN*H we continue to write N4 (p) = T,(SN*H) N E+(p) and define the
functions m, my : SN*H — {0,...,n— 1}

m(p) i= dim(Ny(p) + N_(p)),  ma(p) i= dim N (p), (5.1)
and note that the continuity of Ey(p) implies that m, my are upper semicontinuous
(see e.g. [CG19, Lemma 20]). We will need extensions of N1 (p), m4(p) to neighbor-
hoods of SN*H for our next lemma. To have this, for each p in a neighborhood of
SN*H define the set

Fpi={qeT™M: F(q) = F(p)},
where F' is the defining function for SN*H introduced in . Since for p € SN*H,
F, = SN*H, F, can be thought of as a family of ‘translates’ of SN*H. We then define

Ni(p) := T,F, N E+(p) and 1 (p) = dim N (p).

Note that since T,F, is smooth in p and agrees with T,,(SN*H) for p € SN*H, m4(p)
is upper semicontinuous with m4|sy«z = m4. In what follows we continue to write
Su={pe SN*H : T,(SN*H) = N_(p)+ Ni(p)}.

The following lemma shows that if p € SN*H does not belong to Sy and ¢(p)
is close enough to p for ¢ sufficiently large, then (dy;),w leaves Ty, (5)Fo,(p) for some
w e T,SN*H.

Lemma 5.1. Suppose (M, g) has Anosov geodesic flow or no focal points and let
K C (SN*H\Sp) be a compact set. Then there exist positive constants ¢, ,t,,0, > 0
so that if d(p, K) < 6., [t| > t., and

vi(p) € Blp,dy),
then there is w = w(t, p) € T,(SN*H)\{0} with

inf{||dps(w) +v|: v € o, (05

ei(p) TRHp} > ¢ || wl|. (5.2)

Proof. First note that since m4 are upper semi-continuous, K is compact, and K NSy
is empty, there exists 6. > 0 so that d(K,Sy) > 0. - Therefore, to prove the lemma we

~ [ o
work with the compact set K := {p € SN*H : d(p, K) < 5} and insist that 6 < .
Let p € K. Since T,(SN*H) # N4 (p) + N_(p), we may choose u = u(p) such that
we T,(SN'H) \ (N (p) + N_(p)),  |Jull = 1.
Now, let uy € E4(p) and u_ € E_(p) be so that

u=uy t+u_.
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In particular, uy ¢ Ni(p).

When studying the case t > tx, we will use that u_ grows along the positive time
flow, while for ¢ < —tx we will use that u, grows along the negative time flow. Since
the arguments are identical, except with time reversed and the roles of u; and u_
switched, we only explicitly write that for ¢ > t.

We claim that there is C,, > 0 such that for all p € K, we may in addition choose
u = u(p) such that

u_ € E_(p) N (N-(p))" N (E+(p) NE-(p))",

o (5.3)
Co gl < flu- | < Cluy]l-

For this, we set

_ 1
Ni(p) = Nalp) 0 (Ex(p) N E-(p))

We then observe that
(RH,(p))" = U (p) & Ni(p) & (Es(p) N E-(p) ) & N-(p) & U~(p)

and decompose a vector v € (RH,)* correspondingly as
vV =V, +VN+ +vot+tvy +Vvy_.

Suppose the claim in (5.3) fails. Then, for all n € N, there are p, € K such that for
all velT, SN'H,

n v, v, +voll > [lve_ +vy_|, or  nlvu, +vy, +vol <llvu_+vy_|.
In particular, since vy € T, SN*H, we have v — vy € T, SN*H, and hence, for all
veT,SN'H,

n vy, + vy, +voll > [lvo_|l, or nlvu, + vy, +vol < |vu_|.

Since K is compact, we may assume p, — p € K. Then, forallve T pSN*H | there
are v, € T,,, SN*H such that v,, — v. Let v € T,SN*H \ (N4(p)+ N_(p)) and v,, = v
as above.

Then,

0 Ve +Vn, FVnol > llvao_ |, or nllvoy +v, 8, + Vol < vao_ |l

Extracting a subsequence again, we may assume that one of these inequalities holds
for all n. We consider first the case

nleVn,U+ t VN, T Vol > [[va,u_|-
Now, since v,, — v, and E(p) is continuous,
Va,uy + VN, Vao = V4 € Ei(p)

In particular, this implies that v,y — 0 and hence v,, y — v —v.. Using that p —
T,SN*H and p — E_(p) are continuous maps, and that v, y € E_(pn) NT,, SN*H,
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we have v — v € N_(p) and hence also v € N4 (p). Therefore, v € Ny(p) + N_(p),
a contradiction.
Next, we consider the other case:

nllvo, + v x, + vaol < lvau_||-

Then, since v, — v, v, y_ is bounded and hence vy, +V, N, TVno = 0. In particular,
VnUu_ +V, N — V,80V E E_(p) and hence v € N_(p), a contradiction. Since both

cases lead to a contradiction, we have proved the claim ([5.3)).
Since dept 1 E_(p) — E_(pt(p)) and depy : E4(p) N E—_(p) = E4(¢i(p)) N E-(pi(p))
are isomorphisms, we have

dimspan (dg;(u-), dei(N_(p))) =1+ dim N_(p).
Also, note that since m_ is upper semicontinuous and integer valued, we may choose

& > 0 uniform in p € SN*H so that dim N_(¢) < dim N_(p) for all ¢ € B(p,d). For
any t and ¢ € B(p, ) we then have

dimspan (de(u-), dei(N-(p))) > 1+ dim N_(q). (5.4)

Next, note that span(dei(u_), dp(N_(p))) C E_((p)). Suppose now that ¢(p) €

B(p,9) for some t and note that if dps(w) € E_(0:(p))\N_(:(p)), then dps(w) ¢

Ty, (p)Fou(p)- In particular, relation (5.4) gives that there exists a linear combination

wi =au-+e(t) € E_(p),

with e_(t) € N_(p), so that dpywy € (N_(p:(p)))" with ||deswy| = 1. If we had
that w¢ was a tangent vector in 7,,(SN*H) and we had control on |[w|| we would be
done proving . Note that to say this we are using that dp;wy € E_(pi(p)) and
that E_(¢(p)) LRH,. However, since u_ is not in 7,SN*H we have to modify wy.
Consider the vector

wy = apu+ e_(t),
and note that w¢ € T,(SN*H) and

deoi (W) = dpy(we) + as dpy(uy).

Let 6; > 0 be so that 1 — 6;BC,, > . We claim that there is ¢, > 0, depending
only on (M, p, K), so that for ¢ > ¢,

[lwe] < 61 and lat] < 51Hu,||_1. (5.5)

Note that this yields that for ¢ large enough, d (W) approaches do(we) & Ty, (5)Fooy (p)-
In particular, the t-flowout of the W direction in 7),(SN*H) approaches E_(¢¢(p)) (see
Figure . We postpone the proof of until the end, and show how to finish the
proof assuming it holds.

We next observe that there exists B > 0 so that if w € E4(p) then Hdgath < B|w]|
as t — +oo. Indeed, in the Anosov case B = B, where B is defined in , and in
the no focal point case the existence of B is guaranteed by [Ebe73al Proposmon 2.13,
Corollary 2.14]. We can therefore conclude from (5.3) and (5.5) that

17,0 (dpeWe) | = (17,0 (dprwe) || = [lar Wt,p(dwtlu)ll > 1-6BC,,
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1 1
1 \ ' \
' E, ' E,

FIGURE 4. Schematic of the rotation of w¢ under the geodesic flow.

and
[Well = llwe + apap || < [[wel| + far|[luy || < 611 + C),
where 7; , denotes orthogonal projection onto E_(¢;(p)) N (N_(p¢(p)))*. In particular,

- - 5BC, .
o) | = o e

Therefore, there exist positive constants ¢, §, and t, (uniform for p € K) so that if
wi(p) € B(p, ;) for some t with [t| > ¢, then there is w = W, € T,(SN*H) so that

lder(w) + RHp + To (o) Fu (o) | 2 € HWH (5.6)

This would finish the proof assuming that the claim in ) holds.
We proceed to prove (5.5). We start with the Anosov case. By the definition of
Anosov geodesic flow,

[(dee] g )Y < Be B, ¢t>0.

Thus, since wy € E_(p) and ||dg;wy|| = 1, we find ||w¢]| < Be ¥B. In particular,
since u_ and e_(t) are orthogonal, we have

lag) < Be "/Bllu_||7t,  ¢>0.

This proves the claim in the Anosov flow case after choosing ¢, > 0 large enough
so that Be= /B < 4.

We next consider the non-focal points case. Define C(p) C T,(S*M) to be the
conic set of vectors forming an angle larger than or equal to a > 0 with F4(p). Let
a, > 0 be so that w, € E_(p) N CiK (p) for all p € K. By [Ebe73a, Proposition
2.6] (dm), : Ex(p) ® Hy(p) — Tr(p)M is an isomorphism for each p. In particular,
letting V(p) C T,(S*M) denote the vertical vectors, we have that Ey(p) NV (p) =0
and V(p) © Ey(p) © Hp(p) = Tr(p)S*M. In addition, since (M, g) has no focal points,
Upes+m E+(p) is closed [EbeT3al, see right before Proposition 2.7] and hence there exists
Cope > 0 depending only on a; so that

(e

Wt:e++v
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with

1

Coge 11| < flwell < —]v].

K
and ey € E(p), v € V(p). By [Ebe73a, Remark 2.10], for all R > 0 there exists
T(R) > 0 so that |Y(¢)|| > R||Y'(0)]| for all ¢ > T'(R), where Y (¢) is any Jacobi field
with Y (0) = 0 and perpendicular to a unit speed geodesic v with v(0) € K. Since
v is a vertical vector, we may consider Y (¢) = dm o dgy(v), and this implies that
Y'(0) = Kv (see Appendix |§| for an explanation of the connection map K, and the
# operator). We therefore have that ||dy,v|| > R||v|| for all ¢ > T(R). In particular,
then

ldpewil| = [ldpev + dprer | > Rlv]| = Blles|| = (Re, —c_'B)|[will.

K
So, choosing R(oy, ) = c;Kl (67 + c;KIB), we have that for t > ¢, = T(R(oy)),

1= |[dpews]| > o7 |well.

In particular, for ¢t > ¢, , since u_ is orthogonal to e_(t), we obtain 1 = ||dg;w;|| >
67 |wel| > 07 ae||[u_]|, completing the proof of the lemma in the case of manifolds
without focal points.

U

When (M, g) has Anosov geodesic flow, we need to define a notion of angle between
a vector and E4(p). Let m4 : T,8"M — E4(p) be the projection onto E4(p) along
E+(p) ® Hy(p) ie. if u=vy +v_+7rH, withr € R, vi € E4(p), then my(u) = vy.
For p € S*M, define @;t : (RHy(p))*\ {0} — [0, 00] by

_ |lm=ul

0t (u):

p (5.7)

L
Note that @;ﬁ should be thought of as measuring the tangent of the angle from E (p),
and that given a compact subset K of T*M\{0} there exists C,, > 0 so that for all
peK,tcR, and ueT,5M, we have

oEt/Cye
C

K

In what follows we will use the fact that by [CG20a, Proposition 3.3] there are ©,, >
0 depending only on n, 7., > 0 depending only on 7. ,, and Ry > 0 depending only
on (n,k, Ki) and finitely many derivatives of the curvature and second fundamental
form of H, so that for 0 <7 < and 0 <r < Ry, there is a (D, 7,7) good cover of

SN*H.

@jpt(u) < @f(dg@tu) < CKeiCKt @f(u). (5.8)

7-SN *H

Lemma 5.2. Let (M,g) have Anosov geodesic flow and H C M satisfy Ag = 0.
Then, there exist c = ¢(M,g,H) >0, C =C(M,g9,H) >2, 1> 0, ty > 1, so that for
all A > A,z the following holds.

Let Ty > tg, m = |To-loslo| - g < 7 < 7

log 2 N*H 2 0<T§TO;

0<r < min{e_CTO, Ry},
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and {A;j (7“1)};\[:”1 be a (D, 7,71) good cover of SN*H. Then, for each i € {1,...,1}
there are sets of indices {G; ¢}y C{1,..., Ny} and B C {1,..., N, } so that

I m
UUgi,éUB:{l”"’NT‘l}a

i=1¢=0
and for every i € {1,...,1} and every ¢ € {0,...,m}
° Ujegu A7 (1) is [to, 27“T0] non-self looping,

o [Giyl <c5 7t

log 5

. |B| < C<%)log2 r%—n‘

We note that if Hy C M is an embedded submanifold, there exists a neighborhood U
of Hy (in the C* topology) so that the constants ¢ = ¢(M,p, H) and C = C(M,p, H)
in Lemma are uniform for H € U.

N .
Proof. Let 0 < rg < %e*ATorl. Then {A;J_ (rl)}j:i covers ASTN*H(TO) since rg < %rl.

Throughout this proof we will repeatedly use that if F': T*M — R™*! is the defining
function for SN*H, then there exist &g, cg > 0 so that for ¢ € T*M

d(qg,SN*"H) < by = |dFv||>coinf{|[v+ul: ueT,F,} Vv e T, (T™M).
(5.9)
In addition, let v > 0 be so that p+— E1(p) € C¥ and define ¢, > 0 so that

1

“lopt -1 0% y

sup ( tan OC"’) Loo(T,. SN*H) — tan o@ oo (T SN*H ) S 7d a1, ).

q1,92€SN*H H ‘hH (Tqy ) H (IQH (Tqy ) Cy ( () )
5.10

This implies that that for all € > 0, there exists 6. > 0 so that for every ball B c SN*H
of radius . we have that

sup ’|| tan~! @pil HLoo(TPISN*H) — ||tan™? C—);E:QHLOO(TP2SN*H)’ < €. (5.11)
p1,p2€B

Also, since Ay = 0, we know that for every p € Sy we must have that either
m4(p) =0 or m_(p) =0, where we continue to write m(p) = dim Ny (p). Therefore,
choosing

e=¢e¢(M,p,H) <1 (5.12)

small enough, depending only on (M, g, H), and shrinking ¢, if necessary, we may also
assume that if BN Sy # () then either

m_(p) =0 and ©F <& forall pe B,
or (5.13)

my(p) =0 and ©, <e forall pe B.

N

Furthermore, we assume that . < 2[ec, |*.
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Next, let {Bi}f-v:sl C SN*H be a cover of SN*H with
Ne
SN*H c | | B, B; ball of radius 16..
i=1
Let Zs, :={i € {1,...,N:}: BN Sy # 0}, and define K = K, by

K:= ] (SN*H\B)).
iEIsH
Since K C (SN*H\Sg) is compact and the geodesic flow is Anosov, by Lemma
there exist positive constants ¢, ,J, so that d(K,Sg) > 0, and, if d(p, K) < ¢, and

wi(p) € B(p, 9, ) for some [t| >t then there exists w = w(t, p) € T,(SN*H) so that

inf{||dps(w) + v : v € Loy (p)Foe(p) T RH,} > ¢ ||w]|. (5.14)
We then introduce a cover {D;}icr, C SN*H of K by balls with
K c |J D D; ball of radius 1R,
i€lK

where
R = min{(sK, 50, %(55, 5F}
and 0p is as in (2.2)). Note that R depends only on (M, p, H, K). It follows that,

sNHC | | B u | D (5.15)
iGZSH i€lk
where each ball B; satisfies (5.11]) and (5.13]), and each ball D; satisfies (5.14)). Also,
SynND;=0 VieTlg and SHﬂBi?é(b ViEZgH.
Since SN*H can be split as in ([5.15)), we present how to treat D; with i € Sy and
B; with ¢ € Tk separately.
Treatment of D € {D;}icz, .

Let D € {D;}icz, .- Note that since R < min{d,., oo}, by (5.14) we know that if p € D
and |t| > ¢, are so that d(¢(p), p) < R, then there exists w = w(t, p) € T,(SN*H) so
that for all s € R

||dF (dpyw + sHp)|| > coinf {Hdgotw +sH,+ul|: ue T%(p)f%(p)}
> coinf {||doew + V|| : v € Ty, () Fo(p) + RHp}
> coce|[wll;
where we used ([5.9) to get the first inequality and (5.14)) for the third one. This implies
that if |t| > t, and p € D are so that d(y:(p), p) < R, then di(t, p) := d(F o ¢¢)(t,p)
has a left inverse L(; ,) when restricted to R9; & Rw with || L[| < (coc )™t

Let o, ag be as in Proposition and note that they only depend on (M, g, H, K).

We aim to apply this proposition with A = D, B =D, B =0, ¢ = (coc )" !, a = 0,

c= %. Let t; satisfy

t1 > max{1,t,}. (5.16)
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Note that ¢; depends only on (M, p, H, K).
Next, let Tp > t;. By construction, if (¢, p) € [t1,To] x D are so that d(¢:(p), D) < ¢,

by (5.16)) we have
d(e(p), p) < d(gi(p), D) + diam(D) < &+ 2(3R) < R.

In this case there exists w = w(t,p) € T,(SN*H) so that di(t, p) has a left inverse
L ) when restricted to RO, @ Rw with || L || < coc, < c.
Let C' > 0 be so that
1
ol < min{3, ﬁ} and e T < min{3a; R, %alage_?’ATo}. (5.17)
Set ro := C%7"1 and note that by construction, and the assumptions on the pair (rg,71),
we have

ry < Qpra, ro < min{iR, g e 30 ro < %e_ATorg.

Also, note that we work with 0 < 7 < 79 < 7,,,, and that by definition 7., < %ﬂnle

as requested by Proposition We apply Proposition to the cover {A;j (rl)}jegD
of AT (ro) where

& ={j A} (1) N A (ro) # 0} (5.18)
Then, there is a partition £, = G, U B, with
Rnfl
1B,| < Co ——5 Toe**, (5.19)
r

1
where Co = Co(M, g, k, co, ¢, ) > 0, and so that

U A7 (1) is [t1,Tp] non-self looping. (5.20)
J€G,

Treatment of B € {Bi}iest

Let B € {Bi}ieIsH- Since ([5.13)) is satisfied for all p € B, we shall focus on the case
where m_(p) = 0 for all p € B; the other being similar after sending ¢ +— —t in the

arguments below.
Suppose B is the ball B(p,, %cig) for some p, € SN*H and let

E = B(p,,25.) C SN*H, B := B(p,,0.) C SN*H.

Note that B C F C B, and that OF <cforall pe B by (5.13).
We claim that there exist a function t; : [£,+00) — [1,+00) that depends only on
(M,p), and a constant f > 0 depending on (M, p, K, ), so that

E can be (%, to, I )-controlled up to time Tj. (5.21)

If the claim in (5.21]) holds, setting Ry := min{ e ATo, %(55} and noting that d(B, E¢) =

i(sg > Ry, we may apply Lemma to the ball £ with Fy = B and ¢y = % Indeed,
by possibly enlarging C' > 0 in ((5.17)) so that

e 0T < Le~(r+2DATo g, (5.22)
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by the assumption that 71 < e~¢70 we conclude 0 < r < %e_(F“D)ATORO. There-
fore, letting

Eg ={j + Ay, (r1) DAL (ro) # 0}, (5.23)
there exists €', > 0 depending only on (M, g), so that for every integer 0 < m <

_ 1
logTo1810(5) {1016 are sets 1G04k €{1,... Ny}, By C{1,... Ny, } satisfying

log 2
m
& CB, U U Gs.05 U A7 (r1) is t2(3), 27T}] non-self looping
£=0 i€Gg ,
ort o1 orto1
|QB7Z| < CALPETF, and |BB| < CM’p%F7 (5.24)
for all £ € {0,...,m}. We shall use this construction later in the proof, namely below

the “Constructing the complete cover” title, to build the complete cover.

We dedicate the rest of the argument to proving the claim in (5.21). Let F > 0
satisfy

1 a o a [5(;1]% ev 1 v

T e ) L. 5.25

F<mm{4’4’6000’ 3 ’Ci’11’2}7 (5.25)
(C]

where o 1= min{%7 a1, 02}, ¢, is defined in (5.10)), Co 1is the positive constant intro-
duced in Proposition (that depends only on (M, g, H,e) when the left inverse is
bounded by 26004, ), and G is so that for all p;, po € SN*H

3

. 4 ot v 2A[t|
W1G;E%N*Hw2€;2fSN*HI o)) d2t) W1 = O (dot) oy Wl < Cod(pr, pa)”e
Ot (wy)<e ©OT(wa)<e
(5.26)

for all t € R. Next, Let 0 < 7 < 719, £1 > %,
O<Ro<le’™ and  0<ip< Ry

Also, let {BO,i}i]il C SN*H be a collection of balls with centers in £ and radii Rg; =

Ry > 0 so that
N

EC U Boﬂ' C B
i=1
Using (5.8) we let L > 1 be so that for all ¢ € SN*H and all u € T,5*M\{0} we

have @;;(q)(dcpsu) > %@;‘(u) provided s > 0. Next, for each i € {1,..., N} let

Ty, = inf T(p) for T(p):=inf{t>0: sup @:,r(dcptw) > b5Le},
0, pEDBy,; weT,SN*H

where ¢ = ¢(M, g, H) as defined in (5.12)). Note that since ©F < ¢ for p € B, then
T,  >0forallie {l,...,N}.

By,
Control of By; before time TBof We claim that for all p € By; and w € T,S*M

|de;w]| < B(1 + 5Le)e /B ||lw| 0<t<T, - (5.27)



43

Indeed, suppose that 0 <t < T'(p) for some p € By;. Then, GZz(p) (dpyw) < 5Le for
all w € T,SN*H and so, using that m+dy; = dpym+, we have

lderw| < |dpimiwl| + [[dom—w|| < (1+ 5Le)|[dpemiw| < (1+5Le)Be /P w].
From (5.27)) it follows that there exists Cyp > 0, depending only on (M, g, H), so that

sup |det J;| < Cye1t/Co for all ¢ € (0,7, ).
pEBo,; 0.7

Suppose that TBo,i > 1. By Lemma for all g > 0 there exists Frrgr, >0 and
a function tg : [g9,+00) — [1,+00) depending only on (M, g, H,ep,Cp) so that the
set By, can be (eo, to, FM’p)—controlled up to time TBOJ in the sense of Definition |3| In
addition, by Lemma given €1 > 0 and any 0 < r < %e*’ ATofy, there exist balls
{B1x}x € SN*H with radii Ry, € [0, 1 Ro] so that

TBOi
U 2@ 05 ) ) Avans, (0 =0, (5.28)
t:to(%)
SR TR and infRiz e PR, (5.29)
k

In the case in which TB0 < 1 we will not attempt to control By ; for times smaller

(3

than 7}, . Indeed, we will set to = 1, interpret (5.28)) and (5.29)) as empty statements,

and define every ball Bl,k as the empty set.
We now set g = % so that 1 > %

Control of By; after time TBM. Set A := Uf\il By,;. Next, suppose that p € By ;
and t > T}, are so that d(p¢(p), 4) < ¢e M where

¢:= min{%[scH]%,éo,(sF},

with dp defined in (2.2), dp defined in (5.9), and ¢, defined in (5.10)).
1 .
Since by (5.25) the parameter f is chosen so that % < min{<%, &} and Ry <
CV

©

N 1
%e_FATO, we have Ry < 2—”%67%/@0. Thus, using (5.26), L > 1, and that p € By,

©
there exists w € T,SN*H for which

@:gT (p)(dngBO’iw) >4Le.

By, ;

It then follows by the definition of L that, if ¢ = TBOi + s for some s > 0, then

G):t(p)(dnptw) = GZS(SOTBO | (P))(d%(dSOTBO,iW)) > %@;TBO ,(P)(dsDTBO,iW) > 4e. In particu-
lar, ’ ’

@-i-

) (dpyw +1H)p) > 4e for all r € R. (5.30)
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In addition, we note that

+
@w(p

Indeed, this follows from the estimate in ([5.10) together with the facts that @; <e,
By, is a ball with radius ]:20 and center in F, and

)(v) <2 for all v € T, () Fp(p)- (5.31)

d(i(p), p) < d(i(p), A) + diam(E) + Ry < e 2 1 2(3)5, + L < [ec,]7.

We have also used that ¢ < %[é‘CH]%, de < %[ECH]%, and % < %[ecH]% by (5.25)).
From (5.30) and (5.31) it follows that for all r € R and (p,t) € Bo,; X [T}, ., 00) with
d(pi(p), A) < Ee M we have

inf{|@;t(p)(dg0tw +rHp) — @zt(p)(v)| v E T Fpup) = 2e|lwl|.

Moreover, we claim that there is ¢, , > 0 depending only on (M, g) so that

ec
ldgiw + v = S22 e wl, (5.32)
©

for all v € Tcpt(p)f%(p) ) RHP.
To see this, first observe that by continuity of F4 and the fact that EL N E_ = {0},
there exists c,, , > 0 depending only on (M, g) so that for all v € TT*M

g (T v+ llmvl) < VI < Jlwgv + flm—v]l. (5.33)

Next, suppose that || v|| < |r+dpwl|. Then, by (5:30), (5:31), and (5:33)

ldprw + v = ¢,

1,9
> CM,g(45”7T+d§0tWH - 25H7T+VH) > CM,gEH7r+dSOtWH'

(I —deprwl| = [lm—v])

On the other hand, assuming that & < 3 we have || v|| > 3|7 ;.dpw]|, then

ldpew + v > ¢, (lmvll = llmdeewll) > ¢, 5llmrdow]> ¢,

roEllmrdprwl.
Also, note that
I deew|| = |[deemiw] > g-e™ M |m i w,
and
Iwll < llmswll + lm—wll < (1 + 6, (wW))llmswl < (1 +e)||mwl.
The proof of follows from noticing that ;= > § since ¢ < 1.
Since d(gi(p), A) < ée Mt < 5y, we conclude by and that for all s € R
|dF (dpyw + sHy)|| > coinf{||dosw + V| : v € T, () Fo(p) © RHp}

COECJ\L _At
> 9 wll.
=20, © Il

This means that if 1) = F oy, then di)(t, p) has a left inverse L(; ,) when restricted to
ROy & Rw with [|L(; || < —2oe—eth,

COEC 4
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In particular, for any ¢t > T, ~ so that d(p¢(p),4) < ce 2M | the hypotheses of
Proposition apply to the set A with to = 1,,,» B = Boi, R = Ro, B = A, and
c=c¢C,,, el a=2A. Fix0< 7y < Ryand 0 < r < %e_FATOfO. Let

7o 1= max{6eAT0r, ailr, aile_DATORo},

and note by the definition (5.25)) of F we have

—5ATyH 1 6—10ATO
’» 10Co :

79 < min {Ro, ase

This can be done since Ty > 1 and e PA < % by the definition (3.4) of D.
Setting 71 := max{2r, e PAT0} we have

r < T, 71 < o To, 7y < min{ Ry, ape A0}, r < %e_ATOFQ.
Therefore, we may apply Proposition to the cover {A] (71)} j€Es, of A;O,i (r) where
Epy, =17 AL, (7)) N A;O’i (r) # 0}. (5.34)
Then, there is a partition £, =G, UB, = with
Rn—l A
1By, | < Co 72 0 TpeBMo, (5.35)
1
and so that
To
U @80\ U Ap @) () Aatr) =0. (5.36)
t:TBO,i jeBBO’i

Here Cg coincides with the positive constant used in the definition ([5.25)) of F. Com-
bining (5.28) with (5.36), and using that £ C A and 0 < r < e~/ #107), we obtain

To
U %(AEO aos M\ U A;j(h)) M AL, () =10, (5.37)
t=to ’ ’ jEBBOZ. s

In particular, there are balls {ngj}j with radii Ry ; = 71 so that
To
U (‘Ot(A;o,i\[Uk,ﬂ;’mUsz}(T)) M A;J\kag’l,k (r) =90.

t=to
In addition,

S R < CoiaRy ! Tye*MTo < %Rg—l, (5.38)
J

where the first inequality is due to (5.35)) and the second one is a consequence of the
fact that 79 < ﬁe*%% and %1 > i

Repeating this argument with By, for every ¢ € {1,..., N} we conclude that there
exist balls By of radius R, centered in E so that

E\Ueée (r) is [to(£),To] non-self looping. (5.39)
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Note that Ry = 7“1 € [o, 4Ro] since 71 = max{Zr e PATO Ry Whﬂe 2r < —ro < Efp <
1Ro and e™PA < 1 by the definition of D. Also, by (5.29) and -,

N N
Srt S (Cmt Ry sa w6

Finally, since Ry > e PATO R for all k and Ryj =71 > e DA Ry for all 7,

Ry > e PATOR,, (5.41)

Relations (5.39), (5.40) and (5.41]) show that E can be (2, F )-controlled up to time Ty
as claimed in ([5.21]).

Constructing the complete cover

We now partition {p]} 1. Let to = max{t1, t2(3)} where t; is defined in and
to is defined in ([5.21)). By (5-19) and (5.20), for each i € Zx we have constructed a
partition £, =G, UB, of &, ={j: A} (r1) NA] (ro) # 0} where

R
1B, | < Co —— Toe* 0 and U A7 (r1) is [to, To] non-self looping.  (5.42)
] ,
J€9,

Moreover, by -, for each i € Zs, and m > 0 integer we have constructed
a partition of &, = {j : A} (r1) N AL (ro) # 0} by sets {G, ,}ity C {1l,... Ny},
B, C{1,...N;} satisfying

m
&, C B, U U s, 0> U A7 (r1) is [to, 27Ty] non-self looping,
= 9€98, 4
o=l 1 |
|G, 0| < CM,pzigr?,l and 1By, | < C M”W T (5.43)

Next, define

:[MJ and  B:=|J B, U |J B,.

log 2 A A
i€k ZEISH

For each 7 € Tk set G; o := Q and G; ¢ := G, - for £ > 1. Then, there exists I < oo,

depending only on (M, H, p) so that after relabelhng the indices i € Ix U Is,, there
are sets {G;,: 1 < <m, 1 <i<1I} sothat

I m
U U GieUB={1,...N., }, U A7 (r1) is [to, 27Ty] non-self looping.

i=1/=1 €6
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In addition, there exists ¢ > 0, which may change from line to line, so that
5n—1
1B < cr}—n(uK\ PR ToetATo 4| I, |22 )

5m+1
£\ s
<er" (7“1T064AT° + (—O> 1°g2>.
To
Here, we have used that [Zx| < ¢ R~V and |Zs,,| < co= "V Since ry < e=CT0
and we may enlarge C' so that C' > 4A + 1 4+ log 5, we conclude that

Bl < to iz% 1-n
| | >cC ?0 1 )
(n—1)

as claimed. In addition, note that ]gDi\ < ISDi| < cR"flrl_ for each 1 € Tf .
Therefore, since R <1 and §. <1, forall ¢ € {1,...,m} and alli e {1,...,L}

1 _
|Givl < c?r% "

Finally, we note that by construction the constants ¢ = ¢(M,g,H) and C =
C(M,g,H) are uniform for for H varying in a small neighborhood of a fixed sub-
manifold Hy C M. O

Lemma 5.3. Suppose that (M, g) has no focal points and Sy = 0. Then, the conclu-
sions of Lemma hold.

Proof. Since SN*H is compact by Lemma there exist positive constants ¢, ¢, d,

so that if p € K and ¢¢(p) € B(p, ¢, ) for some |t| > ¢, , then there exists w = w(t, p) €
T,(SN*H) so that

inf{[[dpe(w) + v : v €Ty, Fop) © RHp} > c||w. (5.44)

Cover SN*H with finitely many balls {D;};e; C SN*H of radius equal to d,.. The
remainder of the proof of this lemma is identical to that in the Anosov case since
Sy = 0 implies that D; N Sy = 0 for all 1. O

5.1. Proof of Theorem |§|. We first apply Lemma when (M, g) has Anosov geo-
desic flow, or Lemma when (M, g) has no focal points. Let ¢ > 0, C > 2, I > 0,
to > 1 be the constants whose existence is given by the lemmas. Then, let A > Apax,
0<m<Ty 0< 1<y,

‘N *H
O<e<3, O<a<iZ®E  é>max{C o=} (1+2)<s<],
Ty(h) = Elogh ™, ri(h) = he, ro(h) = h°,

and let {A;_(hs)}N:hi be a (D, T, h°)-good cover of SN*H.  Then, since ¢ > C,
Lemmas and give that for each i € {1,...,I}, and

logTo(h) — logt
m::{Og o(h) ogo}
log 2
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there are sets of indices {G; ¢};" o C {1,..., Npe} and B C {1,..., N} so that

I m
UUgi,eUB:{l,...,Nhs},

1=1/4=0

and for every i € {1,...,1} and every ¢ € {0,...,m}

U A7 (R) is [to,27“Ty(h)] non-self looping,
J€Gie

~ log 5

c log2 4 g(1—
- pe(l—n)
elog h—l)

Next, we apply Theorem [5| with R(h) = h®, a = ae, ty(h) = to for all ¢, Ty(h) =
27*Ty(h) for all £. Note that Ry > R(h) > 5h% for h small enough since § > &, and
that @ < 1 — 2¢ as needed. In addition, Ty(h) < 2aT.(h) since ¢ > % It follows
that there exists C' > 0, and for all NV > 0 there exists C}, so that

/ wudaH)
H

~ log5
c 2log 2 2 log h— 1
smmmqgﬁﬁj) = )l + Y E:T\WMMW>

¢

Gial < 5 1, Bl <

k-1

h 2

+ (| Pull »

L2(M) (M))

+ Ch wlool Pull s+ Ch™ (|l
scl

which gives the desired result after choosing hg to be small enough. We note that if
Hy C M, there is a neighborhood U of Hy (in the C*° topology) so that the constants
C, C, and hg are uniform over H € U, w taken in a bounded subset of C2°, and N
bounded above. 0

5.2. Proof of Theorem [4. We have already proved Theorem [[A]in Theorem [2] For
Theorem Theorem Theorem we refer the reader to [CGI19, Section 5.4]
where it is shown that either Ay = () in Theorem Sy = 0 in Theorem and
Apg = 0 in Theorem Therefore, Theorem |§| can be applied to all these setups
yielding the desired conclusions.

Proof of Theorem [J.B. Let H be a geodesic sphere. Then, H = m(p5(SiM)) for some
x € M and s > 0. Next, we observe, using that (M, g) has no conjugate points, the
proof of Theorem [2[ (when the submanifold is the point {z}) yields the existence of
a cover for S¥M, with some choices of (R(h),te(h),T¢(h)), so that Theorem [5 implies
the outcome in Theorem [2| (which coincides with that of Theorem [4). Then, since
ws(SEM) = SN*H, the result follows from flowing out the cover for time s to obtain a
cover for SN*H. This cover will have the same desired properties as the original one,
but possibly with R(h) replaced by msR(h) for some ms > 0 independent of h. The
result follows from applying Theorem [f] to the new cover. O

Remark 10. This proof in fact shows that there is a certain invariance of estimates
under fixed time geodesic flow. That is, if one uses Theorem [5] to conclude an estimate
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on H, then essentially the same estimate will hold on wps(SN*H) for any s € R inde-
pendent of h provided that mps(SN*H) is a finite union of submanifolds of codimension
k for some k.

Proof of Theorem [J.(. For this part we assume that (M, g) has Anosov geodesic flow,
non-positive curvature, and H is a submanifold with codimension £ > 1. We will prove
that Ay = (0, and by Theorem |§|this will imply the desired conclusion. In what follows
we write m for both 7 : TM — M and « : T*M — M since it should be clear from
context which map is being used.

We proceed by contradiction. Suppose there exists p € Ay C SN*H. We write
p* € SNH and note

T;NH ={w: 3IN:(—¢,e) = NH smooth field, N(0) = p*, N'(0) = w}.

Moreover, for v € Ty,e)H and w € T,s NH with dow € T,;H\{0} and w = N'(0)
with NV as before,

(VarwN , v) —(p*, My (dnw,v))

(o)) o (ot)) "

Here, V denotes the Levi-Civita connection on M and Iy : TH x TH — NH is the
second fundamental form of H. The equality follows from the definition of the second
fundamental form, together with the fact that IV is a normal vector field.

We will derive a contradiction fromthe assumption that T,SN*H = N, (p) ® N_(p),
by showing that the stable and unstable manifolds at p? have signed second funda-
mental forms. In particular, note that Eft(pﬁ) are given by TWx (p*) where W (p#)
are respectively the stable and unstable manifolds through p?. Furthermore, these
manifolds are Wy (p*) = NH. where Hy C M are smooth submanifolds given by the
stable/unstable horospheres in M so that pf € NH. [Rug07, Section 4.1]. The signed
curvature of H4 implies that there is ¢ > 0 so that

+ 1y, > c> 0. (5.45)

We postpone the proof of this fact until the end of the lemma and first derive our
contradiction.

Since T,SN*H = Ny (p) & N_(p), then TxSNH = N (p) & N*(p). In addition,
since k > 1, for any u € T'H, there exist wi,wy € T3SNH linearly independent
with drw; = u for i = 1,2. In particular, since T);(SNH) = Ni(p) ® Nﬁ(p), we
have w; = w,; + w_;, with w4 ; € Ni(p). Thus, dow, = drw_ where w =
Wil —Wyo € Ni(p) and W_ =W_o—W_1 € N* (p). Since dr : Eﬁi(p) = Tr(pyM is
injective where 7w : T'M — M is the standard projection, v := dorwy # 0.

Now, since wi € T,:(SNH+), using (5.45)),

_<@UN7 U>g(7r(pu)) = _<@d7rw,N7 ,U>g(7r(pﬁ>> = <pﬁ7HH+('U>U)> > C||U||2,

(p

and

(@UN, U>g(w(pn)) = —<@dWW+N, U>g(w(pﬁ)) = (pﬁ,HH, (v,v)) < —c||UH2.

This is a contradiction since ||v|| > 0.
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We now prove (5.45). We have by [Ebe73bl Theorem 1, part (6)] that since (M, g)
has Anosov flow and non-positive curvature, there are c,tg > 0 so that for any per-
pendicular Jacobi field Y'(¢) with Y (0) = 0, and t > o,

(Y'(),Y (1) = Y (@) (5.46)

By [Rug07, Proof of Lemma 4.2] the second fundamental form to H at 7(p*) € Ha
is given by
410y, = F lim U,(0)

r—Foo
where U, (t) = Y/(t)Y,71(t) and Y,(¢) is a matrix of perpendicular Jacobi fields along
t — mpi(p) satistying Vi.(r) = 0 and ¥;(0) = Id. In particular, by (5.46)), applied to
the Jacobi field Y (t) = Y,.(r — t), at t = r gives for r > to,

(U-(0)z, 2) = (Y (0)a, Y, (0)z) = —(V'(r)a, Y (r)z) < —¢||Y;(0)z]* = —¢||z|*.
Similarly, for r < —to, we apply (5.46) to Y (t) = Y,(r +t) at ¢t = |r| to obtain
(U (0)2,2) = (7(Ir )z, (1)) > el
This yields that £IIy, = Flim, ;45 U,(0) > ¢ > 0 as claimed. O

5.3. Proof of Theorem |3, For Theorem we refer the reader to [CG19, Section
5.4] where it is shown that Ay = (). Therefore, Theorem |§| can be applied to this setup
yielding the desired conclusions.

We proceed to prove Theorem Fix a geodesic H C M .We prove that Theorem
holds under the following curvature assumption. Suppose there exist T > 0, and
c1,c2,c3 > 0 so that for all pg, p1 € SN*H with d(pg, p1) = s < ¢3, and all tg,t; > T
with 1 (po), 1 (p1) € SN'H, we have

- Kdvg > cje™2/Vs, (5.47)

Qs
where Q, is the quadrilateral domain in the universal cover, (M, §), whose sides are
the geodesics that join the points, w(po), 7(p1), (e, (p0)), (¢t (p1)). At the end of
the proof we shall show that the integrated curvature assumption ([1.8)) implies the

assumption in (5.47)).

The first step in the proof is to show that there exist 7o > 0 and ¢4 > 0 so that the
following holds. If 0 < r < rg and pg, p1 € SN*H are such that there are tg,t1 > T
T .
with |t0 - tl‘ < % and

d(@to (,00), SN*H) <, d(‘roh (pl)a SN*H) <,

then either
d(po, p1) < c31n (%4)_2 or d(po, p1) > c3. (5.48)

To prove the claim in suppose that there is pg € SN*H with d(¢¢,(po), SN*H) <
r for some r > 0. Then, there exists C = C(M, g, H) > 1 so that by changing tq to g
with [tg — fo| < Cr and 7 > 0 small enough, we may assume that (o7, (po)) € H and
d(z,(po), SN*H) < 2Cr. Now, let ps € SN*H, with d(po, ps) = s and suppose there
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is ts with |tg —ts] < T‘“#H and d(gy, (ps), SN*H) < r. As before, we can adjust 4 to tg,
with [t, — | < Cr, in order to have 7 (¢; (ps)) € H and d(g; (ps), SN*H) < 2Cr. Let

Y0(t) == 7(ee(po)),  Ys(t) = m(pe(ps))-

Note that, in the universal cover of M, M , Vs does not intersect vy unless pg = ps.
Indeed, suppose they did intersect at an angle 5. Then, by the Gauss—Bonnet theorem,
we would have

0>/ KdUg:,BZO,
As

where Ay is the triangular region enclosed by 79, s and H. In particular, this would
give f = 0 and hence vy; = y9 and s = 0.

Next, suppose that vy and s do not cross in the universal cover. Let oy denote the
angle between 7,(ts) and H, and let oy denote the angle between ~o(fp) and H. This
can be done since 7(¢; (po)) € H and 7(¢; (ps)) € H. Then, by the Gauss-Bonnet
theorem,

T— g — Qg = — K dvg

where Qg is the quadrilateral formed by ~g, 7s, the copy of H in M that con-
tains 7(po), m(ps), and the copy of H that contains m(py (po)), 7(z, (ps)). Since
d(z,(po), SN*H) < 2Cr, we have 0 < § — ag < 2C7r. Hence,

zfaszf K dvg — 2C'r.
2 Qs

In particular, by the curvature assumption (5.47)) we have that if s < ¢3,

g — g > 616702/\/5 — 20T

Let C = C(H,M,g) > 0 be so that if T — a; > 2Cr, then d(y; (ps), SN*H) > 2CT.
Then, for ¢3In(cqr—!)~2 < 5 < ¢3, with ¢4 = ¢1/2(C 4 C), we have
g —ag > 20T
This implies that d(p;_ (ps), SN*H) > 2Cr, and hence proves (5.48).
Let 79 be the positive constant given in Theorem [5|and 0 < r < rg. Next, we prove
that there exists C' > 0 so that if 0 < r; < r, then for every 0 < 7 < 79, Ty > T,

and every (Dp,7,71)-good cover of SN*H by tubes {A], (rl)}jy:”l, there is a partition
{1,...,N,, } = BUG so that

. . T —9 _
U A7 (r1) is (T, Tp) non-self looping and [B| < C’TO In (<) 27'1 L (5.49)
Jj€g
Note that by splitting [T', To] into intervals of length 7 the claim in (5.49) is implied
by showing that for each t € [T, Tp]

#{pj : U e(Ag,(r1)) NAL L, (r1) # (Z)} < (Cln (%)727"1_1. (5.50)

Fle T
[t—t|<3
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To prove we start by covering SN*H by balls {Bg}le of radius . Fix t>T+
It follows from that for each ¢ € {1,..., L}, if
Ne=BynN{p: Fte(t—53,t+7%), d(SN'H,p(p)) <r},
then there is py € Ny such that
N, C {p€ SN*H : d(p,p) < c2(In(esr™ 1)) 2}

oS

In particular, since {A}, (rl)}jv;ll is a (D, 7,71) good cover for SN*H and r; < r there
exists Cy, > 0 so that for each ¢ € {1,..., L},

#lors AN Br A0 | @A () AL, () # 0} < Cuc?In(2) 2y,
[t—t<5
The claim in (5.50)) follows from taking the union in ¢ over all the balls By.
Finally, let ¢ > 0 and § > 0 with ¢ < 6. Also, set r = k¢, 7 = 8h% and

=~logh™! -, 0<y< S B < —lel

Amax

We have obtained a splitting of {1,..., N3} into BUG with the tubes in G being [T, Ty]
non-self looping and such that

T
|B| < C’TO(E Inesh™1)~2n70.

Using this cover in Theorem completes the proof of Theorem I part since % <
log h~! and hence h9|B| < iog =t for some C' > 0 and h small enough.

To see that (5.47) holds, let s — ps = (2(s),&(s))€ SN*H be a smooth map, where
z(s) parametrizes H with |@(s)|, = 1 and (£(s),£(s)) = 0 for all s. Next, let T'(s,t) =
m(pi(ps)) so that t — I'(s,t) is a geodesic with (0,I'(s,t), #(s))y = 0 and I'(s,0) = z(s).

In particular, if we let

Y (t) = 0:I'(s,t)]s=0,
then Y'(¢) is a Jacobi field along v with Y (0) = ¢(0) and

%Y( )_ dsat ( ) (00): 0.

Indeed, observe that the angle between 0,I'(s, t)|—o and @(s) is constant and |0,I'(s,t)|, =
1. Therefore, since z(s) is a unit speed geodesic, %&gf(s, t)|t=0o = 0 and hence
2Y(0) = 0.

Now, let v3(t) be a parallel vector field along o(t) with (yo(t), 75 (t))y = 0 and
7o (t)|y = 1, we then have Y (t) = J(t)yq(t) with J(0) =1, J'(0) = 0, and

J"(t)+ R(t)J(t) = 0.
Since, R(t) <0 and J"(t) > 0,
J(t) > 1.
In particular,
35(71' o (Pt(ps))|s:0 = d(ﬂ- o (Pt)’poasps‘s:() = Y(t>7
and hence
d(m o pi(ps), expm%(po)(sY(t)) < Che?Mtg2,
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Therefore, for ¢ € [0, 4T,
d(75(t), expyy ) (sY (1)) < Cre®s?.

Since J(t) > 1, it follows that Qs contains Q5(§) for s < ﬁe‘SAT where 7 := {~, (t) :
2
t € [T,2T]}. Therefore,

— Kdvg > —/ Kdvg > 016782/\/5,
Qs Q5(7)

as claimed. O

Remark 11. We note that the proof of Theorem essentially shows that, while
horospheres on M may not be positively curved everywhere, their curvature can only
vanish at a fixed exponential rate.

Remark 12. This remark explains how Theorem implies the results of [SXZ17].
Note that the condition in [SXZ17] is that there are ¢; > 0, and N > 0 such that for
every ball Bs in M of radius s < 1 one has f B, K < —cysY. This remains true if we

replace M by its universal cover, M , and implies that M has non-positive curvature.
To see that this condition implies those in Theorem [3[B], one needs to check that there
1

is ¢ > 0 such that fﬂv(ﬁ) K < —ce &5 where Q,(s) := {x € M | d(z,7) < s}. Now,

observe that {2, contains at least one ball, Bs of radius s and hence, since M has
non-positive curvature,

1
K< K< —clsN L —ce Vs,
Qy () Bs

for some ¢ > 0.

6. ON VANISHING OF JACOBI OF FIELDS

This section is dedicated to the proof of Proposition below. The proof of this
proposition hinges on showing that given a geodesic v(t), if there is an r-dimensional
vector space of perpendicular Jacobi fields along the geodesic that vanish at v(0) and
that nearly vanish at y(tp), then there must be r conjugate points to v(0) (counted
with multiplicity) near (o). See Lemma for a precise statement of the required
degree of vanishing. There, each A(t)u; denotes a Jacobi field.

In what follows 7 : T*M — M is the natural projection and ¢; denotes the geodesic
flow on S*M.

Proposition 6.1. Let A > Apnax. There exists C > 0 so that for any tg € R, p € S*™M,
and 0 < € < %e*CA‘tO‘, the following holds. If there are no more than m conjugate
points to m(p) (counted with multiplicity) along the geodesic t — w(p(p)) for t €
(to — 2¢,to + 2¢), then there is a subspace V, C T,S5M of dimension n—1—m so that

for all v € 'V,

Ivl| < Ce™teMPlljdr o dppv]l,  t € (to—e,to+e).
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In particular, dm o dy; : 'V, — T, M is invertible onto its image with

et (p)
I(dr o dgpy) ™| < Ce el
forallt € (to —e,to+¢).
The proof of Proposition [6.1] can be found at the end of this section.

6.1. Preliminaries on the Jacobi equation. The argument relies on the fact that
given v € T,S, M the vector field Y (t) = dr o dT}(v) is a Jacobi vector field along the
geodesic y(t) in M whose initial conditions are given by p. Here, T} denotes the geodesic
flow on TM. Note that [Ebe73al Proposition 1.7] gives ||[dTiv||? = [|[Y ()| + |Y'(t)|)?
where / denotes the covariant derivative of Y along 7.

Let {E1(t),...,E,—1(t)} be a parallel orthonormal frame along a geodesic 7 span-
ning the orthogonal complement of E,(t) := ~/(t). Then for Y (t) = S0 yi(t) E(t)
a perpendicular vector field along 7, we identify Y with ¢ — (y1(¢),...,yn—1(t)). The
covariant derivative of Y is then given by ¢t — (v} (¢),...y,,_1(t)). Conversely, for each
such curve in R"~!, there is a perpendicular vector field along v. Now, for t € R, we
define a symmetric (n — 1) x (n — 1) matrix R(t) = (R;;(t)) where

Rig(t) = (R(En(t), Es(8)) En(t), By (1)) g0 (6.1)
and R(X,Y) denotes the curvature tensor. Then we consider the Jacobi equation
Y"(t) + R(t)Y (t) = 0. (6.2)
Let A(t) € M,,—1xp—1 solve with
A(0) =0, A0)=1d. (6.3)

Then, the perpendicular Jacobi fields on v with Y (0) = 0 and [|[Y’(0)|| = 1, are given
by

Y(t) = A(t)v,
with ||v]| = 1. In particular, A(t) is nonsingular if and only if 7(0) is not conjugate to
~(t) along v (at time t).

Before proceeding further, we relate dyp; to A(t). To do this, we introduce the
horizontal and vertical decomposition of TM. Let w : TM — M be projection to the
base. Then dr : T'T'M — TM has kernel equal to the wvertical subspace of TTM. We
define the connection map

K:TTM —TM

by the following procedure. Let V € TM and v € Ty (T'M), let Z : (—e,e) — TM be
a smooth curve with initial velocity v and position V. Let « =m0 Z : (—g,e) - M
and define K(v) = Z/(0) where Z'(0) denotes the covariant derivative of Z(t) along
a evaluated at ¢ = 0. The kernel of K is called the horizontal subspace. The Sasaki
metric, gs, on T'M is defined for v,w € Ty TM by

(v, w)g,(vy = (dmv, dmw) o(r(v)) + (Ko, Kw) gz (v))-

Under the Sasaki metric, TT'M decomposes into the orthogonal sum of the horizontal
and vertical subspaces.
Define the map ¢ : T*M — TM and its inverse ” : TM — T*M by

g W) =p(W), V(W) =g(V,W).
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Next, we define a map ? : TT*M — TTM and its inverse * : TTM — TT*M as follows.
Let p(t) : (—e,e) = T*M be a smooth curve with initial velocity v € T,7*M. Then,
il it

dt ‘tzop (1)-

Similarly, let V' (t) : (—e,e) = T'M be a smooth curve with initial velocity v € T,7M.
Then,

vi=

b b
= — V().
v dt’t:o (*)

Using these identifications, we define the Sasaki metric on T*M, g%, by
<V, W>g§ = <vﬁ7 Wﬁ>gs'

Note also that
drV® = drV.

The geodesic flow on TM, T} : TM — T'M, is given by
T,V = (V")
Now, if v € Ty T M, then by [Ebe73a, Proposition 1.7]
Y, (t) = dm o dTy(v), Y. (t) = Ko dT;(v)
where Y, (t) is the unique solution to (6.2) with Y,(0) = dmv and Y, (0) = Kv. In
particular,
AT, = [Yo(t)] + Y ().

Finally, this implies that for v € TT*M,

|dpevig, = [Yes (1) + Y7, (). (6.4)

Lemma 6.2. For all x € M and p € S;M the map % is an isomorphism from T,5;M
to the subspace of T,; SM consisting of vertical vectors v such that Kv is perpendicular

to 4'(0) where y(t) = 7o pi(p).
Proof. Let v € T,S:M. Then drv = 0 and in particular v¥ is vertical. Let p(s) :

(—e,e) — SiM with velocity equal to v at 0 and p(0) = p. Then, using geodesic
normal coordinates with z = 0, and p = dx!, we have

= Z pi(t)dz"
i=1

with p1(0) = 1, and Y1 [pi(¢)]?> = 1. Therefore, > 1 ; 2p;(0)p}(0)
since p;(0) = 0 for ¢« = 2,...n and p;(0) = 1, we have pl(O) =
7o p(s) = z, we have in geodesm normal coordinates at x that p(t)*
In particular, since v(t) = (¢,0,...,0),

<Kvﬁ7 7/(0)>g(m) = 825<pTj (t)a 7/( g(a:) ’t 0 atpl( )|t=0 = 10/1 (O) =0.

Therefore, Kv* is perpendicular to +/(0).
Since dim T,,S; M = n — 1, the set of vectors in T, M orthogonal to 7/(0) has dimen-
sion n — 1, and ? is an isomorphism, this completes the proof of the lemma. O

= 0, and hence,
0. Next, since

2 i1 Pi(t) D
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Now, fix p € S*M, and let v(t) := 7w(p:(p)). Observe that by Lemma for
v € T,5:M, drv? = 0 and Kv* is perpendicular to 4/(0). Therefore,
dr(dev)* = A(t)KvF, K(dgv) = A'(H)KVF. (6.5)
The next lemma shows that if A(¢)v is small, then A’(t)v cannot be very small.

Lemma 6.3. Let A > Apax. Then there is ¢ > 0 such that for all v geodesic, A(t)
solving (6.3), to € R and v € (v/(0))* such that |A(to)v|| < Se~2ol|jv]|, we have

14 (to)wl| > e~ T,

Proof. Let = = ~v(0), p = (x,7(0))?, and v € (v/(0))*. Then, by Lemma there
exists v € T,,5; M such that drvt =0, and Kv# = v. In particular, by (6.5)

dr(dev)* = A(t)v, K (dov)F = A'(t)v.

Since there exists C' > 0 such that ||(dg¢) ™| < Cel for all ¢, the maps b, § are
isomorphisms, and (6.4) holds, there exists ¢ > 0 such that

1A@)ol + A" (o] = ce o], (6.6)
In particular, if ||A(t)v] < %e*A“O'HvH, the conclusion holds. O

6.2. Finding conjugate points. The goal of this section is to prove that if there
is a vector space V of dimension r such that ||A(tg)|y|| is small, then there are at
least r conjugate points to y(0) (counted with multiplicity) near the point y(tg). That
is, we show that if there is an r-dimensional vector space consisting of perpendicular
Jacobi fields along v(¢) that vanish at v(0) and nearly vanish at y(¢), then there are
r conjugate points to v(0) (counted with multiplicity) near the point (¢g).

Lemma 6.4. Let 1 <r <n—1. There are ¢,C > 0 such that the following holds. Let
7y be a geodesic and A(t) solve (6.3) and suppose there are tg € R, {u;};_; C (v'(0))*
orthonormal and By > 0 such that

[ A(to)u;l < Po, By < ce (rrAAlMl,
Then, there exist t1,...,t, € R\{0} such that

Zdimker A(ty) >r and max |t; — tg| < CBoelliol. (6.7)
, J
j=1

To ease notation, for any ¢ such that A~!(¢) exists, we introduce the matrix
U(t) := A'(t) A1), (6.8)

and note that U(t) is symmetric for all such ¢ [Ebe73a]. This matrix was also used by
Green [Gre58] and Eberlein [Ebe73al, [Ebe73Dh] in the case of no conjugate points, for
which it exists for all £ # 0 and solves a certain Ricatti equation.

Recall that in the Newton iteration algorithm for finding zeros of a function, f, one
starts with z¢p where f(z¢) is small, and searches for the zero by defining the sequence

Tptl = Tp — J;,((;:)). Under appropriate conditions x,, — z, and f(z.) = 0.

In this section, we implement a Newton-type algorithm for finding non-zero solu-
tions, (t«,v«), of the equation A(t.)v, = 0. The sequence {zy}, is defined so that the
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linearization of f at x, will be zero at x,41. In the same spirit, we start at some time
to where || A(to)|v|| < 1 for some vector space V and look for solutions to

A(to)’u — )\oA,(to)U =0 (6.9)

such that [A\g|] < 1 and v € V. Since we can rephrase the problem as solving
(Id =AU (t))A(t)v = 0, the matrix U(¢) will be used to do this. In particular, find-
ing solutions to (6.9) will amount to finding eigenvalues and eigenvectors for U. It
is here that the self-adjointness of U plays a crucial role. After this step, we put
t1 = tg — Ao and repeat the process as in Newton iteration.

In the next lemma, we show that if ||A(to)|y| < 1, for some r-dimensional vector
space V, then we can find r large eigenvalues of the matrix U (tp).

Lemma 6.5. There is C > 0 such that the following holds. Let tg € R and 5 > 0 such
that A(tg)~" exists, CBellol < 1, and there are {uj}i—, C (v'(0))\{0} orthogonal

with
‘ | A(to)ul| <8
J (|

Then, there exist eigenvalues {)\j_l};:l of U(ty) with max; |\;| < CBeM for all |f —
to| < 1.

Proof. First, we check that A(to)u is small for all v € span{ui,...,u,}. This follows
since there exists C,, > 0 depending only on n such that

HA(to)zT:bjujH < ﬁzr: b,] < BC.,
=1 i=1

r
E bjuj H .
j=1

In particular, provided SC), < %e*A”O‘, by Lemma m we have
[U (to)A(to)ull _ [IA"(to)ull

> 5_107:106_1\“0'.

IACto)ull - [|ACto)ull =
We now apply the max-min principle to U(ty) using the fact that A(tp) applied to
span{ui,...,u,} is an r dimensional vector space. That is, observe that if we order

the eigenvalues of U(tg) as [A1]71 > |Ao|™t > -+ > [A\,_1]7}, then,

Ak 72 = Ingx{min{“ﬁ”‘ﬁ'f cwE V} :dimV = k;},

where the maximum is taken over all subspaces V of dimension k. Taking V, =
span{ A(to)u1, ..., A(to)u,}, dimV, = r, and

2
min{M tvEV} > B0 2 Pem Al

flvll®
In particular,
|/\j|71 zﬂfnglcefA“O', ji=1,...,r
The bound can be rewritten as a bound in terms of ¢ by modifying the constant C. [
The next lemma will be used to make steps in the Newton iteration. In particular,

starting from time to, where U(tp) has large eigenvalues, we find a new time, ¢y — s,
where U(ty — s) has substantially larger eigenvalues.



58 YAIZA CANZANI AND JEFFREY GALKOWSKI

Lemma 6.6. There are c,C > 0 such that the following holds. Suppose that A(tg)~!
exists, U(to) has eigenvalues {1/A;};_y with |A1] = max; |A;| and orthonormal eigen-
vectors {e;};_;. Let B >0 and |s| < 2|A\1] such that

max|s — A\j| < B[P and  C(1+ B)|\ [P < Se2Altol,
J

Then, for v e span{A(to)_lej};T:l,
1A(to = s)v]| < C(L + B) M [PelJu].
Moreover, if A(ty — s)™1 exists, U(tg — s) has eigenvalues {1/Aj(s)}j=1 satisfying
INi(s)] < CL+B)MPEMN for [F—t] <1

Proof. We claim that for all w € span{ey,...e,} we have

U (to — 5)A(to — ) A~ (to)w]
[A(to — ) A~ (to)w]|

This would complete the proof after an application of the max-min principle since
A(to — s)A™1(to) applied to span{ey,...,e,} is an r dimensional vector space. Note
that yields a bound on |);(s)| in terms of t5. This can be rewritten as a bound
in terms of ¢ by modifying the constant C.

Note that U(tg—s)A(tg—s) A~ (to)w = A’ (to—s) A~ (to)w for w € span{ey, ..., e }.
Therefore, by Lemma proving amounts to finding an upper bound on its
denominator.

Given any t € R, a Taylor expansion near s = 0 combined with yield that for
all v € (v/(0))*

At — s)v = A(t)v — sA'(t)v — %R(t)A(t)v + Q(t, s,v), (6.11)

with [|Q(t, s,v)|| < Cs3eMH||v|| for some C' > 0 depending only on R (c.f. ).
Let w =} "_, bje; for some {b;}7_; C R and set v = A~Y(to)w. Then, by (6.11])

> C7H 1+ B) Y| Be 2Altl (6.10)

T )\ o
Aty — s)v = Z ])\' Sbjej — 12 R(to)w + Q(to, s,v).
j=t "7

Next, using that |\1| = maxi<;<, |\;| and orthogonality, there is C' > 0 such that

ml!wH_HZ Lej|| = U to)w]| < 14 t0) | A~ (to)uw]] < CeMlolfo].

Then,
Aj — 5 |)‘ 2 2 b} 2 2A 2 2
HZ b | —Z P < B S S = A
j=1 Aj
In particular, together these imply ||A(ty — s)v|| < (C + B)|Ai|?eMlol Hv|| Thus using
Lemma provided that C(1 + B)[\ [Pelltol < ge=Alt ‘ the claim in ) holds.

n
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The first step in proving Lemmal6.4]is to show that given ug such that ||A(to)uo|| <
|luo||, we can find t near ¢y such that ker A(¢) # {0}. This lemma uses the simplest
version of our Newton iteration scheme where we do not keep track of multiplicities.

Lemma 6.7. There are ¢, C > 0 such that the following holds. Suppose that there are
to € R and ug € (v'(0))*+\ {0} such that

|A(to)uol| < Bllugl,  0< B < ce Ml (6.12)
Then, there exist t € R such that
|t —to] < CBerlM and dimker A(t) > 1.

Proof. We assume by contradiction that A(s)~! exists if |s —tg| < C; Berl. Then, by
Lemma there is an eigenvector vy of U(tg) with eigenvalue Ay ! satisfying

|Xo| < Cpetltol. (6.13)

Let t1 ==ty — Ao, A_q := B3¢~ Alol/3 and assume we have found (tg+1, Ak, vg) for
k=0,...,m such that ||vg| =1,

thr1 =tk — Ak, Ulty)vg = )\lzlvk, IAg| < 062A|t0|‘)\k_1|3. (6.14)
By induction, one checks that
3o 3 3
Al < (Ce2Me) =0 (Cpetiol) T k=1, m. (6.15)

In particular,

m
[tmar — to] <O [ters — t] < 208Nl < 1.
k=0

Next, by Lemma with tg = t,,, s = Ay, and B = 0, there are (vy41, Am41) such
that [[vmt1]] = 1, U(tm+1)Vmy1 = )\;llJrlfumH, and

A1 < C€2Alt0||)‘m|3'

Finally, letting t;+2 = tm+1 — Am+1 completes the inductive step.
Therefore, for all k£ > 0 there are (tx, \g, vx) satisfying (6.14). In particular,

It — to] < CBe*Mol,
Hence, there exists ¢t € R such that ¢, — t and [t — to| < CBe? Mol Next, note that
el = U vell = A () A7 (t)or || < CeM AT (1 )og|| < CeMol| A7 (1o

In particular, since |\;| — 0, we conclude || A(t;)"tvg|| — co. On the other hand, by
assumption A(t) is invertible and hence, there exists C' > 0 and an open interval
around ¢ such that

JA(s) | < C <00, s€EI,

which gives a contradiction if we choose C large enough.
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In the proof of Lemma we will induct on the number of times at which A(t) is
not invertible in a small neighborhood of the time ¢y where || A(t)|y|| < 1. To begin,
we implement Newton iteration to handle the case when we apriori have at most one

such time and control the multiplicity of the conjugate point at that time in terms of
dim V.

Lemma 6.8. There are c,C > 0 such that the following holds. Let Sy > 0 and tg € R
with By < ce 3ol Suppose there exists ty so that

A(t) is invertible for t # t. with [t —tg] < 20 Byeltol,
and that there are {u;}’_; orthogonal such that [|A(to)u;| < Bollujll for j=1,...,r.
Then, |t —t.| < CBoerbl and

dimker(A(t,)) > r.

Proof. We first show that, by increasing C' and decreasing c slightly, we may assume
ty # to. Indeed, suppose the lemma holds for some t, # tg.

Let ¢,C > 0 be the constants found for the ¢, # ty case and suppose that By <
e~ 3Alol - A(t) is invertible for t # to with |t — to| < 3CBpel0l, and there are {u; i,
orthogonal such that [|A(to)u;|| < Bollu;|| for j=1,...,7.

Then, let sg € R and 0 < ¢y < C such that

0< ’80 — t0| < CoﬁoefA‘tO‘.

Note that A(s) is invertible, and, since

‘t _tO’ < ‘t - 80’ + ’80 —to‘ < ‘t— SO‘ +60606_A|t0‘7

A(t) is invertible for t # t, with [sg —t| < 2C e, Moreover, since ||A'(t)|| < CeMlH,
we have

1A(s0)us | < [|A(to)usl| + Cellugl] < o1+ coC)lus| < §Bolluy

provided we choose ¢y > 0 small enough. Finally, observe that %ﬁo < %06*3/\“0‘ <
ce3Msol again provided we choose ¢g > 0 small enough. To finish the argument for
the tg = t, case, apply the lemma with g := s¢ and ¢, := .

We now prove the lemma assuming that tg # t..

Let ¢,C be respectively the minimum and maximum of the constants found in

Lemmas 6.6, and By Lemma since B < ce 3ol |t, —t| < CBelltol,

By Lemma since CBpetol < 1, U(ty) has eigenvalues {Ao, }}37:1 such that

Mol < CBoelfel.
Let {eo,;}7_; be the eigenvectors of U(ty) with eigenvalues {1/Ag;}7_;. Here, we
set A\oj = Aj for all j =1,...,r. Note that, by Lemma [6.6] for all j =1,...,r
1A(to — Ao ) A~ (to)eo | < C*BRe 0l AT (to)eo 51|

Then, by Lemma there are t € R and w € (v/(0))* \ {0} such that A(t)w = 0 and
max; |t —to+ Ao ;| < C5B865A|t0|. In particular, since |t —ty| < 28y, we have must have
t =t, and so

lto — t.| < CBoerltol 4 P g3edAltol,
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Set A1 := (Bo(C3(1 4 202e2Altol))~1e=4Alo)1/3 " Lot m > 0 and for 0 < k < m
suppose that we have found (tg, {Ag;}7_1, 8x) such that
(1) U(tg) has eigenvalues {)\,;;};:1 with max; [\ j| < CBrellfol,
(2) A(t) is invertible on I(tg, Br) \ {t«},
(3) 0< |ty — tu| < CBgelliol 4 O p3edMtol,
( ) Br < 03(1+202 2A|t0|)53 4A|t0\7
where

I(ty, Br) = (tx — 20 Bre™" 1), + 2CByelol).
Then, for each 0 < k < m let {e; ;}’_, be the eigenvectors of U(t;) with eigenvalues
{1/Ak,j}=1- Note that, by Lemma Wlth B =0,
1At = M) AT (t)engll < Ol PN AT (t el

Thus, by Lemmathere are t € R and w € (7/(0))* \ {0} such that A(t)w = 0 and
1t —tr + Aej| < C?| M jlPe 2Altol for j = 1,...,r. In particular, since t € I(ty.3), we
must have t = ¢, and so

max [t — b, + Mg 5| < G20l N P and max [Ag,j — Ake| < 20°ge> ol
J Js
(6.16)
Next, we define ¢;+1 € R such that
0 < [te — tpy1] < C2 A [Be2At0] (6.17)
where A 1 is chosen so that max; |\ j| = [Ag,1]. Then, with s =t — tg41,

max |Sk — )\k,j’ = max |t* - tk+1 + tk — 1y — Ak,j’ < 20262A|t0‘|)\k71|3.
J J

Thus, we may apply Lemma with B = 202¢2Alol | g = ;. and ¢y = t; to obtain
that U(tg+1) has eigenvalues {1/Ax11,;}7_; satisfying

N1l € L+ 202620 2ol < €y,

where we set Bg41 1= C3(1 + 202e2Altol) giedAltol,

Next, we claim that A is invertible on I (tg+1, Bk+1)\{t+}. Indeed, for ¢t € I(tg11, Br+1),
assumptions (3) and (4) in the induction hypotheses and yield, since |t — t] <
‘t - thrl’ + ‘t* - tk‘ + ‘t* - tk‘Jrl‘v

[t — t] < 20Bpy1eM0l 4+ CBpetlol 1 205 g3e5M0l < 203, Mol

Therefore, I(txt1.0r+1) C I(tr.Br) and hence A is invertible on I(txy1.8k+1) \ {t«}-
Thus, by induction, there are (tky{)\k,j};:pﬁk) such that (1)-(4) above hold. In

particular, 8, — 0, tx — t., and, by (6.16)), we may choose ;€ I(t;.5)) such that
A(ty) is invertible and

max [f, — ty + Apj| < 2020l 2,
J



62 YAIZA CANZANI AND JEFFREY GALKOWSKI
Note that £, — t, and by Lemma (with tg = tg, § = tx — {1, and B = 20262A‘t0‘),
forveV, = span{A(tk)_lekJ};:l,
1A o]l < C(1 + 2022 A 1 [Petlolo]
< C*(1 4 20220l gletMtol |y |

Choosing any orthonormal basis {vj1,...,v,} for Vi we may extract a convergent
subsequence {vy, j}, such that

(6.18)

lim vy, s = v;
f— 00 2% J

for all j =1,...,r, and where {v;};_; C (7'(0))* are orthonormal vectors. Since the
map ¢ — A(t) is continuous, and by (6.18)) limy—eo | A(tk, )k, ;|| = 0forall j =1,...,7,

we conclude

and hence dimker A(t,) > r.
O

We now prove Lemma We need to address the fact that Lemma only
applies when there is a single time, t., in an interval proportional to the smallness
of B := ||A(to)|v|| such that A(t.) is not invertible. To explain how to handle this,
we will reduce to the case that there are at most » — 1 times ¢; in a small interval
around o such that A(¢;) is not invertible. We will then show that these times can be
grouped together into clusters around times ¢;° with corresponding vector spaces Vg°
such that [|A(t°)[yee| < 38 and Y, dim V3 > r. In other words, by grouping the
times appropriately, we can effectively decrease 5. After an induction on the number
of times, we will then be able to complete the proof.

Proof of Lemma [6.4. Let C be the maximum of the constants C' found in Lemmas
and Similarly, we let ¢ be the minimum of all the constants ¢ given
by the same lemmas. To ease the presentation, for ¢t € R and 5 > 0 we again write

I(t,B) == (t — 208 ¢ + 20 8eM).
We first reduce to the case that there is 0 < k < r — 1 such that
A(t) is invertible on I(to, 2"80) \ I(to, 2" 1 Bo). (6.19)

Suppose there is no such k. Since {I(to,2%Bo) \ I(to, 2" 'f0) Z;%) are disjoint, this
implies there are s, ..., s, 1 distinct such that s; € I(tg,2" ') and dimker A(s;) >
1. This implies there exist {s;}/—) with

r—1

Zdim ker A(s;) >, max |tg — s;| < C2" Bpeltol

i—0 !
and hence the lemma holds.

Let 0 < k < r—1 such that (6.19) holds and let {s;}}¥., C I(to, 2" 1) distinct such
that A(s;) is not invertible and A(t) is invertible on I(tg, 2¥50)\ {s;}X;. If N > r, then
the proof is complete since dim ker A(s;) > 1. Therefore, we may assume N < r—1. In
particular, with 81 = 2%, there are {t;}/_, C I(to, 351) such that A(¢) is invertible
on I(to, f1) \ {ti}i—-
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By the discussion above it is enough to show that there is ¢, > 0 such that for all ¢,
all 0 < B < ce” T+ and {t;}1-] ¢ I(t,3), if A(t) is invertible on I(t, 8) \ {t:}i—}
and there are {u;}7_; € {4(0)}+ orthonormal with maxj<;<, ||A(t)uj|| < B, then
S dimker A(t;) > 7.

Fort€R, 3>0,1€N, ry €N, {t;}}_; C R we introduce the following statements:

e P(t,B,1,70,{ti}\_,) is the statement: If A is invertible on I(t, 3) \ {t;}\_, and there
are {u;}’2, orthonormal with max |A(t)u;|| < B, then Zizl dimker A(t;) > ro.
<j<ro

e P(t,B,1,70) is the statement: P(t, 3,1, 70, {t;}._;) holds for all collections {t;}\_; C
I(t,1p) with ¢; distinct.

The goal is to prove that for all 1 <1 < r — 1 there is ¢; > 0 such that P(¢, 5,1,7)
holds for all ¢, and 0 < 3 < ¢je” H2AIL . We split the proof in two steps.

Step 1. Suppose that k > 0, 0 < 8 < ce~*+t2A1 o > 0, and {t:}r, C I(t,% ) are
distinct times such that the hypothesis of P(t, 3, k, ro, {t;}¥_,) hold.

We claim that there exist a collection of indices {ia }p—y C {1,...k}, indices {£;°}7; C
{1,...,k}, times {t>°}o C I(t, 38), numbers {Bez Yo C (0, 1), non-empty disjoint sets
I C{l,...k}, sets J2° C {1,...,70}, and intervals

Uioao = I(t;ijv /Bﬁf;)a Uizol N Uiion - @ a1 ?é a2, (620)
satisfying
{1,....k} =17, {1,...,r} = |J 7, (6.21)
a=1 a=1

and such that {t;}iezec C I(15° lﬁg?o ), A is invertible on U \ {t;}icze0, and there is

1o’ 5
a |J°|-dimensional subspace Vg° such that for all v € Vg°

[AEZ)v] < Bee [[v]l-

In particular, the assumptions of P(t3°, Beeo, |77, |T2°, {ti}iezee) hold. Thus, by
partitioning the times appropriately, we are able to reduce S by at least half.
Let s € R and ¢y > 0 such that

s —t] < coBe M, A(s)™! exists. (6.22)
Then, since maxi<j<y, |A(t)u;| < B and ||A'(t)|| < CerlYl] for ¢y small enough,

max [|A(s)u;|| < B+ C|s —t|leM < 35. (6.23)
1<j<ro

In particular, by Lemma U(s) has eigenvalues {)\;1};0:1 with orthonormal eigen-
vectors {e;};2; such that

il = max 3] < 305 (6.24)
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Observe that for all j = 1,...,7r, by Lemma (with tg = s, B=0, s = ), and
t=t),
1A(s = M)A (s)es || < CIMPMIAT (s)¢ ]
Then, we apply Lemma [6.7] (with ¢ty = s — )\;) to obtain {Z; };21 such that A(t;) is not
invertible and

max |f; — s 4+ Aj| < CHA[Pe?Al (6.25)
J
Next, defining
B = C(1 4 C2*MHY A Pl (6.26)
for ip € {1,...,k} let Ui(l) = I(tiy, 301),
It ={i|t; €U}, TFl={| min s — Aj — ti] < C2 A [Pe2AlY. (6.27)
) io

If Z,) = {io}, then A s invertible on I(t;,, 81)\{ti, } and for all v € span{ A~ (s)e; }jejit ,
by Lemma (with tg = s, B = C?e*M!l and s — t;, in place of s)
|Atio)oll < Bille].
We then define £ =1, £ = t;,

? 710

Use =1ty Bee),  Tid=Tigs Ty =T
If {ip} C Ii%), let 7% = % Ziel% t; € I(t, 38). Then, by Lemma (with ¢ty = s,

1
ol

B = C2e2MH 120 M |/€1‘3, and s —fi{) in place of s), for all v € span{A‘l(s)ej}jejq,
20

JAGL)I < Bolloll, By o= C(1+ 22 4 12Ce“"f11|3) [ e,

Next, let Uii = I(f}o, 302) and define JZ-S,IZ% as in (6.27). Note that Ii(l) C IZ%.

If Il% = T.!, then, since 35 > 683;, A is invertible on I(ﬂo,&) \ {ti}"'ezfo’ and

207

{tibierz C I(E,%). We let £2° =2, t2° =t}

? 710 20
U =1I(th,p), I =12,  JX:=J.
Otherwise, we continue the process until we find Ifo = Ifofl for some ¢ and set €37 = ¢,
th =Ty €1(t,38),
U = It Bo), I =1If, T =Tt

Note that for all ig, £7° < k.
Next, we claim that if i1,y are such that U7° N U # (), then

X C I or Iy C Y. (6.28)
Indeed, suppose U7° N U # (). Without loss, assume £3° > £7°. Then, 5@; > 5@;’;%
2° foo
B ,354;;;). In particular, since Z; " = {i | t; € U*} and Z,* = {i |
ti € UpY}, we have Z2° O I7°, proving the claim in (6.28)).

From the claim in (6.28]) it follows that there exist 1 < m < k and {io}1; C
{1,...,k} such that (6.20) and (6.21)) hold.

and so U® C I(t5Y
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To prove that G, < % B, we actually show that for all ¢,
/Bf S 02(£71)136716(2(z71)+1)/\|t‘ (1 + C2€2A|t‘)‘)\1‘3. (629)

This implies Bpe < %ﬁ since £7° < k, |A| < 203eM | and we are assuming 8 <
ce~(Ft2AM T see the claim in (6.29) first note that, with 3 = Be((1+ C’262A|t‘)\)\1|3)_1,

Br1 = C(1 + 12CeM el By =M.,
Therefore, since 31 > 1, and we may assume C' > 1, Ef@ > ﬁg,l, and Bg < 130262/\“'35,1.
Hence, the claim in (6.29) follows.

Step 2. The goal is to prove that for 1 <[ < r—1 there is ¢; > 0 such that P(¢, 8,1, r)
holds for all t and 0 < 8 < ¢je~ (T2l gince this would yield the lemma. We continue
by induction.

First, note P(t, 3,1, rg) holds for all ¢, 7o > 0, and 0 < 8 < ce Mt by Lemma
Let 2<k <r—1. For 1 <l <k —1, we assume there are ¢; > 0 such that ¢; < ¢y,
and for all rg >0

P(t,B,l,r9) holds for allt, 0< < e MU and 1 <1 <k—1. (6.30)

Fix rg > 0, 0 < B < ce” (FH2)AL {t:}F, C I(t,% ) distinct, and suppose that the
assumptions of P(t, 8, k,ro, {t;}¥_,) hold. To finish the proof it suffices to show that
the conclusions of P(t, 8, k,7q, {t;}¥_;) hold and hence that holds with k£ — 1
replaced by k.

Suppose that the conclusions of P(t, 8, k, 7, {t; }¥_;) do not hold: Zle dimker A(t;) <
ro. We will arrive at a contradiction after one further induction in which the idea is to
show that the ¢;’s cannot be distinct. We claim that there are {(s,, fn)}ne such that

{t:}k | c I(sp, 1B,), the assumptions of P (s, By, k, 70, {t;}5_)) hold
and (6.31)
Sn € I(5n-1, 55n-1), Bn < $Bn-1.
N-1

We prove this by induction. Let (so, 8y) = (¢, §) and assume we have found {(s,, 5,)},,
such that holds. We claim that there are (s, 3, ) such that holds with
n = N. To see this, we will apply Step 1 above with (¢,5) = (sy_,,8y_,).- We
work with the corresponding sets and intervals built in (6.20)) and (6.21]). In partic-
ular, the hypotheses of P(t?j,ﬂg;};, |52, |$z°\,{t,}lezfz) hold for « = 1,...,m and
{titiezee C I(t2, %Bg). Next, suppose that m > 1. Then, |Z2°| < k for all a and

hence, by (§30) and (:21)
Z Z dim ker A(t;) > Z | T2 = o
a=1

a=14i€Z;,

and hence the conclusions of P(t, 3,70, k, {t;}¥_;) hold contradicting our assumption.
Therefore, we may assume m = 1 and, in particular, ]Iflo] = k. The assumptions of

’P(t?lo, Bg?f, k,rg, {ti}le) hold with ,Bgff < %ﬂl\_l, t?lo € I(SNil, %BNil), and {ti}ielfo C
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Ity %Bgoo). Defining, (s, Sy) = (t;‘)fvﬁei-’f) we have found (s, , 3, ) such that
holds Wlth n=N.
Since ) holds for all n, 8, < 27"3 and hence, using that {t;}}_, C I(sn, Qﬁn)
for all n, we have that

max ’ti — tj| < 2_nﬁc€A|t‘ —0
Z?J

and hence t; = t; for all i = 1,...,k, a contradiction to the fact that ¢; are distinct.
O

Proof of Proposition -. Let ¢,C be as in Lemma Let v be a geodesic and
) solve (6.3] . Let t, € (to—¢,to+¢) and B := Lee Ml Without loss of generality
assume that C is large enough that g < ce Al |.
By assumption, there are no more than m conjugate points to v(0) in (t, —e,t.+¢€).
In particular, for all 7 > m there is no collection of times t1, ..., ¢, with max; |[t; —t,| <
CBerMtl such that >_j—1 dimker A(t;) > r. By Lemma thlS implies that

1A ]| > Fee™ (6.32)

for all subspaces V C (v(0))* with dimV > m.
We claim there is a subspace V of dimension n — 1 —m and C > 0 such that

|A(t)w]| > Lee™ w e V. (6.33)

To prove this, suppose there is no such subspace V or C' > 0. Then, for all § > 0
there is vg # 0 such that

1At vsl| < el Jos]],
Let Vo = {0}, Vi = Rus, 1 < k<m, and suppose that we have found C; > 0 and
{V;}h_, such that V;_1 C {V;}, dimV; = j, and

A, || < 8Cje e,

Note that dim VjL =n—1—7, and hence, since n — 1 — 7>n — 1 —m, by assumption
there is wy, € VkL such that

[ At )wg|| < dee™
Now, put Vi1 = Vi @ Rwy and let v = (vg, A\wg) € Vi1 with A € R. Then,
1Av]| < (| Awgl| + || Awg ]| < dee™™I(Cyllvg]l + [Aw]]) < deCryre™ o],
where in the last inequality we use that v, and wj are orthogonal. In particular,
IAG) vy || < 0eCjqe L.
Finally, dim V,,11 = m + 1, and
A [V || < 8Cme e,

which contradicts (6.32)), provided ¢ is small enough. This proves the claim in (6.33]).
Now, let V as in (6.33). Then, by Lemma there is V,, C T,S3;M of dimension

n — 1 — m such that

drVi=0, KVi=V.
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For v € V,
dr(de,,v)F = A()KVF,
and, since Kv! € V, (6.33) implies that for v € Vv,
ldrdpe, vl = [|dn(dir, v)F| > ce” KV /O = eeMVE] /C 2 e My /C.
Modifying the constant C, we can replace |t4| by |fo| in the previous estimate.
0

APPENDIX A.

A.1. Implicit function theorem with estimates on the size.
Lemma A.1. Suppose that f(xg,z1,22) : R™0 xR™ xR™2 — R™0 50 that £(0,0,0) =
0,

L := (Dyy £(0,0)) ™1 exists, sup |0, f| < B, sup |3§i350f\ < B,.
|al=1 |o|=1,|8|=1

Suppose further that ro,r1,79 > 0 satisfy

2 2
S = HL” ZszZn < 1, and ST() + HLH Zngﬂ'z < To- (Al)
i=0 i=1
Then there exists a neighborhood U C R™ x R™2 qa function zq : U — R™ so that
f(@o(z1, 22), 1, 22) =0
and B(0,71) x B(0,r) C U.
Proof. We employ the usual proof of the implicit function theorem. Let G : R® — R"
have
G(wo; 21, 22) = 20 — Lf (0, 71, 2).
Our aim is to choose rg,71 > 0 so small that G is a contraction for 1 € B(0,71),
zo € B(0,79) and z9 € B(0,72). Note that Note that
|G (z0; 1, x2) — G(w; 1, x2)| < sup || Dy, Gll|xo — w|
and
|G (203 21, 72)| < sup || Day Gll|70| + |G(0; 21, 22)].
Therefore, we need to choose r; small enough that
Sy = sup{|| Dz, G| : (zo,x1,22) € B(0,79) x B(0,71) x B(0,12)} < 1 (A.2)
and
|G(:L'0;l’1,l’2)‘ < SG7°0—|-||L|||f(0,{E1,:I)2)| < SG’I"(H—’|L||(m1B1T1+m2B2’I“2) < 70. (A3)
Now,
DmOG =1Id —Lonf(l'o, x1, 1‘2)
and LD, f(0,0,0) = Id. Therefore,
| Dz G| < ||L||(moBoro + miBiry +maBara) = S < 1.

In particular, Sg < S and for 7; as in (A.1), we have that (A.2]), (A.3) hold. In

particular, G is a contraction and the proof is complete. O
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