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Abstract: Total daily energy expenditure, TEE (MJ/d), is a critical variable in human health and 135 

physiology. Previous large-scale studies of daily expenditure have been limited basal energy 136 

expenditure, BEE (MJ/d), the minimum requirements of the organs at rest. Here, we analyze a 137 

large, globally diverse database of TEE measurements by the doubly labeled water method for 138 

males and females aged 8 days to 95 yr. We show that TEE is most strongly related to fat free 139 

mass (FFM), and identify four distinct metabolic life stages. FFM- and fat mass-adjusted TEE 140 

accelerates in neonates (0-1yr), is elevated throughout childhood and adolescence (1-20 yr), 141 

remains stable in adulthood (20-60 yr) even through pregnancy, and declines in older adults (60+ 142 

yr). The trajectory of TEE appears to reflect changes in organ size, physical activity, and cellular 143 

activity over the lifespan. 144 

 145 

One Sentence Summary: Expenditure fluctuates as we age, reflecting changes in behavior, 146 

anatomy, and cellular activity. 147 

 148 

Main Text: Changes in daily energy demands as we grow, mature, and senesce have been the 149 

focus of metabolic research since the field’s origins over a century ago (1,2). Yet we know 150 

surprisingly little about the determinants of TEE and its changes over the lifespan. Large (n > 151 

1,000) analyses of human energy expenditure have been limited to laboratory measures of BEE 152 

(3), which accounts for only a portion (usually ~55%) of TEE, or have relied upon estimates of 153 

TEE based on BEE and daily physical activity (4). Measurements of TEE in humans during daily 154 

life, outside of the laboratory, were not feasible until the 1980’s with the advancement of the 155 

doubly labeled water (DLW) method which uses stable isotopes (2H, 18O) to calculate the rate of 156 

CO2 production and thus TEE (5-7). The DLW method has become the gold-standard method for 157 



measuring TEE in free-living subjects (8), but the largest analyses of TEE to date have been 158 

limited in sample size (n < 600), geographic and socioeconomic representation, and/or age (9-159 

14). Further, while the proportions of fat mass and FFM are known to affect energy expenditure, 160 

large studies of both BEE and TEE have often focused only on total body weight (3,9), which 161 

can conflate effects of age and age-related changes in body composition.  162 

TEE, FFM, and physical activity (PA) change over the life course, often in concert, 163 

making it difficult to isolate the effects of size, PA, or cellular activity. TEE increases with age 164 

as children grow (10), but the relative effects of increasing PA (15-17) and age-related changes 165 

in tissue-specific metabolic rates, as have been reported for the brain (18), are unclear. TEE and 166 

BEE increase from childhood through puberty, but much of this increase is attributable to 167 

increased FFM, and the role of endocrine or other effects on cellular activity is uncertain (14). 168 

The decline in TEE beginning in the sixth decade of life corresponds with a decline in FFM (11) 169 

and physical activity level, PAL (TEE/BEE), but may also reflect cellular senescence.  170 

In this study, we investigated the effects of age, body composition, and sex on TEE and 171 

its components, using a large (n = 6,421), geographically and economical diverse (n = 29 172 

countries) database of DLW measurements of females (64%) and males (36%) eight days to 95 173 

years old (19). BEE, measured via indirect calorimetry, was available for a subset (n = 2,008) 174 

and was used to calculate activity energy expenditure, AEE, as (0.9TEE – BEE) (Methods; Table 175 

S1). The database currently lacks measures of BEE for subjects < 2 y and includes few pregnant 176 

or nursing mothers. We therefore augmented the dataset with published meaures of BEE in 177 

neonates and TEE in pregnant and post-partum women (Methods). 178 

TEE, BEE, and AEE increased with FFM in a power-law manner (TEE= 179 

0.677FFM0.708±0.004; Figures 1, S1, S2, Table S1), requiring us to adjust for weight in 180 



comparisons of expenditure across subjects and cohorts. With an exponent < 1, the ratio of 181 

expenditure/mass does not adequately control for body size because the ratio of MJ/kg will trend 182 

lower for larger individuals (Figure S1; 20). Instead, we used regression analysis (20). A general 183 

linear model with ln-transformed values of energy expenditure (TEE or BEE), FFM, and fat 184 

mass in adults 20 – 60 y (Table S2) was used to calculate residual energy expenditures for each 185 

subject. We converted these residuals to adjusted expenditures for clarity in discussing age-186 

related changes: 100% indicates an expenditure that matches the expected value given the 187 

subject’s FFM and fat mass, 120% indicates an expenditure 20% above expected, etc. (Methods). 188 

Using this approach, we also calculated the portion of adjusted TEE attributed to BEE (Figure 189 

2D; Methods). Segmented regression analysis of (Methods) revealed four distinct phases of 190 

adjusted (or residual) TEE and BEE over the lifespan. This pattern was unchanged in analyses of 191 

residuals rather than adjusted expenditures.  192 

Neonates (0 – 1 y): Neonates in the first month of life had adjusted TEE of 99.0 ± 17.2% (n = 35) 193 

and adjusted BEE of 78.1 ± 15.0% (n = 34; Figure 2). Both measures increased rapidly in the 194 

first year of life. In segmented regression analysis, adjusted TEE rose 84.7% per year (95% CI: 195 

70.7, 98.7%) from birth to a break point at 0.7 years (95% CI: 0.6, 0.8); a similar rise (75.5%, 196 

95% CI: 64.6, 84.5) and break point (1.0, 95% CI: 0.9, 1.1) were evident in adjusted BEE. For 197 

subjects between 9 and 15 months, adjusted TEE was 146.4 ± 30.6% (n = 43), and adjusted BEE 198 

was 147.2 ± 10.6% (n = 167). 199 

Juveniles (1 – 20 y): TEE and BEE, along with FFM, continued to increase with age throughout 200 

childhood and adolescence (Figure 1), but adjusted expenditures steadily declined. Adjusted TEE 201 

declined at a rate of -2.8% per year (95% CI: -2.9, -2.6%) from 147.8 ± 22.6% for subjects 1 – 2 202 

y (n = 102) to 102.7 ± 18.1% for subjects 20 – 25 y (n = 314; Table S2). Segmented regression 203 



analysis identified a breakpoint in adjusted TEE at 20.5 y (95% CI: 19.8, 21.2), after which it 204 

plateaued at adult levels (Figure 2). A similar decline (-3.8, 95% CI: -4.2, -3.3) and break point 205 

(18.0, 95% CI: 16.8, 19.2) was evident in adjusted BEE (Figure 2, Text S1). No pubertal 206 

increases in adjusted TEE or BEE were evident among subjects 10 – 15 y. In multivariate 207 

regression for subjects 1 to 20 y, males had a higher TEE and adjusted TEE (Tables S2, S3).  208 

Adults (20 – 60 y): TEE, BEE, and FFM were all stable from age 20 to 60 (Figure 1, 2; Tables 209 

S1, S2; Text S1). Sex had no effect on TEE in multivariate models with FFM and fat mass, nor 210 

in analyses of adjusted TEE (Tables S2, S4). Adjusted TEE and BEE were stable even during 211 

pregnancy, the elevation in daily expenditure matching the expected increase from the gain in 212 

FFM and fat mass (Figure 2C). Segmented regression analysis identified a break point at 63.0 y 213 

(95% CI: 60.1, 65.9), after which adjusted TEE begins to decline. This break point was 214 

somewhat earlier for BEE (46.5, 95% CI: 40.6, 52.4), but the relatively small number of BEE 215 

values for 45 – 65 y (Figure 2D) reduces our precision in determining the BEE break point. 216 

Older adults (>60 y): At ~60 y, TEE and BEE begin to decline, along with FFM and fat mass 217 

(Figures 1, S3, Table S1). The decline in expenditure is not only a function of reduced FFM and 218 

fat mass, however. Adjusted TEE declined by -0.68% per year (95% CI: -0.79, -0.57), and 219 

adjusted measures of BEE and AEE fell at similar rates (Figure 2, Figure S3, Text S1). For 220 

subjects in their nineties, FFM- and fat mass-adjusted TEE was 74.0 ± 11.6%, ~26% below that 221 

of middle-aged adults.  222 

 In addition to providing empirical measures and predictive equations for TEE from 223 

infancy to old age (Tables S1, S2), our analyses bring to light major changes in metabolic rate 224 

across the life course. The stability of adjusted TEE and BEE at ~100% during pregnancy 225 



(Figure 2B) suggests that the growing fetus maintains a FFM- and fat mass-adjusted metabolic 226 

rate similar to adults, which is consistent with adjusted TEE and BEE of neonates (both ~100%; 227 

Figure 2) in the first weeks after birth. After rapid acceleration in TEE and BEE during the first 228 

year, early life is characterized by substantially elevated FFM- and fat mass-adjusted 229 

expenditures relative to adults, reflecting elevated nutritional requirements during growth. 230 

Declining adjusted TEE through childhood and adolescence may heighten the risk of unhealthy 231 

weight gain and compound the challenges of addressing juvenile obesity. Adult expenditures, 232 

adjusted for FFM and fat mass, are remarkably stable. Declining metabolic rates in older adults 233 

could increase the risk of weight gain, although we did not observe an increase in fat mass or 234 

percentage in this period (Figure S3). 235 

 Following previous studies (21-25), we calculated the effect of organ size on BEE over 236 

the lifespan (Methods). At rest, the mass-specific metabolic rates of the heart, liver, brain, and 237 

kidneys are much greater than those of the muscles and other lean tissue or fat (21-25). Due to 238 

the greater proportion of metabolically active organs in early life, estimated BEE from organ size 239 

follows a power-law relationship with FFM, with elevated BEE/FFM in infants and children, 240 

roughly consistent with observed BEE (Methods, Figure S6). However, observed BEE exceeds 241 

organ-based estimates by ~30% in early life (1 – 20 y) and is ~20% lower than organ-based 242 

estimates in subjects over 60 y (Figure S6), consistent with previous work indicating that tissue-243 

specific metabolic rates are elevated in children and adolescents (1,22,25) and reduced in older 244 

adults (21,23,24). 245 

We modeled the contributions of PA and changes in cellular metabolism over a range of 246 

scenarios (Methods). AEE was modeled as a function of PA and body mass, assuming larger 247 

indivduals expend more energy during activity. PA could either remain constant at adult levels 248 



over the lifespan or follow the trajectory of PA measured via accelerometry, which peaks 249 

between 5 – 10 y, declines rapidly through adolescence, and then declines more slowly 250 

beginning at ~40 y (15,26,27). Similarly, BEE was modeled as a power function of FFM 251 

(consistent with organ-based BEE estimates; Methods) multiplied by a “cellular metabolism” 252 

term, which could either remain constant at adult levels across the lifespan or follow the 253 

trajectory observed in adjusted BEE, which peaks ~1 y and declines to adult levels at ~20 y, then 254 

declines again in late adulthood (Figure 2). For each scenario, we calculated absolute and 255 

adjusted expendtures from observed FFM and fat mass for each age cohort in Table S1 256 

(Methods). 257 

Models that hold PA or cellular metabolism constant over the lifespan do not reproduce 258 

the observed patterns of age-related change in absolute or adjusted measures of TEE, BEE, and 259 

AEE (Figure 3). Only when age-related changes in PA and cellular metabolism are included does 260 

model output match observed expenditures, indicating that variation in both PA and cellular 261 

metabolism contribute to TEE and its components across the lifespan. Elevated expenditures in 262 

early life may be related to growth or development (18,22), and the decline in later life may 263 

reflect cellular senescence or reduced cellularity of metabolically active tissues (23,24,28). 264 

Further work is needed to elucidate these mechanisms. 265 

 Metabolic models of life history commonly assume continuity in cellular metabolism 266 

over the life course, with cellular metabolic rates increasing in a power-law manner (Energy = 267 

aMassb) and the energy available for growth during the juvenile period made available for 268 

reproduction in adults (29,30). DLW measures of humans here challenge this view, with FFM- 269 

and fat mass-adjusted metabolism elevated ~50% in childhood compared to adults (including 270 

pregnant females), and ~25% lower in the oldest subjects. It remains to be determined whether 271 



these fluctuations are common in other species. In addition to affecting energy balance, 272 

nutritional needs, and body weight, these metabolic changes present a potential target for clinical 273 

investigation into the kinetics of disease, pharmaceutical activity, and healing, processes 274 

intimately related to metabolic rate. Further, there is considerable metabolic variation among 275 

individuals, with TEE and its components varying more than ± 20% even when controlling for 276 

FFM, fat mass, sex, and age (Figure 1, 2, Table S2). With the pattern of metabolic activity over 277 

the lifespan established here, future work must investigate the processes underlying metabolic 278 

changes across the life course and variation among individuals, and the role of metabolic 279 

variation in health and disease. 280 
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 414 

Figure 1. A. TEE increases with FFM in a power-law manner, but age groups cluster about the trend line 415 

differently. B. TEE rises in childhood, is stable through adulthood, and declines in older adults. Means±sd 416 

for age-sex cohorts are shown. C. Age-sex cohort means show a distinct progression of TEE and FFM over 417 

the life course. D. Neonate, juveniles, and adults exhibit distinct relationships between FFM and TEE. The 418 

dashed line, extrapolated from the regression for adults, approximates the regression used to calculate 419 

adjusted TEE values.   420 



 421 

Figure 2. FFM and fat mass-adjusted expenditures over the life course. Individual subjects and age-sex 422 

cohort mean ± SD are shown. For both TEE (A) and BEE (B), adjusted expenditures begin near adult levels 423 

(~100%) but quickly climb to ~150% in the first year. Adjusted expenditures decline to adult levels ~20y, 424 

then decline again in older adults. BEE measures for infants and children not in the DLW database are 425 

shown in gray. C. Pregnant mothers exhibit adjusted TEE and BEE similar to non-reproducing adults. D. 426 

Segmented regression analysis of adjusted TEE (red) and adjusted BEETEE (black) indicates a peak at ~1 427 

y, adult levels at ~20 y, and decline at ~60 y (see text).   428 



 429 

Figure 3. Modeling the contribution of PA and cellular metabolic activity (CM) to daily expenditures. A. 430 

Observed TEE, BEE, and AEE (Table S1) show age-related variation with respect to FFM (see Figure 1C) 431 

that is also evident in adjusted TEE and BEETEE (Table S3; see Figure 2D). B. These age effects do not 432 

emerge in models assuming constant PA and CM across the life course. C. When PA and CM follow the 433 

life course trajectories evident in accelerometer measured PA and adjusted BEE, respectively, model output 434 

is similar to observed expenditures.  435 
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Material and Methods 454 

1. DLW Database 455 

Data were taken from IAEA Doubly Labelled Water (DLW) Database, version 3.1, 456 

completed April, 2020 (19). This version of the database comprises 6,743 measurements of TEE 457 

using the DLW method. Of these, a total of 6,421 had valid data for TEE, FFM, mass, sex, and 458 

age. These 6,421 measurements were used in this analysis. This dataset was augmented with 459 

published BEE measurements for n=136 neonates and infants (31-36) that included FFM and fat 460 

mass. Malnourished or preterm infants were excluded. For sources that provided cohort means 461 

rather than individual subject measurements (33,36) means were entered as single values into the 462 



dataset without reweighting to reflect sample size. This approach resulted in 77 measures of 463 

BEE, FFM, and fat mass for n=136 subjects. We also added to the dataset published BEE and 464 

TEE measurements of n=141 women before, during, and after pregnancy (37-39) that included 465 

FFM and fat mass. These measurements were grouped as pre-pregnancy, 1st trimester, 2nd 466 

trimester, 3rd trimester, and post-partum for analysis. 467 

In the DLW method (8), subjects were administered a precisely measured dose of water 468 

enriched in 2H2O and H2
18O. The subject’s body water pool is thus enriched in deuterium (2H) 469 

and 18O. The initial increase in body water enrichment from pre-dose values is used to calculate 470 

the size of the body water pool, measured as the dilution space for deuterium (Nd) and 18O (No). 471 

These isotopes are then depleted from the body water pool over time: both isotopes are depleted 472 

via water loss, whereas 18O is also lost via carbon dioxide production. Subtracting the rate (%/d) 473 

of deuterium depletion (kd) from the rate of 18O depletion (ko), and multiplying the size of the 474 

body water pool (derived from Nd and No) provided the rate of carbon doxide production, rCO2. 475 

Entries in the DLW database include the original k and N values for each subject, which were 476 

then used to calculate CO2 using a common equation that has been validated in subjects across 477 

the lifespan (40). The rate of CO2 production, along with each subject’s reported food quotient, 478 

was then used to calculate energy expenditure (MJ/d) using the Weir equation (41).  479 

 The size of the body water pool, determined from Nd and No, was used to establish FFM, 480 

using hydration constants for FFM taken from empirical studies. Other anthropometric variables 481 

(age, height, body mass, sex) were measured using standard protocols. Fat mass was calculated 482 

as body mass – FFM. 483 

2. BEE, AEE, and PAL 484 



 A total of 2,008 subjects in the database had associated BEE, measured via respirometry. 485 

For these subjects, we analyzed BEE, AEE, and PAL. AEE was calculated as (0.9TEE – BEE), 486 

which subtracts BEE and the assumed costs of digestion (0.1TEE) from TEE. The PAL ratio was 487 

calculated as TEE/BEE. As noted above, the BEE dataset was augmented with measurements 488 

from neonates and infants, but these additional measures do not have associated TEE and could 489 

not be used to calculate AEE or PAL. 490 

3. Predictive Models for TEE, BEE, AEE, and PAL 491 

We used general linear models to regress measures of energy expenditure against 492 

anthropometric variables. We used the base package in R version 3.4.4 (43) for all analyses. 493 

General linear models were implemented using the lm function. These models were used to 494 

develop predictive equations for TEE for clinical and research applications, and to determine the 495 

relative contribution of different variables to TEE and its components. Given the marked changes 496 

in metabolic rate over the lifespan (Figure 1, Figure 2) we calculated these models separately for 497 

each life history stage: infants (0 – 1 y), juveniles (1 – 20 y), adults (20 – 60 y), and older adults 498 

(60+ y). These age ranges were identified using segmented regression analysis. Results of these 499 

models are shown in Table S2. 500 

  501 



 502 

Figure S1. TEE increases with body size in a power-law manner. For the entire dataset (n = 6,407): A. the 503 

power-law regression for total body mass (lnTEE = 0.593 ± 0.004 lnMass – 0.214 ± 0.018, p < 0.001, adj. 504 

r2 = 0.73, model std. err. = 0.223, df = 6419) is less predictive than the regression for fat free mass (FFM, 505 

B) (lnTEE = 0.708 ± 0.004 lnFFM – 0.391 ± 0.015, p < 0.001, adj. r2 = 0.83, model std. err. = 0.176, df = 506 

6419). In body mass regressions (power and linear models), adult males cluster above the trend line while 507 

females cluster below due to sex differences in body composition. In contrast, males and females fit the 508 

FFM regression equally well. For both body mass and FFM regressions, power-law regressions outperform 509 

linear models, particularly at the smallest body sizes. For all models, for both body mass and FFM, children 510 

have elevated TEE, clustering above the trend line. Children also exhibit elevated BEE and AEE (Figure 511 

S2). Power-law regressions have an exponent < 1.0, and linear regressions (dashed: linear regression 512 

through all data; dotted: linear regression through adults only) have a positive intercept, indicating that 513 

simple ratios of (TEE/Body Mass) or (TEE/FFM) do not adequately control for differences in body size (20). 514 



 515 

Figure S2. Infants and children exhibit different relationships between FFM and expenditure. PAL. A: For 516 

TEE, regressions for infants (left regression line) and adults (right regression line) intersect for neonates, 517 

at the smallest body size. However, the slopes differ, with the infants’ regression and 95% CI (gray region) 518 

falling outside of that for adults (extrapolated dashed line). Children (middle regression line) are elevated, 519 

with a regression outside the 95% CI of adults. Children’s regressions (with 95%CI) are also elevated for 520 

BEE (B), AEE (C), and PAL (D). Sex differences in expenditure (A-D) are attributable to differences in FFM.  521 



 522 

Figure S3. Changes in body composition over the lifespan: A. Body mass; B. Fat free mass (FFM); C. 523 

Fat Mass; and D. Body fat percentage.    524 



4. Adjusted TEE, Adjusted BEE, and Adjusted BEETEE 525 

We used general linear models with FFM and fat mass in adults (25 – 60 y) to calculate 526 

adjusted TEE and adjusted BEE. We used models 2 and 5 in Table S2, which have the form 527 

ln(Expenditure)~ln(FFM) + ln(Fat Mass) and were implemented using the lm function in base 528 

R version 3.4.4 (R Core Team 2019). We used ln-transformed variables due to the inherent 529 

power-law relationship between body size and both TEE and BEE (ref. 2; see Figure 1, Figure 530 

S1). Predicted values for each subject, given their FFM and fat mass, were calculated from the 531 

model using the pred() function; these ln-transformed values were converted back into MJ as 532 

exp(Predicted). Residuals for each subject were calculated as (Observed – Predicted) 533 

expenditure, and were then used to calculate adjusted expenditures as:  534 

 Adjusted Expenditure = 1 + Residual / Predicted  [1] 535 

The advantage of expressing residuals as a percentage of the predicted value is that it allows us 536 

to compare residuals across the range of age and body size in the dataset. Raw residuals (MJ) do 537 

not permit direct comparison because the relationship between size and expenditure is 538 

heteroscedastic; the magnitude of residuals increases with size (see Figure S1). Ln-transformed 539 

residuals (lnMJ) avoid this problem but are more difficult to interpret. Adjusted expenditures, 540 

used here, provide an easily interpretable measure of deviation from expected values. An 541 

adjusted expenditure value of 100% indicates that a subject’s observed TEE or BEE matches the 542 

value predicted for their FFM and fat mass, based on the general linear model derived for adults. 543 

An adjusted expenditure of 120% indicates an observed TEE or BEE value that exceeds the 544 

predicted value for their FFM and fat mass by 20%. Similarly, an adjusted expenditure of 80% 545 

means the subject’s measured expenditure was 20% lower than predicted for their FFM and fat 546 

mass using the adult model. Adjusted TEE and BEE values for each age-sex cohort are given in 547 



Table S3. Within each metabolic life history stage we used general linear models (lm function in 548 

R) to investigate the effects of sex and age on adjusted TEE and BEE. 549 

This same approach was used to calculate adjusted BEE as a proportion of TEE (Figure 550 

2D), hereafter termed adjusted BEETEE. ResidualBEE-TEE, the deviation of observed BEE from the 551 

adult TEE regression (eq. 2 in Table S2), was calculated as (Observed BEE – Predicted TEE) and 552 

then used to calculate adjusted BEETEE as 553 

 Adjusted BEETEE = 1 + ResidualBEE-TEE / Predicted TEE [2] 554 

When adjusted BEETEE = 80%, observed BEE is equal to 80% of predicted TEE given the 555 

subject’s FFM and fat mass. Adjusted BEETEE is equivalent to adjusted BEE (Figure S4) but 556 

provides some analytical advantages. The derivation of adjusted BEETEE approach applies 557 

identical manipulations to observed TEE and observed BEE and therefore maintains them in 558 

directly comparable units. The ratio of adjusted TEE/adjusted BEE is identical to the PAL ratio 559 

of TEE/BEE, and the difference (0.9adjusted TEE – adjusted BEE) is proportional to AEE 560 

(Figure S4). Plotting adjusted TEE and adjusted BEETEE over the lifespan (Figure 2D) therefore 561 

shows both the relative magnitudes of TEE and BEE and their relationship to one another in 562 

comparable units.   563 



 564 

Figure S4. Left: Adjusted BEETEE corresponds strongly to adjusted BEE. Center: The ratio of adjusted 565 

TEE/adjusted BEETEE is identical to the PAL ratio (TEE/BMR). Right: The difference (0.9adjusted TEE – 566 

adjusted BEETEE) is proportional to AEE. Gray lines: center panel: y = x, right panel: y = 10x. 567 

5. Segmented Regression Analysis 568 

We used segmented regression analysis to determine the change points in the relationship 569 

between adjusted expenditure and age. We used the Segmented (version 1.1-0) package in R 570 

(44). For adjusted TEE, we examined a range of models with 0 to 5 change points, using the 571 

npsi= term in the segmented() function. This approach does not specify the location or 572 

value of change points, only the number of them. Each increase in the number of change points 573 

from 0 to 3 improved the model adj. R2 and standard error considerably. Increasing the number 574 

of change points further to 4 or 5 did not improve the model, and the additional change points 575 

identifed by the segmented() function fell near the change points for the 3-change point 576 

model. We therefore selected the 3-change point model as the best fit for adjusted TEE in this 577 

dataset. Segmented regression results are shown in Table S4. A similar 3-change point 578 

segmented regression approach was conducted for adjusted BEE (Figure S4) and adjusted 579 

BEETEE (Figure 2D). We note that the decline in adjusted BEE and adjusted BEETEE in older 580 

adults begins earlier (as identified by segmented regression analysis) than does the decline in 581 

adjusted TEE among older adults. However, this difference may reflect the relative paucity of 582 



BEE measurements for subjects 40 – 60 y. Additional measurements are needed to determine 583 

whether the decline in BEE does in fact begin earlier than the decline in TEE. Here, we view the 584 

timing as essentially coincident and interpret the change point in adjusted TEE (~60 y), which is 585 

determined with a greater number of measurements, as more accurate and reliable. 586 

 587 

A.  588 

B.  589 

Figure S5. Segmented regression analysis of adjusted TEE (A) and adjusted BEE (B). In both panels, the 590 

black line and gray shaded confidence region depicts the 3 change-point regression. For adjusted TEE, 591 

segmented regressions are also shown for 2 change points (red), 4 change points (yellow), and 5 change 592 

points (green). Segmented regression statistics are given in Table S4.  593 



6. Organ Size and BEE 594 

 Organs differ markedly in their mass-specific metabolic rates at rest (45). The heart (1848 595 

kJ kg-1 d-1), liver (840 kJ kg-1 d-1), brain (1008 kJ kg-1 d-1), and kidneys (1848 kJ kg-1 d-1) have 596 

much greater mass-specific metabolic rates at rest than do muscle (55 kJ kg-1 d-1), other lean 597 

tissue (50 kJ kg-1 d-1), and fat (19 kJ kg-1 d-1). Consequently, the heart, liver, brain, and kidneys 598 

combined account for ~60% of BEE in adults (21,22,46,47). In infants and children, these 599 

metabolically active organs constitute a larger proportion of body mass. The whole body mass-600 

specific BEE (i.e., BEE/body mass, or BEE/FFM) for infants and children is therefore expected 601 

to be greater than adults’ due to the greater proportion of metabolically active organs early in life 602 

(22,46,47). Similarly, reduced organ sizes in elderly subjects may result in declining BEE (21).  603 

 To examine this effect of organ size on BEE in our dataset, we used published references 604 

for organ size to determine the mass of the metabolically active organs (heart, liver, brain, and 605 

kidneys) as a percentage of body mass or FFM for subjects 0 – 12 y (22,46-48), 15 to 60 y 606 

(21,22), and 60 to 100 y (21,49). We used these relationships to estimate the combined mass of 607 

the metabolically active organs (heart, liver, brain, kidneys) for each subject in our dataset. We 608 

then subtracted the mass of the metabolically active organs from measured FFM to calculate the 609 

mass of “other FFM”. These two measures, along with measured fat mass, provided a three-610 

compartment model for each subject: metabolically active organs, other FFM, and fat (Figure 611 

S6A).  612 

 Following previous studies (21-25), we assigned mass-specific metabolic rates to each 613 

compartment and estimated BEE for each subject. We used reported mass-specific metabolic 614 

rates for the heart, liver, brain, and kidneys (see above; 45) and age-related changes in the 615 

proportions of these organs for subjects 0 – 12 y (22,48), 15 to 60 y (21-25), and 60 to 100 y (22-616 



25,49) to calculate an age-based weighted mass-specific metabolic rate for the metabolically 617 

active organ compartment. We averaged the mass-specific metabolic rates of resting muscle and 618 

other lean tissue (see above; 21,22) and assigned a value of 52.5 kJ kg-1 d-1 to “other FFM”, and 619 

we used a mass-specific metabolic rate of 19 kJ kg-1 d-1 for fat.  620 

 Results are shown in Figure S6. Due to the greater proportion of metabolically active 621 

organs in early life, the estimated BEE from the three-compartment model follows a power-law 622 

relationship with FFM (using age cohort means, BEE= 0.38 FFM0.75; Figure S6B) that is similar 623 

to that calculated from observed BEE in our dataset (see Table S2 and Modeling the Effects of 624 

PA and Cellular Metabolism, below). Estimated BEE from the three-compartment model 625 

produced mass-specific metabolic rates that are considerably higher for infants and children than 626 

for adults and roughly consistent with observed age-related changes in BEE/FFM (Figure S6C). 627 

Thus, changes in organ size can account for much of the variation in BEE across the lifespan 628 

observed in our dataset. 629 

 Nonetheless, observed BEE was ~30% greater early in life, and ~20% lower in older 630 

adults, than estimated BEE from the three-compartment model (Figure S6D). The departures 631 

from estimated BEE suggest that the mass-specific metabolic rates of one or more organ 632 

compartments are considerably higher early in life, and lower late in life, than they are in middle-633 

aged adults, consistent with previous assessments (21-25). It is notable, in this context, that 634 

observed BEE for neonates is nearly identical to BEE estimated from the three-comparment 635 

model, which assumes adult-like tissue metabolic rates (Figure S6B,C,D). Observed BEE for 636 

neonates is thus consistent with the hypothesis that the mass-specific metabolic rates of their 637 

organs are similar to those of other adults, specifically the mother. 638 



 639 

Figure S6. Organ sizes and BEE. A. The relative proportions of metabolically active organs (heart, brain, 640 

liver, kidneys), other FFM, and fat changes over the life course. Age cohort means are shown. B. 641 

Consequently, estimated BEE from the three-compartment model increases with FFM in a manner similar 642 

to observed BEE, with C. greater whole body mass-specific BEE early in life. D. Observed BEE is ~30% 643 

greater early in life, and ~20% lower after age 60 y, than estimated BEE from the three-compartment model. 644 

In panels B, C, and D, age-cohort means for observed BEE (black) and estimated BEE (magenta) are 645 

shown.   646 



7. Modeling the Effects of PA and Cellular Metabolism 647 

We constructed two simple models to examine the contributions of PA and variation in 648 

cellular metabolic rate to TEE, BEE and AEE. In the simplest version, we used the observed 649 

relationship between BEE and FFM for all adults 20 – 60 y determined from linear regression of 650 

lnBEE and lnFFM (untransformed regression equation: BEE = 0.32 FFM0.75, adj. r2 = 0.60, df = 651 

1684, p < 0.0001) to model BEE as  652 

BEE = 0.32 CMage FFM0.75     [3] 653 

The CMage term is cellular metabolic rate, a multiplier between 0 and 2 reflecting a relative 654 

increase (CMage > 1.0) or decrease (CMage < 1.0) in cellular activity relative that expected from 655 

the power-law regression for adults. Note that, even when CMage = 1.0, smaller individuals are 656 

expected to exhibit greater mass-specific BEE (that is, a greater BEE kg-1) due to the power-law 657 

relationship between BEE and FFM. Further, we note that the power-law relationship between 658 

BEE and FFM for adults is similar to that produced when estimating BEE from organ sizes (see 659 

Organ Size and BEE, above). Thus, variation in CMage reflects modeled changes in cellular 660 

metabolic rate in addition to power-law scaling effects, and also, in effect, in addition to changes 661 

in BEE due to age-related changes in organ size. To model variation in cellular activity over the 662 

lifespan, we either 1) maintained CMage at adult levels (CMage = 1.0) over the entire lifespan, or 663 

2) had CMage follow the trajectory of adjusted BEE with age (Figure S8).  664 

 To incorporate effects of fat mass into the model, we constructed a second version of the 665 

model in which BEE was modeled following the observed relationship with FFM and fat mass 666 

for adults 20 – 60 y,  667 

BEE = 0.32 CMage FFM0.7544 FatMass0.0003   [4] 668 



As with the FFM model, we either maintained CMage at 1.0 over the life span or modeled it using 669 

the trajectory of adjusted BEE. 670 

 AEE was modeled as a function of PA and body mass assuming larger indivduals expend 671 

more energy during activity. The observed ratio of AEE/FFM for adults 20 – 60 y was 0.07 MJ 672 

d-1 kg-1. We therefore modeled AEE as 673 

AEE = 0.07 PAage FFM     [5]  674 

To incorporate effects of fat mass, we constructed a second version using the ratio of 675 

AEE/(FFM+FatMass) for adults 20 – 60y,   676 

AEE = 0.04 PAage (FFM + Fat Mass)    [6]  677 

In both equations, PAage represents the level of physical activity relative to the mean value for 20 678 

– 60 y adults. PAage could either remain constant at adult levels (PAage=1.0) over the lifespan or 679 

follow the trajectory of PA measured via accelerometry, which peaks between 5 – 10 y, declines 680 

rapidly through adolescence, and then declines more slowly beginning at ~40 y (15-17,26,27, 50-681 

52). Different measures of PA (e.g., moderate and vigorous PA, mean counts per min., total 682 

accelerometry counts) exhibit somewhat different trajectories over the lifespan, but the patterns 683 

are strongly correlated; all measures show the greatest activity at 5-10 y and declining activity in 684 

older adults (Figure S7). We chose total accelerometry counts (15,27), which sum all movement 685 

per 24-hour period, to model age-related changes in PAage.  686 

 687 



A.          B.  688 

Figure S7. Modeling PA across the lifespan. A. Across studies and countries, accelerometer-measured PA 689 

rises through infancy and early childhood, peaking between 5 and 10y before declining to adult levels in 690 

the teenage years (15-17,26,27, 50-54). PA declines again, more slowly, in older adults. The onset of 691 

decline in older adults varies somewhat across studies, beginning between ~40 y and ~60 y. Here, PA is 692 

shown as minutes/day of moderate and vigorous PA. Other measures of PA (e.g., total accelerometer 693 

counts; mean counts/min, vector magnitude) follow a similar pattern of PA over the life span (15, 27). B. 694 

The increase in PA from 0 to ~10 y is mirrored by the steady decline in total daily sleep duration during this 695 

period (55-58).  696 
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 697 

Figure S8. Results of the FFM model. Observed expenditures exhibit a marked age effect on the 698 

relationship between expenditure and FFM that is evident in both absolute (Figure 1C) and adjusted (Figure 699 

2D) measures. A. If physical activity (PA) and cellular metabolism (CM) remain constant at adult levels, age 700 

effects do not emerge from the model. B. When only CM varies, age effects emerge for TEE and BEE, but 701 

not AEE (gray arrow). C. Conversely, if only PA varies age emerge for AEE and TEE but not BEE (black 702 

arrows). Adjusted TEE also peaks later in childhood and declines earlier in adulthood (red arrows) than 703 

observed. D. Varying both PA and CM gives model outputs similar to observed expenditures.  704 

0

25

50

75

100

125

150

175

200

0 20 40 60 80 100

0

2

4

6

8

10

12

0 10 20 30 40 50

-1.00

-0.50

0.00

0.50

1.00

1.50

2.00

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

0 20 40 60 80 100

-1.00

-0.50

0.00

0.50

1.00

1.50

2.00

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

0 20 40 60 80 100

-1.00

-0.50

0.00

0.50

1.00

1.50

2.00

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

0 20 40 60 80 100

-1.00

-0.50

0.00

0.50

1.00

1.50

2.00

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

0 20 40 60 80 100

OBSERVED

EXPENDITURES

E
N

E
R

G
Y

E
X

P
E

N
D

. 
(M

J/
d
)

A
D

JU
S

T
E

D
 (

%
A

D
U

L
T

 T
E

E
)

FAT FREE MASS (kg) AGE (y)

AGE (y)                        FAT FREE MASS (kg)                          AGE (y)

Physical Activity (PA)

Cell Metabolism (CM)

Adult

60+

0

2

4

6

8

10

12

0 10 20 30 40 50
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

0 20 40 60 80 100

0

2

4

6

8

10

12

0 10 20 30 40 50

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

0 20 40 60 80 100

0

2

4

6

8

10

12

0 10 20 30 40 50

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

0 20 40 60 80 100

0

2

4

6

8

10

12

0 10 20 30 40 50

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

0 20 40 60 80 100

FAT FREE MASS MODEL (Eq. 3 & 5)

SCENARIO                                        MODEL INPUT                                                MODEL OUTPUT

A. Constant PA & CM

B. Change in CM only

C. Change in PA only

D. Change in PA & CM

TEE

BEE

AEE

Adj TEE

Adj BEETEE

TEE

BEE

AEE

Adj TEE

Adj BEETEE



 705 

Figure S9. Results of the FFM and Fat Mass model. Model outputs are similar to those of the FFM model 706 

(Figure 7). The scenario that best matches the observed relationships between FFM, age, and expenditure 707 

is E, in which AEE is influenced by age-related variation in both PA and cellular metabolism.  708 
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Table S4. Segmented Regression Analyses 712 

adjTEE Segments   Break Points  

 beta SE CI_lower CI_upper Estimate CI_lower CI_upper 

 84.70 7.15 70.69 98.71 0.69 0.61 0.76 

 -2.77 0.07 -2.91 -2.63 20.46 19.77 21.15 

 -0.02 0.02 -0.07 0.03 62.99 60.13 65.85 

 -0.68 0.06 -0.79 -0.57    

        

adjBEE Segments   Break Points  

 beta SE CI_lower CI_upper Estimate CI_lower CI_upper 

 75.51 5.59 64.55 86.46 1.04 0.94 1.14 

 -3.75 0.22 -4.17 -3.33 18.00 16.82 19.18 

 0.02 0.05 -0.07 0.12 46.46 40.57 52.35 

 -0.45 0.04 -0.53 -0.37    
 713 
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