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Introduction: While many aspects of female ovarian function respond to environmental 

stressors, estradiol (E2) appears less sensitive to stressors than progesterone, except under 

extreme ecological conditions. However, earlier studies relied on saliva samples, considered less 

accurate than blood. Here, we investigated E2 variation among 177 Bangladeshi and UK white 

women, aged 35-59, using single serum samples. Bangladeshi women either grew up in Sylhet, 

Bangladesh (exposed to poor sanitation, limited health care, and higher pathogen loads but not 

poor energy availability), or in the UK. 

Methods: We collected samples on days 4-6 of the menstrual cycle in menstruating women and 

any time for post-menopausal women. Participants included: i) Bangladeshi sedentees (n=36), ii) 

Bangladeshis who migrated to the UK as adults (n=52), iii) Bangladeshis who migrated as 

children (n=40), and iv) UK white women matched for neighborhood residence to the migrants 

(n=49). Serum was obtained by venipuncture and analyzed using electrochemiluminescence. We 

collected anthropometrics and supplementary sociodemographic and reproductive data through 

questionnaires. We analyzed the data using multivariate regression.  

Results: E2 levels did not differ between migrant groups after controlling for age, BMI, physical 

activity, psychosocial stress, parity, and time since last birth (parous women). Paralleling results 

from salivary E2, serum E2 did not differ among women who experienced varying 

developmental conditions.  

Conclusion: Our results reinforce the hypothesis that E2 levels are stable under challenging 

environmental conditions. Interpopulation variation may only arise under chronic conditions of 

extreme nutritional scarcity, energy expenditure, and/or high disease burdens. 
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1. Introduction  

 Reproductive ecologists have long shown that aspects of female reproductive function 

respond to environmental stressors, such as energy availability, physical activity, and immune 

challenges. The responsiveness of the female endocrine system to these environmental stressors 

likely facilitates adjustments in female ovarian function to optimize the probability of a 

successful reproductive event (Ellison, 1990). While hormonal fluctuations are influenced by 

acute conditions, the environment during development likely primes an individual’s baseline 

hormone levels in response to overall energy availability (Ellison, 1996). Developmental 

changes that influence reproductive set points, combined with the sensitivity of reproductive 

hormones to changes in environmental conditions, help to optimize the timing and frequency of 

reproduction to maximize fitness in an individual’s specific ecological setting. Evidence in 

support of this strategy has been provided by progesterone’s (P4) sensitivity to changes in 

environmental stressors as well as its variation across different ecologies (Baird et al., 1999; 

Bentley et al., 1998; Clancy et al., 2013; Ellison et al., 1993; Jasienska & Ellison, 2004; 

Jasienska & Jasienski, 2008; Núñez-de la Mora et al., 2007; Panter-Brick & Ellison, 1994; 

Vitzthum et al., 2002; Ziomkiewicz et al., 2008, 2008). As estradiol (E2), like P4, is critical for 

fecundity and fertility, we would expect it to follow a similar pattern of sensitivity to 

environmental change.  

E2 does respond to acute stressors and varies as expected in harsh ecological conditions, 

such as those characterized by extreme nutritional scarcity and high disease burden. For 

example, E2 levels vary across menstrual cycles (Chatterton et al., 2005; Jasienska & Jasienski, 

2008) and are associated with measures of acute conditions such as physical activity, body 

composition, and dietary composition (Emaus et al., 2008; Ennour-Idrissi et al., 2015; Williams 

et al., 2010; Wu et al., 1999; Ziomkiewicz et al., 2008). With regard to harsh ecological 

conditions, researchers have found that Lese women had lower salivary E2 levels than Boston 

women (Bentley et al., 1998). Bolivian Aymara women also had significantly lower salivary E2 

levels than Chicago women in non-conception, but not conception, cycles (Bentley et al., 2000). 

Developmental conditions also contribute to variation in adult E2 levels. A study in Polish 

women found that greater fatness at birth predicted reduced sensitivity to the potentially stressful 

effects of physical activity on E2 hormone levels in adulthood (Jasienska et al., 2006). 

Despite this demonstrated variation, E2 appears to be less sensitive to ecological 

conditions than P4. For example, while we previously found differences in salivary P4 levels 

between Bangladeshi sedentees, immigrants from Bangladesh to the UK, second generation 

British-Bangladeshis, and UK white women (Núñez-de la Mora, et al., 2007), we observed no 

significant differences in salivary E2 levels by migrant status in this same sample (Núñez-de la 

Mora et al., 2008). Additionally, a similar migrant study comparing serum E2 levels among 

Pakistani women in Pakistan, adult Pakistani migrants to the UK, Pakistani women born in the 

UK, and UK white women also found no significant differences in E2 across these groups 

(Pollard et al., 2009). While E2 variation among post-reproductive women is not as well-studied, 

serum E2 levels do not appear to vary by population or ethnicity among women during the peri- 



or postmenopause (Golden et al., 2007; McTiernan et al., 2008; Randolph et al., 2003; although 

see Setiawan et al., 2006).  

Some large epidemiological studies have found variation in E2 levels among groups that 

do not experience extreme differences in ecological conditions, such as between ethnicities 

within regions (Ausmanas et al., 2007; Randolph et al., 2004). However, these studies did not 

control for key biocultural or demographic variables that may have confounded their results, 

such as parity, physical activity, psychosocial stress, age at last birth, and/or migrant 

status/country of birth. 

This body of research suggests that reproductive hormones are not equally sensitive to 

environmental stressors, and Núñez-de la Mora et al. (2008) have argued that variation in E2 

levels may be observed only in the most challenging environments. Less extreme conditions, 

such as those of Bangladeshi sedentees and migrants to the UK who did not suffer food 

insecurity or seasonal variation in food intake, high workloads, or extremely pathogenic 

environments, may not significantly influence E2 variation, even though their living standards 

differed from UK white women and their pathogen exposure in Bangladesh was also higher 

(Núñez-de la Mora et al., 2008). Therefore, Núñez-de la Mora et al. (2008) suggested that E2 

variation across populations may only arise under conditions of extreme nutritional scarcity, 

energy expenditure and/or high levels of immune insults.  

Studies of E2 variation have largely used salivary hormone measurements to reach these 

conclusions. However, some researchers have questioned if early salivary assays were 

sufficiently sensitive for this work. These criticisms were due, in part, to the potential for 

contamination from blood (Kivlighan et al., 2005; Vining & McGinley, 1987) and the 

uncertainty surrounding the validity of early assays to analyze E2 (Sufi et al., 1985). Doubt also 

still exists concerning the rapid fluctuations of E2 concentrations in saliva and the analytical 

validity of E2 salivary assays (Read, 2009; Wood, 2009), despite the existence of commercial 

enzyme immunoassay kits from various companies (e.g., Creative Diagnostics, IBL 

International, Salimetrics, and others), high correlations between salivary and serum assay 

profiles (Fiers et al., 2017), conformation to expected profiles (Celec et al., 2009; Chearskul & 

Visutakul, 1994; Gann et al., 2001; Lipson & Ellison, 1996), and early favorable prognoses for 

E2 assays from the Tenovus group in Wales that pioneered the use of salivary steroids (Riad-

Fahmy et al., 1982, 1983). As such, while most studies examining population variation have used 

saliva samples, results using blood samples remain the gold standard.  

Therefore, we investigated the hypothesis that E2 levels are relatively insensitive to 

environmental conditions using serum samples, the gold standard. We replicated the study design 

of Núñez-de la Mora et al. (2008) with a sample of women from the same population but with an 

older age range. To achieve our aim of characterizing the sensitivity of E2 in relation to 

developmental conditions, we analyzed serum E2 levels among Bangladeshi women who 

differed in migrant status and compared them to the E2 levels of UK white women. Previous 

studies working with this population have collected data on pathogen and cyclone exposure 

during childhood as well as other aspects of the environment that highlight the differences in 



developmental conditions between women growing up in Bangladesh and those in the UK that 

could influence hormonal set points (Begum et al., 2016; Murphy et al., 2013). Despite these 

differences in developmental conditions, we predicted that serum E2 would not differ 

significantly by migration status after controlling for aspects of acute conditions that influence 

E2, such as BMI and physical activity. Our results have implications for understanding the 

sensitivity of the female endocrine system to environmental conditions during development and 

throughout the lifespan. 

 

2. Methods 

The total sample size included 186 women aged 35-59. Since only 7 individuals were 

second generation immigrants to the UK, we excluded those women from the analyses. We also 

excluded one woman who did not report her menopausal status and another with an E2 level > 

750 pg/mL, which fell within the sensitivity range of the assay but was > 2SD from the mean, 

leaving a final sample size of 177 (128 premenopausal women, 49 postmenopausal women). The 

full sample also contained four groups that differed by migration status: i) Bangladeshi sedentees 

(n = 36), ii) adult migrants to the UK (those who experienced menarche prior to migration; n = 

52), iii) child migrants to the UK (those who migrated before menarche; n = 40), and iv) UK 

white women (n = 49). Due to the small sample size of postmenopausal women in the child 

migrant category (n=1), we limited the migrant status variable to three levels for the main 

analyses: i) Bangladeshi sedentees, ii) adult migrants to the UK, and iii) UK white women (i.e., 

child migrants were only included in the supplementary analyses). The women represent a 

subsample of a larger study that investigated reproductive aging at midlife and were those who 

were willing to volunteer for venipuncture (Begum et al., 2016; Dhanoya et al., 2016; Murphy et 

al., 2013; Sharmeen et al., 2013; Sievert et al., 2008, 2016).  

Methods for the larger study are described elsewhere (Begum et al., 2016; Murphy et al., 

2013). Briefly, we recruited participants through influential community members (Bangladesh), 

community centers (London), personal contacts, and snowball techniques. Among the UK white 

women, we recruited participants through advertisements in local newspapers and websites. 

Eligible women were those aged between 35 and 59 who had not used any exogenous hormones 

in the past three months, were not pregnant or lactating, had not undergone hysterectomy or 

oophorectomy, had not suffered from polycystic ovarian syndrome, and had not been diagnosed 

with an endocrine disorder, such as diabetes or a thyroid condition. These exclusion criteria were 

applied to remove potential confounding effects on hormone levels. 

Participants completed a structured questionnaire to collect demographic details and 

information on reproductive, migration, educational, lifestyle, and employment histories. The 

questionnaires were first translated into Bengali by native speakers and then back-translated into 

English to check for inaccuracies. Both versions were piloted prior to use. Trained researchers 

administered the questionnaire in person, and women could choose to respond in either Bengali 

or English. 



Fourteen percent of Bangladeshi women did not know their exact birth dates because 

they were born at home before birth records were routinely collected in Bangladesh (50% of 

Bangladesh sedentees, 2% of the adult migrants, none of the child migrants). To help with age 

estimations, we constructed an event calendar including memorable events in Bangladesh, such 

as the War of Independence, Victory Day, and major national disasters, such as cyclones. To 

assist with recall of the last menstrual period for older women, we asked them to remember the 

season of the year and any important events that had occurred at that time. Similar event history 

calendars are commonly used in survey methodologies to help with reconstructing past events 

(Belli et al., 2008). 

In addition to the questionnaire, we also collected anthropometric data and single serum 

samples. We measured height and weight using standardized techniques (Lohman et al., 1988). 

We calculated the body mass index (BMI) as kg/m2. For the serum samples, we collected 5 mL 

of blood by venipuncture between days 4 and 6 of the menstrual cycle for pre/perimenopausal 

women and at any time for the post-menopausal women. We analyzed the serum samples for E2 

(pg/mL) using an electrochemiluminescence immunoassay kit by Roche Molecular, 

Biochemicals, Mannheim, Germany according to manufacturer instructions. The measuring 

range of the assay was between 5 and 4,300 pg/mL, and the mean intra and inter assay CV was 

≤10%. 

We used R (3.4.1) for statistical analyses of the data. We log-transformed serum E2 

levels to normalize the distribution of data, and we used multivariate regression to predict serum 

E2 levels while controlling for potential confounders. We determined menopausal status using 

the World Health Organization guidelines (WHO 1996). Using this system, we classified women 

as premenopausal if they had menstruated in the previous 2 months, perimenopausal if they last 

menstruated between 3 to 12 months ago, and postmenopausal if they had not menstruated in the 

past 12 months. However, since only 10 women were considered perimenopausal, we included 

these in the premenopausal sample for most analyses, unless otherwise stated.  

We created five models investigating variation in E2 by migration status followed by 

robusticity analyses. In exploratory data analysis, we found that E2 levels differed significantly 

between parous and nulliparous women (t = 27.634, p-value < 0.001, 95% CI = 2.42-2.79). 

Therefore, for each model, we also ran a second analysis including only parous women to ensure 

that no important differences in the physiology of nulliparous and parous women influenced our 

results. In Model 1 we analyzed E2 levels among all women with menopausal status categorized 

as three levels (pre-, peri- and postmenopausal). In Model 2, we again included all women but 

categorized menopausal status as binary (pre/perimenopausal and postmenopausal). Model 3 

included all women but did not account for menopausal status. Model 4 included only 

premenopausal women, and Model 5 involved only postmenopausal women.  

For each model, we controlled for variables known to affect levels of reproductive 

steroids from earlier studies, namely age, BMI, parity, frequency of exercise per week (e.g., at a 

gym), walking more than 20 minutes a day, time spent cleaning (as a measure of physical 

activity), and self-rated psychosocial stress. To investigate if the menopausal transition differed 



between women who varied in their migrant status, we included an interaction term between 

menopausal status and migrant status in Models 1 and 2. However, these models did not include 

age because it was highly correlated with menopausal status. Exploratory data analysis suggested 

that age differed between women from different migrant groups (see Appendix). Statistical 

analysis confirmed this difference was statistically significant, so we also used an interaction 

term between migrant status and age in Model 3 to ensure that sampling issues did not confound 

the results. Additionally, models including only parous women contained the additional covariate 

of time since last birth (years), which could not be controlled for in models including nulliparous 

women. Following the main analyses, we investigated the robusticity of these models by 

including child migrants (see Appendix). All models in the supplemental analyses contained the 

same predictors as Models 1-5.  

We received ethical permission for the study from the University College London Ethics 

Committee, UK; the Ethics Committee for the Department of Anthropology, Durham University, 

UK; the University of Massachusetts Amherst Internal Review Board, USA; and the Ethics 

Board, Sylhet MAG Osmani Medical College, Bangladesh. 

 

3. Results 

Descriptive statistics for the full sample, by menopausal status, and migrant group are 

presented in Table 1. Across the migrant groups, women differed significantly for all covariates 

(p < 0.05). Figure 1 compares serum E2 levels across the reproductive lifespan for the four 

migration groups. Our models are summarized in Table 2.  

 

TABLE 1, TABLE 2, & FIGURE 1 ABOUT HERE 

 

3.1 Menopausal Transition Analyses  

First, we investigated if serum E2 levels differed across the menopausal transition by 

migration status (Table 2). In Model 1a (n = 120, adjusted r2 = 0.21, p < 0.001, F = 3.23), we 

found that postmenopausal women had lower E2 levels than premenopausal women (B = -1.22, 

SE = 0.33, p < 0.001). We also found that Bangladeshi sedentees had higher E2 levels than UK 

white women (B = 0.83, SE = 0.32, p = 0.009). In Model 1b (n = 96, adjusted r2 = 0.31, p < 

0.001, F = 3.9), when limiting the sample to parous women only, we found that postmenopausal 

women had significantly lower E2 levels than premenopausal women (B = -1.28, SE = 0.46, p = 

0.007).  

We next reran the menopausal transition analyses classifying menopausal status as a 

binary variable (premenopausal or postmenopausal) (Table 2). In Model 2a (n =120, adjusted r2 

= 0.22, p < 0.001, F = 4.11), we found that postmenopausal status was a significant negative 

predictor of E2 concentrations (B = -1.24, SE = 0.32, p < 0.001). We also found that Bangladeshi 

sedentees showed higher E2 levels than UK white women (B = 0.78, SE = 0.30, p = 0.01).  We 

then limited the analysis to parous women in Model 2b (n = 96, adjusted r2 = 0.34, p < 0.001, F = 

5.03). In this model, postmenopausal status predicted lower E2 levels (B = -1.28, SE = 0.43, p = 



0.004) and Bangladeshi sedentees had significantly higher E2 levels than UK white women (B = 

0.58, SE = 0.29, p = 0.05).  

Model 3a accounted for age but not menopausal status in the interaction term with 

migrant status (n = 120, adjusted r2 = 0.25, p < 0.001, F = 4.57). Age was the only significant 

predictor in this model (B = -0.09, SE = 0.02, p < 0.001). Model 3b, which included parous 

women only, produced similar results (n = 96, adjusted r2 = 0.30, p < 0.001, F = 4.42) with age 

being the only significant predictor (B = -0.09, SE = 0.03, p = 0.006).  

 

3.2 Premenopausal analysis 

In the second set of analyses, we analyzed E2 levels among premenopausal women by 

migrant group (Table 2). Model 4a was not statistically significant (n = 80, adjusted r-squared = 

0.09, model p = 0.07, F = 1.89). We then investigated if the results differed when the sample was 

limited to parous women (Model 4b). This model was also not statistically significant (n = 60, 

adjusted r2= 0.09, model p = 0.15, F = 1.56). We tested the robusticity of these models by 

running a supplemental model including the child migrants, which was also not statistically 

significant (see Appendix). 

 

3.3 Postmenopausal Analyses 

In our final set of analyses, we investigated E2 differences among postmenopausal 

women by migrant group (Table 2). In Model 5a (n = 40, adjusted r2= 0.26, p = 0.03, F = 2.55), 

we found no differences by migration status. The only statistically significant predictor was age, 

which negatively predicted E2 levels (B = -0.07, SE = 0.03, p = 0.02). In Model 5b, we limited 

the sample to parous women. This model was not statistically significant (n = 35, adjusted r2 = 

0.20, model p = 0.11, F = 1.84). To test the robusticity of this analysis, we also investigated if 

results remained the same when we included the child migrants. In this model, age was the only 

significant predictor, and it negatively predicted E2 levels (see Appendix).  

  

 

TABLE 2 HERE 

 

4. Discussion  

The results support our hypothesis that E2 levels are relatively insensitive to 

environmental conditions. We found no significant differences between women who varied in 

their migrant status when limiting the samples to postmenopausal women only. Models 1a, 2a, 

and 2b, which included all women regardless of their menopausal status, indicated that 

Bangladeshi sedentees had higher E2 levels than UK white women, a result opposite to what we 

would have predicted based on differences in immune challenges. These significant differences 

in E2 levels between Bangladeshi sedentees and UK white women disappeared, however, when 

we accounted for age differences in the samples in Model 3. This suggests that the findings in 

Models 1a, 2a and 2b represent a statistical artefact due to age differentials between group 

samples. Therefore, when accounting for the differences in age among sample groups, we found 



that Bangladeshi sedentees, Bangladeshi immigrants to the UK, and UK white women do not 

show significant differences in serum E2 levels. 

The findings replicate our previous study of salivary E2 variation using a similar but 

younger sample (18-35) (Núñez-de la Mora et al., 2008). It also mirrors similar findings among 

British-Pakistani migrants (Pollard et al., 2009) and supports the notion that E2 levels are stable 

across moderately challenging environments during development and later adult life. At present, 

however, we lack comparative migrant studies of early life development under more extreme 

ecological settings than those experienced by the middle-class Bangladeshis who form our 

sample. Such a population would allow us to explore further whether E2 would differ between 

groups in such circumstances. 

 The conserved nature of E2 may be a result of its critical role in fecundity, specifically 

for conception, or a function of the physiology of the menstrual cycle, although these 

explanations are not mutually exclusive. Even though both P4 and E2 influence fecundity, 

population variation in E2 is not evident in conception cycles while differences in P4 persist 

(Bentley et al., 2000; Lipson and Ellison, 1996; Vitzthum et al., 2004). P4 has a greater role in 

the maintenance of pregnancy – low P4 levels are associated with greater odds of miscarriage 

(Arck et al., 2008). Additionally, the quality and selection of ovarian follicles relies on a long 

process of development spanning almost a calendar year during which the granulosa cells 

surrounding antral follicles that produce E2 are steadily maturing and contribute to the ovarian 

steroidogenic milieu. In contrast, the corpus luteum that produces P4 is specific to one cycle and 

it may be possible to modify its function more quickly in response to environmental signals 

(Hannon & Curry, 2018).    

E2 variation may also be more conserved because of its critical role in other functions 

beyond reproduction. For example, estrogens are necessary for bone growth and maintenance, 

brain function, skin physiology, cardiovascular health, and the immune system (Cutler, 1997; 

Hall & Phillips, 2005; Khosla et al., 2012; Klein & Flanagan, 2016; Mcewen, 2002; Moulton, 

2018; Murphy & Kelly, 2011; Robinson et al., 2014; Shu & Maibach, 2011). While P4 also has 

many functions in the body, the widespread physiological effects of E2 may constrain its 

variability in response to changes in environmental conditions. 

Despite many studies showing similar E2 levels among populations from different 

countries or immigrant groups, some previous literature suggests E2 may differ by ethnicity 

(Ausmanas et al., 2007; Randolph et al., 2004). However, because many medical studies of 

hormonal differences by ethnicity assume these differences are due to genetic variation, they 

often fail to collect relevant biocultural and demographic variables that may explain their results. 

For example, serum E2 levels significantly differed among 9 ethnic groups in the Pan-Asia 

Menopause study (Ausmanas et al., 2007). However, they only controlled for age and BMI in 

their analyses and did not include other important covariates in their models that were 

significantly different between groups in this study, such as parity. They also failed to collect 

data on other relevant covariates, such as physical activity, psychosocial stress, diet, and age at 

last birth. In the US, a study using data from the Study of Women’s Health Across the Nation 



found that E2 levels were similar among white, African American, and Hispanic women but 

were significantly lower among Japanese and Chinese women (Randolph et al., 2004). However, 

the effect sizes were small, and they did not control for the many of the same relevant covariates 

discussed above (parity, physical activity, psychosocial stress, age at last birth, and more 

comprehensive measures of diet composition beyond dietary estrogens).  

Most research among postmenopausal women or those experiencing the menopausal 

transition suggests that E2 levels do not differ by ethnicity (Golden et al., 2007; McTiernan et al., 

2008; Randolph et al., 2003), although the Multiethnic Cohort Study found that Native 

Hawaiians, Japanese Americans, and African Americans had significantly higher plasma E2 

levels than white women (Setiawan et al., 2006). However, they only observed a difference of 

2.7 pg/mL between the most extreme groups. Considering the range of expected E2 levels in the 

US among menstruating women is 15 to 350 pg/mL (Mayo Clinic Laboratories), it is not likely 

that a difference of 2.7 pg/mL is biologically meaningful. These examples highlight the need to 

examine results of large epidemiological studies critically to ensure that important biocultural 

variables are controlled for and that small differences between groups are interpreted with an 

understanding of the underlying biology.  

The limitations of our study highlight areas for future research on this subject. While our 

study has a relatively large sample size and our findings advance previous work by using serum 

samples, we only collected a single serum sample from each woman. As female reproductive 

hormones may exhibit large fluctuations between cycles (Chatterton et al., 2005; Jasienska & 

Jasienski, 2008), future work should collect serum samples from multiple menstrual cycles to 

account for changes in hormone concentrations between cycles and in aspects of the acute 

environment that may influence E2 levels.  

In addition, the Bangladeshi sedentees in this study are from Sylhet, a relatively wealthy 

area of Bangladesh, and Bangladeshi migrants are not necessarily representative of the larger 

population, since only those with relatively greater financial resources could afford to emigrate 

to the UK. More research is needed with migrant groups in this population to verify whether the 

difference in E2 levels between Bangladeshi sedentees and UK white women in some of our 

models was due to sampling issues. In summary, future work should build upon previous studies 

of E2 variation by investigating levels in a range of ecological conditions to better characterize 

the degree and type of environmental stressors that most strongly contribute to variation in this 

hormone and more thoroughly disentangle the effects of acute and developmental conditions on 

E2 levels across different ecologies.  

 

5. Conclusion  

In this study, we investigated E2 levels among women who varied in their developmental 

and current environmental conditions due to migration to the UK. Using serum samples, we 

found no differences in E2 levels among Bangladeshi women living in Bangladesh, Bangladeshi 

immigrants to the UK, and UK white women after adjusting for age and some aspects of the 

current environment that may influence E2 levels. These results suggest that E2 set points may 



be relatively insensitive to variation in environmental conditions during development. In 

conclusion, our findings provide support for the hypothesis that E2 levels are more robust under 

challenging environmental conditions than progesterone, with variation across populations likely 

only occurring under long-term, extreme environmental conditions.  
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Table 1: Descriptive statistics for the full sample, by menopausal status, and by group. Mean 

(standard deviation). (*) indicates a statistically significant difference among the groups (p < 

0.05). For the comparisons between migrant groups, UK white women were used as the 

reference group.  

Table 2: Models predicting E2. Predictors followed by a (*) indicate statistically significant 

values. Refer to text for the B, SE, and p-value.  

Model 

Number 

Sample (n) Predictors Adjusted R2 P-value F Statistic 

1a Full sample:  

pre/peri/post 

(120) 

Menopausal status 

by migration status 

interaction, parity, 

frequency of 

exercise per week, 

walking more than 

20 minutes per day, 

time spent cleaning 

per week, self-rated 

stress, menopausal 

status*, and 

migration status* 

0.21 <0.001  3.23 

1b Parous full 

sample:  

pre/peri/post 

(96) 

Menopausal status 

and migration status 

interaction, parity, 

frequency of 

exercise per week, 

walking more than 

20 minutes per day, 

time spent cleaning 

per week, self-rated 

stress, time since last 

birth, menopausal 

status*, and 

migration status  

0.31 <0.001  3.9 



2a Full sample: 

pre /post (120) 

Menopausal status 

and migration status 

interaction, parity, 

frequency of 

exercise per week, 

walking more than 

20 minutes per day, 

time spent cleaning 

per week, self-rated 

stress, menopausal 

status*, and 

migration status*  

0.22 <0.001  4.11 

2b Full parous 

sample: pre / 

post (96) 

Migration status and 

menopausal status 

interaction, parity, 

frequency of 

exercise per week, 

walking more than 

20 minutes per day, 

time spent cleaning 

per week, self-rated 

stress, time since last 

birth, menopausal 

status*, and 

migration status*  

0.34 <0.001  5.03 

3a Full sample: 

(120) 

Menopausal status 

and age interaction, 

parity, frequency of 

exercise per week, 

walking more than 

20 minutes per day, 

time spent cleaning 

per week, self-rated 

stress, age*, and 

migration status  

0.25 <0.001 4.57 



3b  Full sample: 

parous 

Migration status and 

age interaction, 

parity, frequency of 

exercise per week, 

walking more than 

20 minutes per day, 

time spent cleaning 

per week, self-rated 

stress, time since last 

birth, age*, and 

migration status 

0.30 <0.001 4.42 

4a Premenopausal 

(80) 

Migration status, 

age, BMI, parity, 

frequency of 

exercise per week, 

walking more than 

20 minutes per day, 

time spent cleaning 

per week, and self-

rated stress* 

0.09 0.07  1.89 

4b Parous 

premenopausal 

(60) 

Migration status*, 

age, BMI, frequency 

of exercise per 

week, walking more 

than 20 minutes per 

day, time spent 

cleaning per week, 

self-rated stress*, 

and time since last 

birth 

0.09 0.15  1.56 

5a Postmenopausa

l (40) 

Migration status, 

BMI, frequency of 

exercise per week, 

time spent cleaning, 

walk 20 minutes per 

week, self-rated 

0.26 0.03 2.55 



stress, parity, and 

age* 

5b Parous 

Postmenopausa

l (35) 

Migration status, 

BMI, frequency of 

exercise per week, 

time spent cleaning, 

walk 20 minutes per 

week, self-rated 

stress, parity, and 

age 

0.20 0.11 1.84 

 

 

 

  



Figure 1: Serum estradiol (E2) levels (pg/mL) across the reproductive lifespan. Error bars 

represent the standard deviation. Age categories: 1 = 35-39 (n = 55); 2 = 40-44 (n = 40); 3 = 45-

49 (n = 33); 4 = 50-54 (n = 26); 5 = 55-59 (n = 24).  

 

 


