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Abstract

Uncertainty about the choice of identifying assumptions is common in causal studies,

but is often ignored in empirical practice. This paper considers uncertainty over models

that impose different identifying assumptions, which can lead to a mix of point- and set-

identified models. We propose performing inference in the presence of such uncertainty

by generalizing Bayesian model averaging. The method considers multiple posteriors for

the set-identified models and combines them with a single posterior for models that are

either point-identified or that impose non-dogmatic assumptions. The output is a set of

posteriors (post-averaging ambiguous belief ), which can be summarized by reporting the

set of posterior means and the associated credible region. We clarify when the prior model

probabilities are updated and characterize the asymptotic behavior of the posterior model

probabilities. The method provides a formal framework for conducting sensitivity analysis

of empirical findings to the choice of identifying assumptions. For example, we find that in

a standard monetary model one would need to attach a prior probability greater than 0.28

to the validity of the assumption that prices do not react contemporaneously to a monetary

policy shock, in order to obtain a negative response of output to the shock.
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1 Introduction

The choice of identifying assumptions is the crucial step that allows researchers to draw causal

inferences using observational data. This is often a controversial choice, and there can be uncer-

tainty about which assumptions to impose from a menu of plausible ones, but this uncertainty

and its effects on inference are typically ignored in empirical work. This paper proposes a formal

framework for sensitivity analysis via Bayesian model averaging in the presence of uncertain

identification, which we characterize as uncertainty over a class of models that impose different

sets of identifying assumptions. The class of models can include ones where parameters are

set-identified, which occurs when the assumptions are under-identifying or take the form of

inequality restrictions. For these models, we advocate adopting the multiple-prior approach of

Giacomini and Kitagawa (in press). In our context, the approach has the additional advantage

of isolating the component of each model that depends on the identifying restrictions, making

it possible, for example, to compare models that only differ in the restrictions they impose.

The paper makes both a methodological and a theoretical contribution. The methodological

contribution is to extend Bayesian model averaging/selection to allow for models characterized

by multiple priors (associated here with set identification). The theoretical contribution is to

clarify how the different components of the models affect inference in terms of model averag-

ing/selection in finite samples and asymptotically.

There are several examples in economics where empirical researchers face uncertainty about

identifying assumptions that lead to point- or set-identification of a common causal parameter

of interest. The first is macroeconomic policy analysis based on structural vector autore-

gressions (SVARs), where assumptions include causal ordering restrictions (Sims (1980)) and

long-run neutrality restrictions (Blanchard and Quah (1993)). Subsets of these assumptions de-

liver set-identified impulse-responses, as do sign restrictions (Canova and Nicolo (2002), Faust

(1998), and Uhlig (2005)). The second example is microeconometric causal effect studies with

assumptions such as selection on observables (Ashenfelter (1978) and Rosenbaum and Ru-

bin (1983)), selection on observables and unobservables (Altonji et al. (2005)), exclusion and

monotonicity restrictions in instrumental variables methods (Imbens and Angrist (1994), yield-

ing set-identification of the average treatment effect), and monotone instrument assumptions

(Manski and Pepper (2000), also yielding set-identification). The third example is missing data

with assumptions such as missing at random, Bayesian imputation (Rubin (1987)), and un-

known missing mechanism (Manski (1989), yielding set-identification). Finally, estimation of

structural models with multiple equilibria relies on assumptions about the equilibrium selection

rule, with different assumptions (or lack thereof) delivering point- or set-identification (e.g.,

Bajari et al. (2010), Beresteanu et al. (2011), and Ciliberto and Tamer (2009)).

The common practice in empirical work is to report results based on what is deemed the

most credible set of identifying assumptions, or, sometimes, based on a small number of alter-
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native assumptions, viewed as an informal sensitivity analysis. Our method provides a formal

framework for investigating the sensitivity of empirical findings to specific identifying assump-

tions and/or for aggregating results based on different identifying assumptions, which can be

more practical than reporting separate results when there are many restrictions.1

The idea of model averaging has a long history in econometrics and statistics since the

pioneering works of Bates and Granger (1969) and Leamer (1978). The literature has considered

Bayesian approaches (see, e.g., Hoeting et al. (1999)), frequentist approaches (Hansen (2007,

2014), Hjort and Claeskens (2003), Liu and Okui (2013)), and hybrid approaches (Hjort and

Claeskens (2003), Kitagawa and Muris (2016), and Magnus et al. (2010)), but none of them

allows for set-identification/multiple priors in any candidate model.

This paper takes a Bayesian perspective. The standard approach to Bayesian model aver-

aging delivers a single posterior that is a mixture of the posteriors of the models, with weights

equal to the posterior model probabilities.2 This approach could in principle be extended

to our context if one could obtain a single posterior for every model, including set-identified

ones. Assuming a single prior under set identification is however problematic from a robustness

viewpoint as the choice of a single prior can lead to spuriously informative posterior inference

for the object of interest (Baumeister and Hamilton (2015)). The severity of the problem is

magnified by the fact that the effect of the prior choice persists asymptotically, unlike in the

case of point-identified models (Moon and Schorfheide (2012), Poirier (1998), among others).

The key innovation of our approach to Bayesian model averaging is that we do not assume

availability of a single posterior for the set-identified models. Rather, we allow for multiple

priors (an ambiguous belief ) within the set-identified models (as in Giacomini and Kitagawa

(in press)), and then combine the corresponding multiple posteriors with single posteriors for

models that are either point-identified or that impose non-dogmatic identifying assumptions

in the form of a Bayesian prior for the structural parameters (as in Baumeister and Hamilton

(2015)). The output of the procedure is a set of posteriors (post-averaging ambiguous belief ),

that are mixtures of the single posteriors and any element of the set of multiple posteriors,

with weights equal to the posterior model probabilities. To summarize and visualize the post-

averaging ambiguous belief one can report the set of posterior quantities (e.g., the mean or

median) and the associated credible region (an interval to which any posterior in the class

assigns a certain credibility level), which are easy to compute in practice.

The method proposed in this paper provides a formal framework for conducting sensitivity

1For example, the SVAR literature often considers models with a large number of sign restrictions (e.g.,

Amir-Ahmadi and Uhlig (2015), Korobilis (2020), Furlanetto et al. (2019)) and Matthes and Schwartzman

(2019).
2When a constrained model is a lower dimensional submodel of a large model, performing inference conditional

on the constrained model may suffer from the Borel paradox; see, e.g., Drèze and Richard (1983). Bayesian model

averaging offers a practical way to avoid the Borel paradox in such context.
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analysis of causal inferences to the choice of identifying assumptions. First, one can perform

reverse-engineering exercises that compute the minimal prior probability one would need to at-

tach to a set of identifying assumptions in order for the averaging to obtain a certain conclusion

(e.g., that the set of posterior means for the impact response of output to a monetary policy

shock is contained in the negative real halfline). This exercise has a similar motivation as the

breakdown frontier analysis in Horowitz and Manski (1995) and Masten and Poirier (2020).

Second, when a set-identified model nests a point-identified model, our method can be used to

assess the posterior sensitivity in the point-identified model with respect to perturbations of the

prior in the direction of relaxing some of the point-identifying assumptions. This exercise can

be seen as an example of the ε-contamination sensitivity analysis developed in Huber (1973)

and Berger and Berliner (1986). Our approach to sensitivity analysis, therefore, differs from

and complements the approaches proposed by Giacomini et al. (2019) and Ho (2019), which

specify the class of priors as a Kullback-Leibler neighborhood of a benchmark prior.

Our method can also be viewed as bridging the gap between point- and set-identification.

When focusing solely on a point-identified model, a researcher who is not fully confident about

the choice of identifying assumptions may doubt the robustness of the conclusions. On the

other hand, discarding some of the point-identifying assumptions and reporting estimates of the

identified set may appear “excessively agnostic”, and often results in uninformative conclusions.

Our averaging procedure reconciles these two extreme representations of the posterior beliefs by

exploiting the prior weights that one can assign to alternative sets of identifying assumptions.

This paper contributes to the growing literature on Bayesian inference for partially identified

models (Giacomini and Kitagawa (in press), Kline and Tamer (2016), Moon and Schorfheide

(2012)). We follow the multiple-prior approach to model the lack of knowledge within the

identified set as in Giacomini and Kitagawa (in press). When a set-identified model is the only

model considered, the set of posteriors generated by the approach provides posterior inference

for the identified set. When there is uncertainty about the identifying assumptions, however,

the usual definition of identified set is not available without conditioning on the model. The

multiple prior viewpoint has an advantage in this case since the set of posteriors has a well-

defined subjective interpretation even in the presence of model uncertainty.

The paper makes two main analytical contributions to the literature on Bayesian model

selection and averaging. First, we clarify under which conditions the prior model probabilities

can be updated by data. We show that the updating occurs if some models are “distinguishable”

for some distribution of data and/or the priors for the reduced-form parameters differ across

models. Second, we investigate the asymptotic properties of the posterior model probabilities

and of the averaging method. We show that, when only one model is consistent with the

true distribution of the data, our method asymptotically assigns probability one to it. When

multiple models are observationally equivalent and “not falsified” at the true data generating
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process, the posterior model probabilities asymptotically assign nontrivial weights to them. We

clarify what part of the prior input determines the asymptotic posterior model probabilities

in such case. The consistency property of Bayesian model selection has been well-studied in

the statistics literature (e.g., Claeskens and Hjort (2008) and references therein), but there is

no discussion about the asymptotic behavior of posterior model probabilities when the models

differ in terms of the identifying assumptions but can be observationally equivalent in terms of

their reduced form representations. These new results therefore could be of separate interest.

The empirical application in this paper considers SVAR analysis with uncertainty over the

classes of identifying assumptions typically used in empirical work. The choice of identifying

assumptions has often been a source of controversy in this literature, and researchers have

differing opinions about their credibility. To our knowledge, little work has been done on

multi-model inference in the SVAR literature, and the methods proposed in this paper could

therefore prove helpful in reconciling the controversies about the identifying assumptions that

are widespread in this literature. As an example, the empirical application documents the

high sensitivity of the conclusion in standard monetary SVARs that output decreases after a

contractionary monetary policy shock to the choice of identifying assumptions.

The remainder of the paper is organized as follows. Section 2 illustrates the motivation and

the implementation of the method in the context of a simple model. Section 3 presents the

formal analysis in a general framework and provides a computational algorithm to implement

the procedure. Section 4 applies our method to impulse response analysis in monetary SVARs.

The online Appendix contains proofs and details about computation.

2 Illustrative Example

We present the key ideas and the implementation of the method in a price-quantity static

model, subject to common types of identifying assumptions. The model is:

A

(
qt

pt

)
=

(
εdt
εst

)
, A =

(
a11 a12

a21 a22

)
, t=1,. . . ,T, (2.1)

where (qt, pt) are price and quantity of a certain good/service in a given market and (εdt , ε
s
t )

is an i.i.d. normally distributed vector of demand and supply shocks with variance-covariance

the identity matrix. A is the structural parameter and the contemporaneous impulse responses

are elements of A−1. For example, in the labor market (qt, pt) can be replaced by employment

and wages, respectively.

The reduced-form model is indexed by Σ, the variance-covariance matrix of (qt, pt), which

satisfies Σ = A−1(A−1)′. Denote its lower triangular Cholesky decomposition with nonnegative

5



diagonal elements by Σtr =

(
σ11 0

σ21 σ22

)
with σ11 ≥ 0 and σ22 ≥ 0, and define the reduced form

parameter as φ = (σ11, σ21, σ22) ∈ Φ = R+ × R × R+.3 Let the mapping from the structural

parameter to the reduced-form parameter be denoted by φ = g(A).

Suppose the object of interest is the response of the first variable to a unit positive shock in

the first variable, α ≡ (1,1)-element of A−1. Without identifying assumptions, the structural

parameter is set-identified since knowledge of the reduced-form parameter φ cannot uniquely pin

down the structural parameter (φ = g(A) is a many-to-one mapping). Imposing assumptions

can lead to a set or a point for α, depending on the type and number of assumptions.

A Bayesian model is the combination of a likelihood and a prior input. The prior input can

be either a single prior or multiple priors. In point-identified models the prior input is a single

prior for the structural parameter A which implies the prior for the reduced-form parameter

φ. In set-identified models, one could either specify a single prior for A (e.g., as a way of

imposing non-dogmatic identifying assumptions) or consider multiple priors as in Giacomini

and Kitagawa (in press). In the latter case a model is the combination of a likelihood, a single

prior for the reduced-form parameter φ (which is revised) and multiple priors for A|φ (which

are not revised).4

The division that we introduce in the paper is between single-prior models (which could be

point- or set-identified) and multiple-prior models (which are always set-identified). We now

illustrate how this interplays with identifying assumptions in two examples.

2.1 Dogmatic Identifying Assumptions

First consider dogmatic identifying assumptions, which are equality or inequality restrictions

on (functions of) the structural parameter that hold with probability one.

Scenario 1: Candidate Models

• Model Mp (point-identified): The demand is inelastic to price, a12 = 0.

• Model M s (set-identified): The price elasticity of demand is non-positive, a12 ≥ 0, and

the price elasticity of supply is non-negative, a21 ≤ 0.

Model Mp restricts A to be lower-triangular, as in the classical causal ordering assumptions

of Sims (1980) and Bernanke (1986). Combined with the sign normalization restrictions re-

3The positive semidefiniteness of Σ does not constrain the value of φ other than σ11 ≥ 0 and σ22 ≥ 0.
4See Giacomini and Kitagawa (in press) for a discussion about and motivation for assuming a single prior

for φ. An additional advantage of this assumption in the context of model selection is that it allows one to

isolate the component of the model that depends on the identifying restrictions. This enables one, for example,

to compare models that only differ in the restrictions they impose.
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quiring the diagonal elements of A to be nonnegative, the assumption implies that the impulse

responses can be identified by A−1 = Σtr. The parameter of interest is α = αMp(φ) ≡ σ11.

Model M s imposes sign restrictions that only set-identify α. The online Appendix shows

that the identified set for α is:

ISα(φ) ≡


[
σ11 cos

(
arctan

(
σ22
σ21

))
, σ11

]
, for σ21 > 0,[

0, σ11 cos
(

arctan
(
−σ21
σ22

))]
, for σ21 ≤ 0.

(2.2)

Note that the identified set is non-empty for any φ. Hence, models Mp and M s are observa-

tionally equivalent at any φ ∈ Φ and neither of them is falsifiable, i.e., for any φ ∈ Φ in both

models there exists a structural parameter A that satisfies the identifying assumptions.5

We start by specifying a prior for φ in each model. Given the observational equivalence of

the two models, it might be reasonable to specify the same prior:

πφ|Mp = πφ|Ms = π̃φ, (2.3)

where π̃φ is a proper prior, such as the one induced by a Wishart prior on Σ. The same prior

for φ in observationally equivalent models leads to the same posterior:

πφ|Mp,Y = πφ|Ms,Y = π̃φ|Y . (2.4)

In model Mp, the posterior for φ implies a unique posterior for α, πα|Mp,Y , via the mapping

α = αMp(φ). In model M s, on the other hand, the posterior for φ does not yield a unique

posterior for α, since the mapping in (2.2) is generally set-valued. Following Giacomini and

Kitagawa (in press), we formulate the lack of prior knowledge by considering multiple priors

(ambiguous belief). Formally, given the single prior πφ|Ms , we form the class of priors for A

by admitting arbitrary conditional priors for A given φ, as long as they are consistent with the

identifying assumptions:

ΠA|Ms ≡
{
πA|Ms =

∫
Φ
πA|Ms,φdπφ|Ms : πA|Ms,φ(Asign ∩ g−1(φ)) = 1, πφ|Ms-a.s.

}
,

where Asign = {A : a12 ≥ 0, a21 ≤ 0, diag(A) ≥ 0} is the set of structural parameters that

satisfy the sign restrictions and the sign normalizations and g−1(φ) is the set of observationally

equivalent structural parameters given the reduced-form parameter φ.

Since the likelihood depends on the structural parameter only through the reduced-form

parameter, applying Bayes’ rule to each prior in the class only updates the prior for φ, and

5When σ21 > 0, the point-identified α in model Mp is the upper-bound of the identified set in model Ms,

whereas when σ21 < 0, the identified set in model Ms does not contain the point-identified α. This is because in

model Mp we have a12 = − σ21
σ11σ22

, which is positive if σ21 < 0, meaning that the point-identifying assumptions

a12 = 0 and σ21 < 0 are not compatible with the restriction a21 ≤ 0.
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thus leads to the following class of posteriors for A:

ΠA|Ms,Y ≡
{
πA|Ms,Y =

∫
Φ
πA|Ms,φdπφ|Ms,Y : πA|Ms,φ(Asign ∩ g−1(φ)) = 1, πφ|Ms-a.s.

}
.

(2.5)

Marginalizing the posteriors in ΠA|Ms,Y to α leads to the class of α-posteriors:

Πα|Ms,Y ≡
{
πα|Ms,Y =

∫
Φ̃
πα|Ms,φdπφ|Ms,Y : πα|Ms,φ(ISα(φ)) = 1, πφ|Ms-a.s.

}
. (2.6)

We view this class as a representation of the posterior uncertainty about α in the set-identified

model. The class contains any α-posterior that assigns probability one to the identified set,

and it represents the lack of belief therein in terms of Knightian uncertainty (ambiguity). This

is a key departure from the standard approach to Bayesian model averaging, which requires a

single posterior for all models, including those where the parameter is set-identified.

Suppose that the researcher’s prior uncertainty over the two models can be represented by

prior probabilities πMp ∈ [0, 1] for model Mp and (1− πMp) for model M s. Our proposal is to

combine the single posterior for α in model Mp and the set of posteriors for α in model M s

according to the posterior model probabilities πMp|Y and πMs|Y (the posterior model probability

for model M s depends only on the single prior for the reduced-form parameter, so it is unique

in spite of the multiple priors for the structural parameter). The combination delivers a class

of posteriors Πα|Y , the post-averaging ambiguous belief :

Πα|Y = {πα|Mp,Y πMp|Y + πα|Ms,Y πMs|Y : πα|Ms,Y ∈ Πα|Ms,Y }. (2.7)

As we show in Section 4.1, our proposal can be interpreted as applying Bayes’ rule to each prior

in a class that has the form of an ε-contaminated class of priors (Berger and Berliner (1986)).

A key result of the paper is to establish conditions under which the prior model probabilities

are updated by the data, which we show occurs when the models are “distinguishable” for some

reduced-form parameter values and/or they specify different priors for φ (see Lemma 3.1 below).

In the current scenario, the two models are indistinguishable, so the prior model probabilities

are not updated if they use a common φ-prior.

In practice, we recommend reporting as the output of the procedure the post-averaging set

of posterior means or quantiles of Πα|Y and its associated robust credible region with credibility

γ ∈ (0, 1), defined as the shortest interval that receives posterior probability at least γ for

every posterior in Πα|Y . Proposition 3.1 shows that the set of posterior means is the weighted

average of the posterior mean in model Mp and the set of posterior means in model M s:[
inf

πα|Y ∈Πα|Y
Eα|Y (α), sup

πα|Y ∈Πα|Y

Eα|Y (α)

]
=πMp|YEα|Mp,Y (α) + πMs|Y

[
Eφ|Ms,Y (l(φ)), Eφ|Ms,Y (u(φ))

]
, (2.8)
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where (l(φ), u(φ)) are the lower and upper bounds of the non-empty identified set for α shown

in (2.2), a+ b[c, d] stands for [a+ bc, a+ bd], and Eφ|Ms,Y (·) denotes the posterior mean with

respect to πφ|Ms,Y = π̃φ|Y . Since the set of posterior means can be viewed as an estimator for

the identified set in model M s, our procedure effectively shrinks the estimate of the identified

set in the set-identified model toward the point estimate in the point-identified model, with the

amount of shrinkage determined by the posterior model probabilities.

The robust credible region for α with credibility γ can be computed as follows. We first

draw z1, . . . , zG randomly from a Bernoulli distribution with mean πMp|Y and then generate

g = 1, . . . , G random draws of the “mixture identified set” for α according to

ISmixα (φg) =

{α(φg)}, φg ∼ πφ|Mp,Y = π̃φ|Y , if zg = 1

[l(φg), u(φg)], , φg ∼ πφ|Ms,Y = π̃φ|Y if zg = 0.
(2.9)

Intuitively, with probability πMp|Y , a draw of the mixture identified set is a singleton cor-

responding to the point-identified value of α, and with probability πMs|Y it is a non-empty

identified set for α. The robust credible region with credibility level γ is approximated by an

interval that contains the γ-fraction of the drawn ISmixα (φ)’s. The minimization problem in

Step 5 of Algorithm 4.1 in Giacomini and Kitagawa (in press) is solved to obtain the shortest-

width robust credible region.

Our method lends itself to reverse-engineering exercises that help shed light on the role of

identifying assumptions in drawing inferences. For instance, we can compute the prior weight

w one would assign to the restriction in Mp such that the set of posterior means is contained

in the positive real halfline. In the current example, the prior probabilities are not updated,

since the two models are observationally equivalent. We would hence obtain the weights w by

solving wEα|Mp,Y (α) + (1− w)
[
Eφ|Ms,Y (l(φ)), Eφ|Ms,Y (u(φ))

]
≥ 0 as a function of w.

2.2 Non-dogmatic Identifying Assumptions

Our method allows for identifying assumptions that are expressed as a non-dogmatic prior for

the structural parameter.

Scenario 2: Candidate Models

• Model MB (single prior): A prior for the structural parameter A.

• Model M s (multiple priors): Same as the set-identified model in Scenario 1.

Model MB assumes availability of a prior for the whole structural parameter. This prior can

reflect Bayesian probabilistic uncertainty about identifying assumptions expressed as equalities

(see, e.g., Baumeister and Hamilton (2015), who propose a prior for a dynamic version of the
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current model based on a meta-analysis of the literature). Another key example of a model

that implies a single prior for the structural parameter is a Bayesian DSGE model.

Model MB always yields a single posterior for α. However, the influence of prior choice

does not vanish asymptotically due to the lack of identification. In principle, if the researcher

were confident about the prior specification in model MB, she could perform standard Bayesian

inference and obtain a credible posterior, despite the identification issues. In practice, this is

rather rare. For instance, the prior considered by Baumeister and Hamilton (2015) is based on

the elicitation of first and second moments and the remaining characteristics of the distribution

are chosen for analytical or computational convenience. Further, eliciting dependence among

structural parameters is challenging, and an independent prior could lead to unintended or

counter-intuitive effects on posterior inference.6 These robustness concerns can be addressed

by averaging model MB with the set-identified model M s, which accommodates the lack of

prior knowledge about the structural parameter (beyond the inequality restrictions).

One important consideration in this scenario is that the single prior for A in model MB

implies a single prior for φ. Here we thus allow the prior for φ in model M s to differ from that

in model MB. This, in turn, affects the posterior model probabilities, which are given by:

πMB |Y =
p(Y |MB) · πMB

p(Y |MB) · πMB + p(Y |M s) · (1− πMB )
,

πMs|Y =
p(Y |M s) · (1− πMB )

p(Y |MB) · πMB + p(Y |M s) · (1− πMB )
, (2.10)

where πMB is the prior weight assigned to model MB, p(Y |M) ≡
∫

Φ p(Y |φ,M)dπφ|M (φ),

M = MB,M s, are the marginal likelihoods of model M with p(Y |φ,M) the likelihood of the

reduced form parameters. In this scenario the different priors for φ imply p(Y |MB) 6= p(Y |M s),

and therefore the prior model probabilities can be updated by the data.7

Given these posterior model probabilities, the construction of the post-averaging ambiguous

belief proceeds as in (2.7). The set of posterior means for α can be obtained similarly to (2.8),

where MB replaces Mp. The robust credible region can be constructed as in Scenario 1, by

drawing iid draws z1, . . . , zG ∼ Bernoulli(πMB |Y ) and letting

ISmixα,g =

{α}, α ∼ πα|MB ,Y , if zg = 1,

[l(φg), u(φg)], , φg ∼ πφ|Ms,Y if zg = 0.
(2.11)

The reverse-engineering described at the end of Section 2.1 can also be applied in this sce-

6“Knowing no dependence” among the parameters differs from “not knowing their dependence.”
7Section 3 shows that, if we add identifying restrictions so that Ms becomes falsifiable, the

posterior model probabilities become πMB |Y =
p(Y |MB)·π

MB

p(Y |MB)·π
MB +p(Y |Ms)·OMs ·(1−π

MB )
and πMs|Y =

p(Y |Ms)·OMs ·(1−π
MB )

p(Y |MB)·π
MB +p(Y |Ms)·OMs ·(1−π

MB )
, where OMs is the posterior-prior plausibility ratio.
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nario, with the difference that the weights w and 1−w are now substituted by the updated poste-

rior model probabilities, πMB |Y = p(Y |MB)·w
p(Y |MB)·w+p(Y |Ms)·(1−w)

and πMs|Y = p(Y |Ms)·(1−w)
p(Y |MB)·w+p(Y |Ms)·(1−w)

.

3 Formal Analysis

3.1 Notation and Definitions

Consider J +K ≥ 2 models, J,K ≥ 0, where J models are single-prior models collected in the

class Mp and K models are multiple-prior models collected in the class Ms.

Let M≡Mp ∪Ms. The structural parameters in model M ∈M is θM ∈ ΘM , where ΘM

embeds the identifying assumptions imposed in model M . We assume that the scalar parameter

of interest α = αM (θM ) ∈ R is well-defined as a function of θM and it carries a common (causal)

interpretation in all models. The reduced-form parameter is φM = gM (θM ) ∈ RdM , where

gM (·) maps a set of observationally equivalent structural parameters subject to the identifying

assumptions in model M to a point in the reduced-form parameter space ΦM = gM (ΘM ).8 Our

most general set-up allows the parameter space of structural and reduced-form parameters to

differ across models. We express the likelihood in model M ∈M in terms of the reduced-form

parameter by p(Y |φM ,M).9 For M ∈ Ms we define the identified set of α by ISα(φM |M) =

{αM (θM ) : θM ∈ ΘM ∩ g−1
M (φM )}, which is a set-valued mapping from ΦM to R.

We next introduce the concept of identical reduced-forms.

Definition 3.1 A class of models M admits an identical reduced-form if:

(a) ΦM can be embedded into a common d-dimensional Euclidean space Rd for all M ∈ M
(hence φM can be denoted by φ ∈ Rd).

(b) For every M ∈ M, p(Y |φM = φ,M) defines a probability distribution of Y on the ex-

tended domain φ ∈ Φ ≡ ∪M∈MΦM , and p(Y |φM = φ,M) = p(Y |φ) holds for all φ ∈ Φ,

where p(Y |φ) is the likelihood common among M ∈M.

Definition 3.1 formalizes the situation where models imposing different identifying assump-

tions lead to the same family of distributions for the observables (different identifying assump-

tions, nonetheless, can lead to different ΦM ). For instance, ifM consists of SVAR models with

the same set of variables but different identifying assumptions, Definition 3.1 is satisfied when

the reduced-form VARs implied by the models feature the same variables and lag length.

8ΦM incorporates any testable implications of the imposed identifying assumptions. For a set-identified

model, ΦMs is equivalent to the set of φM ’s that yield a non-empty identified set, ΦMs = {φMs ∈ RdMs :

ISα(φMs |Ms) 6= ∅}.
9The likelihood p̃(Y |θM ,M) depends on θM only through the reduced-form parameters gM (θM ) for any

realization of Y , i.e., there exists p(Y |·,M) such that p̃(Y |θM ,M) = p(Y |gM (θM ),M) holds for every Y and

φM = gM (θM ) is identifiable.
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We next introduce the concepts of observational equivalence and distinguishability.

Definition 3.2 (i) The models in M are observationally equivalent at φ if M admits

an identical reduced-form and φ ∈ ∩M∈MΦM .

(ii) M,M ′ ∈M that admit an identical reduced-form are distinguishable if ΦM 6= ΦM ′.

(iii) The models in M are indistinguishable if M admits an identical reduced-form and

ΦM = Φ for all M ∈M.

Note that our definition of observational equivalence is local to φ, and it does not constrain

the relationship among the reduced-form parameter spaces for different models (except that

they must have a non-empty intersection). On the other hand, indistinguishability can be

interpreted as observational equivalence of the models in a global sense — if the models are

indistinguishable, one could not find support for one model rather than the others based on

the data, regardless of any available knowledge about the distribution of observables.

3.2 Prior and Posterior Model Probabilities

This section shows when and how the data update the prior model probabilities.

Let (πM : M ∈ M),
∑

M∈M πM = 1, be prior probabilities assigned over M. By Bayes’

rule, the posterior probability for each model is

πM |Y =
p(Y |M)πM∑

M ′∈M p(Y |M ′)πM ′
. (3.1)

Since the marginal likelihood depends only on the φM -prior, which we assume to be a single

prior for all M ∈M, the posterior model probabilities are unique for all models.10

The next lemma obtaines posterior model probabilities when the models admit an identical

reduced-form.

Lemma 3.1 (i) Suppose that M s ∈ Ms admit an identical reduced-form with φ ∈ Φ =

∪Ms∈MsΦMs ⊂ Rd. Let π̃φ be a proper prior on Φ and assume that π̃φ(ΦMs) = π̃φ(ISα(φ|M s) 6=
∅) > 0 for all M s ∈ Ms. Let π̃φ|Y be the posterior obtained by updating π̃φ with the common

likelihood p(Y |φ). Suppose that the φ-prior is obtained by trimming the support of π̃φ to ΦMs:

πφ|Ms(B) =
π̃φ(B ∩ ΦMs)

π̃φ(ΦMs)
, B ∈ B(Φ) (3.2)

10Note that our method introduces ambiguous beliefs for the non-identifiable parameters, while it assumes

availability of prior model probabilities even when the models are indistinguishable. Hence, we are not treating

non-identifiability of the parameters and of the models in a symmetric way.
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where B(Φ) is the Borel σ-algebra of Φ. Then the posterior model probabilities are given byπMp|Y = p(Y |Mp)πMp∑
Mp′∈Mp p(Y |Mp′)πMp′+p̃(Y )

∑
Ms′∈Ms OMs′πMs′

, for Mp ∈Mp,

πMs|Y = p̃(Y )OMsπMs∑
Mp′∈Mp p(Y |Mp′)πMp′+p̃(Y )

∑
Ms′∈Ms OMs′πMs′

, for M s ∈Ms,
(3.3)

where OMs is the posterior-prior plausibility ratio of the set-identifying assumptions of model

M s ∈Ms and p̃(Y ) is the marginal likelihood with respect to π̃φ,

OMs ≡
π̃φ|Y (ΦMs)

π̃φ(ΦMs)
=
π̃φ|Y (ISα(φ|M s) 6= ∅)
π̃φ(ISα(φ|M s) 6= ∅)

, p̃(Y ) =

∫
Φ
p(Y |φ)dπ̃φ(φ). (3.4)

(ii) Suppose that, in addition toMs, all the models inMp admit an identical reduced-form.

Let π̃φ be as in (i) of the current lemma and assume π̃φ(ΦM ) > 0 for all M ∈M. If the φ-prior

satisfies (3.2) in every M ∈M, then the posterior model probabilities further simplify to

πM |Y =
OMπM∑

M ′∈MOM ′πM ′
for M ∈M, (3.5)

where OM =
π̃φ|Y (ΦM )

π̃φ(ΦM ) .

(iii) If all models are indistinguishable and the φ-prior is common, then the model proba-

bilities are never updated, πM |Y = πM for all M ∈M and for any realization of Y .

Lemma 3.1 clarifies the sources of updating of the prior model probabilities. In claim (i),

the specification of the φ-prior as in (3.2) simplifies the marginal likelihood of M s ∈ Ms to

p̃(Y )OMs . If all the models admit an identical reduced-form (claim (ii)), the posterior model

probabilities only depend on {OM : M ∈M}. Claim (iii) shows the intuitive result that model

probabilities are not updated if all the models are indistinguishable and share a unique φ-prior.

3.3 Post-Averaging Ambiguous Belief and the Set of Posteriors

Estimation of the single-prior models proceeds in the standard Bayesian way. We therefore

take the posterior πα|Mp,Y as given.

We perform posterior inference for model M s ∈Ms in the robust Bayesian way: we specify

a single proper prior πφMs |Ms that is supported on ΦMs , and form the set of priors for θMs as

ΠθMs |Ms ≡
{
πθMs |Ms : πθMs |Ms(ΘMs ∩ g−1

Ms(B)) = πφMs |Ms(B), ∀B ∈ B(ΦMs)
}
, (3.6)

where B(ΦMs) is the Borel σ-algebra of ΦMs .11 Applying Bayes’ rule to each θM -prior in

11By noting that the constraints in (3.6) are rewritten as
∫
B
πθMs |φMs ,Ms(ΘMs ∩ g−1

Ms(φ))dπφMs |Ms(φMs) =
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ΠθMs |Ms with the likelihood, p̃(Y |θMs ,M s),12 and marginalizing the resulting posterior of θM

via α = αM (θM ), we obtain the following set of posteriors for α:13

Πα|Ms,Y

≡
{
πα|Ms,Y =

∫
ΦM

πα|Ms,φMsdπφMs |Ms,Y : πα|Ms,φMs (ISα(φMs |M s)) = 1, πφMs |Ms-a.s.

}
.

(3.7)

Given the posterior model probabilities, a posterior for α with the models averaged out is

πα|Y =
∑

Mp∈Mp

πα|Mp,Y πMp|Y +
∑

Ms∈Ms

πα|Ms,Y πMs|Y ,

where the α-posterior for Mp ∈ Mp is unique, while there are multiple α-posteriors for M s ∈
Ms as shown in (3.7). The set of averaged posteriors can be represented as

Πα|Y =

{ ∑
Mp∈Mp

πα|Mp,Y πMp|Y +
∑

Ms∈Ms

πα|Ms,Y πMs|Y : πα|Ms,Y ∈ Πα|Ms,Y ∀M s ∈Ms

}
.

(3.8)

The next proposition provides a formal robust Bayes justification for our averaging formula

(3.8) when the structural parameters are common across all models.14

Proposition 3.1 Suppose that structural parameters are common in all models, θM = θ ∈ Rdθ

for all M ∈ M, and define Θ = ∪M∈MΘM ⊂ Rdθ . Consider prior model probabilities (πM :

M ∈ M), a prior πθ|Mp for θ in Mp ∈ Mp, and a prior for the reduced-form parameters in

M s ∈Ms. Define a set of priors for (θ,M) ∈ Θ×M:

Πθ,M ≡
{
πθ,M = πθ|MπM : πθ|Ms ∈ Πθ|Ms for every M s ∈Ms

}
, (3.9)

where Πθ|Ms is defined in (3.6). Then, Bayes’ rule applied to each prior in Πθ,M with likelihood

p̃(Y |θ,M) and marginalization to α yields (3.8) as the class of posteriors for α.

πφMs |Ms(B) for all B ∈ B(ΦMs), the prior class (3.6) can be equivalently represented as

ΠθMs |Ms =

{∫
ΦMs

πθMs |φMs ,MsdπΦMs |Ms : πθMs |φMs ,Ms(ΘMs ∩ g−1
Ms(φMs)) = 1, πφMs |Ms,Y -a.s.

}
.

This alternative expression is exploited in the illustrative example of Section 2.
12The likelihood of θM is linked to the likelihood of φM via p̃(Y |θMs ,Ms) = p(Y |g(θMs),Ms) by the definition

of reduced-form parameters.
13Lemma ?? in the online Appendix shows a formal derivation of Πα|Ms,Y .
14The reason we assume a common structural parameter space is to ensure that we can construct a prior

distribution on the product space of the structural parameter space and the model space.
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The next proposition derives the set of posterior means and the posterior probabilities when

the posterior for α varies within Πα|Y .

Proposition 3.2 Let [l(φMs |M s), u(φMs |M s)] be the convex hull of the identified set ISα(φMs |M s)

in model M s ∈Ms.

(i) The set of posterior means of Πα|Y is the convex interval with lower and upper bounds:

inf
πα|Y ∈Πα|Y

Eα|Y (α) =
∑

Mp∈Mp

Eα|Mp,Y (α)πMp|Y +
∑

Ms∈Ms

EφMs |Y,Ms [l(φMs |M s)]πMs|Y ,

sup
πα|Y ∈Πα|Y

Eα|Y (α) =
∑

Mp∈Mp

Eα|Mp,Y (α)πMp|Y +
∑

Ms∈Ms

EφMs |Y,Ms [u(φMs |M s)]πMs|Y ,

where EφMs |Y,Ms(·) is the expectation with respect to the posterior of φMs.

(ii) For any measurable subset H in R, the lower and upper bounds of the posterior probabilities

on {α ∈ H} in the class Πα|Y (the lower and upper posterior probabilities of Πα|Y ) are

inf
πα|Y ∈Πα|Y

πα|Y (H) =
∑

Mp∈Mp

πα|Mp,Y (H)πMp|Y +
∑

Ms∈Ms

πφMs |Y,Ms(ISα(φMs |M s) ⊂ H) · πMs|Y ,

sup
πα|Y ∈Πα|Y

πα|Y (H) =
∑

Mp∈Mp

πα|Mp,Y (H)πMp|Y +
∑

Ms∈Ms

πφMs |Y,Ms(ISα(φMs |M s) ∩H 6= ∅) · πMs|Y .

If ISα(φMs |M s) is a connected interval at every reduced-form parameter value, then we

can view
[
EφMs |Y,Ms [l(φMs |M s)], EφMs |Y,Ms [u(φMs |M s)]

]
as an estimator of the identified set

in model M s. We can thus interpret the set of post-averaging posterior means as the weighted

Minkowski sum of the Bayesian point estimators in the point-identified models and the identi-

fied set estimators in the set-identified models. The second claim of the proposition provides

an analytical expression for the lower probability of Πα|Y as a mixture of the containment

functionals of the random sets, which in turn can be viewed as the containment functional of

the mixture random sets Pr(ISmixα ⊂ A), where ISmixα is generated according to

M ∼ Multinomial
(
{πM |Y }M∈M

)
, (3.10)

ISmixα =

{α}, α|(Mp, Y ) ∼ πα|Mp,Y for Mp ∈Mp,

ISα(φMs |M s), φMs |(M s, Y ) ∼ πφMs |Ms,Y for M s ∈Ms.

This way of interpreting the lower probability of Πα|Y simplifies its computation and justifies

the algorithm presented in (2.9).

3.4 Computation

To report the set of posteriors based on the analytical expressions in Proposition 3.2, we

need to compute (i) the posterior model probabilities (equivalently, the marginal likelihood

in each M ∈ M), (ii) the posterior for α for each single-prior model, and (iii) the identified
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set ISα(φMs |M s) and the posterior for φMs for each multiple-prior model. Estimation of

the single-prior models in (ii) is standard, and we assume some suitable posterior sampling

algorithm is applicable to obtain Monte Carlo draws of α ∼ πα|Mp,Y . For (i), efficient and

reliable algorithms to compute the marginal likelihood are available in the literature, e.g.,

see Chib and Jeliazkov (2001), Geweke (1999), and Sims et al. (2008). When all the models

admit an identical reduced-form, computing the marginal likelihoods is not necessary since the

posterior model probabilities depend only on the posterior-prior plausibility ratios OM .

In each multiple-prior model, the posterior-prior plausibility ratio OMs can be computed

by plugging in numerical approximations for the prior and posterior probabilities of the non-

emptiness of the identified set into (3.4). The denominator of OMs is computed by drawing

many φ’s from the prior π̃φ and computing the fraction of draws that yield non-empty iden-

tified sets. The numerator of OMs is computed similarly except that the φ’s are drawn from

the posterior π̃φ|Y . Whether checking the non-emptiness of ISα(φ|M s) is simple or not de-

pends on the application. In the application in Section 4 to SVARs with sign restrictions, we

consider two ways to check the non-emptiness of ISα(φ|M s). The first (Algorithm A.1 in the

online Appendix) builds on Algorithm 1 of Giacomini and Kitagawa (in press) and assesses

non-emptiness based on the Monte Carlo draws of the impulse responses. The second approach

(Algorithm A.2 in the online Appendix), which is novel in the literature and can be of indepen-

dent interest, exploits the analytical features of the identifying restrictions in sign restricted

SVARs. See the online Appendix for the details of these algorithms.

Monte Carlo draws of the lower and upper bounds of the identified set in model M ∈ Ms

can be obtained by first drawing φ’s from the posterior π̃φ|Y , then retaining the draws of φ

that yield a non-empty ISα(φ|M s), and computing the corresponding l(φ|M s) and u(φ|M s).

Their sample averages approximate Eφ|Ms,Y (l(φ|M s)) and Eφ|Ms,Y (u(φ|M s)). Implementation

of this procedure requires computability of the lower and upper bounds of the identified set for

each φ. In the SVAR application of Section 5, we compute l(φ|M s) and u(φ|M s) by numerical

optimization.

Utilizing the mixture random set representation shown in (3.10), we can use the following

algorithm to approximate the lower posterior probability.

Algorithm 3.1

Step 1: Draw a model M ∈M from a multinomial distribution with parameters (πM |Y : M ∈M).

Step 2: If the drawn M belongs toMp, then draw α ∼ πα|M,Y and set ISmixα = {α} (a singleton).

If the drawn M belongs to Ms, draw φM ∼ πφ|M,Y and set ISmixα = ISα(φM |M).15

15Note that since πφ|M,Y is supported only on the set of φ’s yielding a non-empty identified set, ISα(φ|M)

computed subsequently is non-empty.
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Step 3: Repeat Steps 1 and 2 many (G) times and obtain G draws of ISmixα : ISmixα,1 , . . . , IS
mix
α,G .

Step 4: Let [lmixg , umixg ] be the lower and upper bounds of ISmixα,g , g = 1, . . . , G, where lmixg = umixg

if ISmixα,g is a singleton (i.e., g-th draw of M belongs to Mp). Approximate the mean

bounds of the post-average posterior class by

inf
πα|Y ∈Πα|Y

Eα|Y (α) =
1

G

G∑
g=1

lmixg , sup
πα|Y ∈Πα|Y

Eα|Y (α) =
1

G

G∑
g=1

umixg . (3.11)

Approximate the lower probability of the post-averaging posterior class at H ⊂ R by

inf
πα|Y ∈Πα|Y

πα|Y (H) ≈ 1

G

G∑
g=1

1{ISmixα,g ⊂ H}. (3.12)

The draws of ISmixα obtained in Steps 1-3 in Algorithm 3.1 are also useful for constructing

robust credible regions, which are intervals that attain a certain level of credibility uniformly

over the posterior class. Applying Proposition 1 of Giacomini and Kitagawa (in press) to the

Monte Carlo draws of ISmixα , we can easily approximate the shortest robust credible region for

α.

3.5 Asymptotic Properties

This section analyzes the asymptotic properties of our method. The method is finite-sample

exact (up to Monte Carlo approximation errors), but the asymptotic analysis can be valuable

to understand what aspects of the prior input, if any, remain influential in large samples. In

this section, we make the sample size explicit by denoting a size n sample by Y n.

We assume that at least one model is correctly specified, so that the data-generating process

is given by p(Y n|φtrue), where φtrue ∈ Φ is the true reduced-form parameter value. We denote

the unconstrained maximum likelihood estimator for φ by φ̂ ≡ arg maxφ∈Φ p(Y
n|φ) and the

true probability law of the sampling sequence {Y n : n = 1, 2, . . . } by PY∞|φtrue .

We impose the following regularity assumptions:

Assumption 3.2 (i) M admits an identical reduced-form (Definition 3.1) and every M ∈
M satisfies either one of the following conditions:

(A) ΦM contains φtrue in its interior.

(B) Φc
M contains φtrue in its interior.

MA, denoting the set of models satisfying condition (A), is non-empty.

(ii) Let ln(φ) ≡ n−1 log p(Y n|φ). There exist an open neighborhood B of φtrue and n0 ≥ 1,

such that for any {Y n : n = n0, n0 + 1, . . . }, ln(·) is third-time differentiable with the

third-order derivatives bounded uniformly on B.

17



(iii) Let Hn(φ̂) ≡ −∂2ln(φ̂)
∂φ′∂φ . Hn(φ̂) is a positive definite matrix and lim infn→∞ det(Hn(φ̂)) >

0, with PY∞|φtrue-probability one.

(iv) For any open neighborhood B of φtrue,

lim sup
n→∞

sup
φ∈Φ\B

{ln(φ)− ln(φtrue)} < 0

holds with PY∞|φtrue-probability one.

(v) For every M ∈ M, πφ|M has probability density fφ|M (φ) ≡ dπφ|M
dφ (φ) with respect to

the Lebesgue measure on ΦM and fφ|M (φ) is continuously differentiable with a uniformly

bounded derivative. For every M ∈MA, fφ|M (φtrue) > 0.

Assumption 3.2 (i) implies that none of the models has φtrue on the boundary of its reduced-

form parameter space. Assumptions 3.2 (iii) and (iv) impose regularity conditions that imply

almost sure consistency of φ̂. Assumptions 3.2 (ii) and (v) allow an application of the Laplace

method to approximate the large sample marginal likelihood. Assumptions similar to Assump-

tions 3.2 (ii) - (v) appear in Kass et al. (1990) in their validation of the higher-order expansion

of the marginal likelihood.

The next proposition derives the limits of the posterior model probabilities.

Proposition 3.3 (i) Suppose Assumption 3.2 holds. Then

πM |Y∞ ≡ lim
n→∞

πM |Y n =


fφ|M (φtrue)·πM∑

M′∈MA
fφ|M′ (φtrue)·πM′

, for M ∈MA,

0, for M /∈MA.
(3.13)

with PY∞|φtrue-probability one.

(ii) Suppose that Assumption 3.2 holds and a prior for φ given M is constructed according

to (3.2) with a proper prior π̃φ. If π̃φ(ΦM ) > 0 for all M ∈M,

πM |Y∞ =


π̃φ(ΦM )−1·πM∑

M′∈MA
π̃φ(ΦM′ )

−1·πM′
, for M ∈MA,

0, for M /∈MA.
(3.14)

with PY∞|φtrue-probability one.

(iii) Under the assumptions of Lemma 3.1 (iii), πM |Y∞ = πM holds for every M ∈M for any

sampling sequence {Y n : n = 1, 2, . . . }.

The proposition clarifies the large sample behavior of the posterior model probabilities when

the models admit an identical reduced-form. First, it shows that our procedure asymptotically
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screens out models whose identifying assumptions are misspecified, M /∈MA, as their posterior

probabilities converge to zero. If there is only one model consistent with the data-generating

process, asymptotically it has probability one. Second, if MA contains multiple models, their

asymptotic probabilities depend on the prior model probabilities and on the φ-priors evaluated

at φtrue. This implies that the post-averaging posterior is asymptotically sensitive to the

choices of φ-priors and prior model probabilities when multiple models are observationally

equivalent at φtrue. Third, when the φ-priors are common, the asymptotic model probabilities

are proportional to the reciprocal of the prior probability that the data is consistent with

the identifying assumptions. Hence, the asymptotic posterior model probabilities are higher

for more observationally restrictive models, i.e., if ΦM1 ⊂ ΦM2 for M1,M2 ∈ MA, we have

πM1|Y∞ ≥ πM2|Y∞ . This result is in line with the principle of parsimony (Ockham’s razor) —

we should prefer a more parsimonious model among those that explain the data equally well.16

3.6 Discussion

We discuss how our method relates to the literature on ε-contaminated class of priors and to a

hierarchical Bayesian way to bridge the gap between structural and reduced-form models.

Our method can be directly linked to performing robust Bayes analysis using an ε-contaminated

class of priors (Huber (1973), Berger and Berliner (1986)). Consider the case of one single-

posterior model and one multiple-posterior model, M = {Mp,M s} that share the same pa-

rameterization of the structural model and where the likelihood for the common structural

parameters θ does not depend on the model.

Given (πMp , πMs), πθ|Mp , and Πθ|Ms as in (3.6), consider the set of priors for θ constructed

by marginalizing Πθ,M of Proposition 3.1 to θ,

Πθ ≡
{
πθ = πθ|MpπMp + πθ|MsπMs : πθ|Ms ∈ Πθ|Ms

}
. (3.15)

A general formulation of an ε-contaminated class of priors is given by

Πε
θ ≡

{
πθ = (1− ε)π0

θ + εqθ : qθ ∈ Q
}
, (3.16)

where 0 ≤ ε ≤ 1 is a prespecified constant, π0
θ is a benchmark prior for θ, and Q is a set of priors

of θ. Following Berger and Berliner (1986) ε is interpreted as the amount of contamination, qθ

captures how π0
θ differs from the most credible prior and Q is the set of possible departures.

The prior input of our procedure in (3.15) has the same form as the ε-contaminated class of

priors (3.16) — Πθ is an ε-contaminated class of priors where the benchmark prior is from

16For instance, in a SVAR, a model point-identified by equality restrictions is not observationally restrictive,

while a model set-identified by sign restrictions can be observationally restrictive. If the φ-priors satisfy (3.2) and

the models are observationally equivalent at φtrue, then, relative to the prior model weights, the sign-restricted

model receives a larger weight than the point-identified model in large samples.
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the single-prior (point-identified) model π0
θ = πθ|Mp , the amount of contamination is the prior

model probability assigned to the set-identified model ε = πMs and Q corresponds to the

multiple priors for the set-identified model Πθ|Ms . This clarifies a robust Bayes interpretation

of our method: If the point-identified model is a possibly misspecified benchmark, averaging

it with the set-identified model with weight πMs can be interpreted as performing sensitivity

analysis by contaminating the prior of the point-identified model by an amount πMs in every

possible direction subject to the set-identifying assumptions.

Our method could be viewed as a way to bridge the gap between structural and reduced-form

models, for example as an alternative to the hierarchical Bayesian approach of e.g., (Del Negro

and Schorfheide (2004)), in which the structural parameters in a DSGE model act as hyper-

parameters of a prior for SVAR parameters. The two approaches differ in several ways. First,

the hierarchical Bayesian approach always leads to a single posterior for the parameter, even

if it is not identified in the SVAR model. If the parameter is not identified, this means that

the priors have some part that is unrevisable by the data, leading to posterior sensitivity. In

contrast, our procedure would classify the DSGE model as a single-prior model and the set-

identified SVAR as a multiple-prior model, thus removing sensitivity to the choice of prior.

Second, in the hierarchical Bayesian approach the prior confidence assigned to the structural

model is the tightness of the prior predicted by the DSGE model, while in our procedure it is

the model probability. It is however important to distinguish the notions of confidence in the

two approaches, since the former is in terms of Bayesian probabilistic uncertainty while the

latter is in terms of Knightian uncertainty.

4 Empirical Application

We illustrate our method in the context of a conventional monetary SVAR for the federal funds

rate it, real output growth ∆gdpt and inflation πt, as in Aruoba and Schorfheide (2011). The

model has three lags (as selected by the HQ information criterion). Following Definition 3 in

Giacomini and Kitagawa (in press), we order the variables so that we can verify the conditions

guaranteeing convexity of the identified set using their Proposition B.1.

A0yt = c+

3∑
j=1

Ajyt−j + εt, for t = 1, . . . , T (4.1)

where yt = (it,∆gdpt, πt)
′ and

A0 =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 . (4.2)
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Assume εt = (εmpt , εdt , ε
s
t )
′ are i.i.d. normally distributed with mean zero and variance-covariance

the identity matrix I3. The first equation in (5.1) is interpreted as a monetary policy function,

while the second and third represent aggregate demand (AD) and aggregate supply (AS),

respectively. Thus, εmpt , εdt , and εst are monetary policy-, aggregate demand- and aggregate

supply shocks, respectively. The data are quarterly observations from 1965:1 to 2005:1 from

the FRED2 database.

The reduced-form VAR is:

yt = b+

3∑
j=1

Bjyt−j + ut, (4.3)

where b = A−1
0 c,Bj = A−1

0 Aj , ut = A−1
0 εt, var(ut) = E(utu

′
t) = Σ = A−1

0 (A−1
0 )′. The reduced

form parameter is φ = (b, B1, . . . , B4,Σ).

The prior belongs to the Normal Inverse-Wishart family:

Σ ∼ IW(Ψ, d), β|Σ ∼ N (b̄,Σ⊗ Ω),

where β ≡ vec([b, B1, . . . , B4]′). Ψ = I3 is the location matrix of Σ, d = 4 is a scalar degrees

of freedom hyperparameter and Ω = 100I10 is the variance-covariance matrix of β. The prior

mean b̄ is consistent with a random walk representation for the observables. In what follows,

we perform Algorithm 3.1 with 1000 draws of φ’s from the Normal Inverse-Wishart posterior.

Following Christiano et al. (1999), we always impose the sign normalization restrictions so that

the diagonal elements of A0 are nonnegative.

4.1 Averaging Indistinguishable Models

Suppose we are interested in the cumulative output growth response17 to a unit (contractionary)

monetary policy shock εmpt at horizon h, IRh∆gdp,mp, and consider the following two sets of

identifying assumptions.

• Model 1 (M1, point-identified) Assume that output growth and inflation do not react on

impact to the monetary policy shock, so that the (2,1) and (3,1) elements of the matrix

of contemporaneous impulse responses IR0 = A−1
0 are zero. This identification scheme

point-identifies IRh∆gdp,mp.

• Model 2 (M2, set-identified through zero restrictions)

The identification scheme in Model 1 is controversial.18 Thus, in Model 2 we leave

inflation unrestricted and the zero restriction is only imposed on the (2,1) element of

A−1
0 . By Proposition B.1 in Giacomini and Kitagawa (in press), Model 2 delivers a

convex identified set for IRh∆gdp,mp.

17From now on, any impulse response is cumulative.
18See Kilian (2013) for a discussion.
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Panels (a), (b), and (e) of Figure 1 focus on the output response at horizon h = 3 implied

by Model 1, Model 2 and their average for uniform prior model probabilities. In panel (a),

the vertical solid lines for Model 1 are the 90% credible region for the point-identified output

response based on a single posterior; in panel (b), the vertical dashed lines for Model 2 are

the posterior mean bounds (consistent estimator of the identified set) for the output response

and the solid line represents credible regions piled up from the 95% (bottom) to 5% (top) with

increasing credibility by 5%. Panel (e) reports the model averaging results. The vertical dashed

lines for the averaged model can be viewed as shrinking the identified set estimator from Model

2 towards the point estimator from Model 1. Figure 2 reports the results for multiple horizons.

Note that, as is common for point-identified small-scale SVARs, Model 1 shows a negative

response of output in the short run, whereas the set-identified Model 2 is consistent with both

positive and negative effects. This is confirmed by the last row in Table 2, reporting the lower

and upper probability that the post-averaging interval of posterior means of the output response

lies in the negative real halfline. Averaging the models still does not rule out a positive output

response, as the 90% robust credibility region always contains positive values. Note that, since

the models are indistinguishable, the prior model probabilities are not updated by the data.

4.2 Averaging Distinguishable Models

We now consider a case where the prior model probabilities are updated, by adding two popular

models: a sign-restricted SVAR and a structural DSGE model.

• Model 3 (M3, set-identified through sign restrictions)

We consider the following sign restrictions: the inflation response to a contractionary

monetary policy shock is nonpositive and the interest rate response is nonnegative at

h = 0, 1. As in Uhlig (2005), the output response is unrestricted. By Lemma 5.2 in

Giacomini and Kitagawa (in press), the identified set in Model 3 is convex.

Consider averaging Model 1 and Model 3 with equal prior probabilities. In contrast to the

previous example, the prior probabilities can now be updated using equation (3.5) because the

models are distinguishable due to the observationally restrictive sign restrictions. Appendix ??

provides two algorithms for approximating the posterior-prior plausibility ratio for the sign-

restricted SVARs. We report results based on Algorithm ?? (Algorithm ?? produces almost

identical results).19

19When only a few sign restrictions are imposed, the set of q1’s satisfying the sign restrictions is not small for

most of the draws of φ. Hence, for assessing non-emptiness of the identified set, the numerical approximation

of Algorithm ?? works as well as the analytical method of Algorithm ??. In terms of computation time, when

K = 1000 draws of φ are used, Algorithm ?? takes 12.35 seconds to compute O3, while Algorithm ?? with

L = 90000 draws of q1 takes 1377.79 seconds.
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Panel (f) of Figures 1 and 2 reports the results of averaging the two models: as in the case

of Model 2, Model 3 does not rule out a positive output response (this is also the conclusion

of Uhlig (2005), however based on a single-prior approach). Table 1 shows that the posterior

model probabilities favour Model 3 (with posterior probability 0.55), and the average of the

two models does not exclude a positive output response.

• Model 4 (M4, DSGE)

We consider the Bayesian DSGE model in An and Schorfheide (2007), which is a simplified

version of Smets and Wouters (2003) and Christiano et al. (2005). In order to estimate

the model, we rely on the prior specification in An and Schorfheide (2007), Table 2 and

use output, inflation and interest rate as observables. We use the Laplace approximation

to compute the marginal likelihood.

Panel (g) of Figure 1 and 2 shows the results of averaging Models 3 and 4; note the different

scale for Model 4. These models do not admit an identical reduced form, so the (equal) prior

probabilities are updated according to equation (3.3). We see that Model 4 implies a negative

output response, however its posterior model probability is only 0.13, and the averaged model

is consistent with both a positive and negative output response.

Finally, Panel (h) of Figure 1 and 2 reports the results of averaging all models (with equal

prior weights). The posterior model probabilities (Table 1, last column) show evidence sup-

porting the sign-restricted SVAR, while the support for the DSGE model is again weak. As in

all previous cases, the averaged model does not rule out a positive output response.

4.3 Reverse-Engineering Prior Model Probabilities

We now conduct the reverse engineering exercise discussed in Section 2, which computes the

prior weight one would need to assign to a set of restrictions in order for the posterior mean

bounds for the output response to be contained in the negative real halfline.

First consider Model 1 and Model 2. Letting w be the prior probability of Model 1, the

post-averaging interval of posterior means is

[
inf

πα|Y ∈Πα|Y
Eα|Y (α), sup

πα|Y ∈Πα|Y

Eα|Y (α)

]
=

= πM1|YEα|M1,Y (α) + πM2|Y
[
Eφ|Y,M2(l(φM2 |M2)), Eφ|Y,M2(u(φM2 |M2))

]
and the posterior model probabilities are equal to the prior probabilities (since the models are

indistinguishable), i.e., πM1|Y = w and πM2|Y = 1− w.
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We compute the prior model probability w such that the post-averaging interval of posterior

means is contained in the negative real halfline for h = 3. We find that one would need w > 0.28

to support the conclusion.

We next consider Model 1 and Model 3 (set-identification through sign restrictions). The

only difference is that now the posterior model probabilities are updated and are equal to

πM1|Y =
O1 · w

O1 · w +O3 · (1− w)
and πM3|Y =

O3 · (1− w)

O1 · w +O3 · (1− w)
.

We find that one would need to attach very high prior probability (w > 0.83) to the point-

identifying restrictions in Model 1 to obtain a negative output response.

Similar reverse engineering exercises could usefully shed light on the role of identifying

assumptions in generating so-called price and liquidity puzzles in monetary SVARs.20
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Figure 1: Density and Robust Credible Region of Output Impulse Responses

Note: Figure 1 reports output impulse response at horizon h = 3. For set-identified models (panel (b), (c) (e), (f),

(g), (h)), step lines represent the Robust Credible Region (RCR) at different credibility levels. The vertical dashed lines

represent the posterior mean bounds. For point-identified models (panel (a) and (d)), the vertical solid lines display the

standard credible region. In such a case, we report its posterior density.

20The price puzzle occurs when contractionary monetary policy shocks produce a positive response of the price

level (Sims, 1992). The liquidity puzzle refers to positive shocks in monetary aggregates leading to an initial

rising rather than falling of interest rates (Reichenstein, 1987).
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Figure 2: Plots of Output Impulse Responses

Note: for set-identified models (panel (b), (c) (e), (f), (g), (h)), the vertical bars show the posterior mean bounds

and the dashed curves connect the upper/lower bounds of posterior robust credible regions with credibility 90%. For

point-identified models (panel (a) and (d)), the points plot the (unique) posterior mean and the dashed curve represent

the highest posterior density regions with credibility 90%.
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Averaging M1, M2 Averaging M1,M3 Averaging M3,M4 Averaging M1,M2,M3,M4

Prior w1 0.50 0.50 / 0.25

Prior w2 0.50 / / 0.25

Prior w3 / 0.50 0.50 0.25

Prior w4 / / 0.50 0.25

O1 1 1 / 1

O2 1 / / 1

O3 / 1.21 1.21 1.21

O4 / / 1 1

ln p̃(Y ) −779.61 −779.61 −779.61 −779.61

ln p(Y |M1) −779.61 −779.61 −779.61 −779.61

ln p(Y |M4) / / −781.29 −781.29

Posterior w∗1 0.50 0.45 / 0.29

Posterior w∗2 0.50 / / 0.29

Posterior w∗3 / 0.55 0.87 0.36

Posterior w∗4 / / 0.13 0.06

Table 1: Output Responses: Prior and Posterior Weights

Note: prior wi, Oi and posterior w∗i denote prior model probability, posterior-prior credibility ratio and posterior

model probability for candidate Model i, respectively; ln p̃(Y ), ln p(Y |M1) and ln p(Y |M4) represent log marginal

likelihood for the common reduced form, for Model 1 and for Model 4, respectively.
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M1 M2

h = 2 h = 10 h = 20 h = 2 h = 10 h = 20

Post. Mean −.16 −.68 −1.22 / / /

90% CR [−.35, .02] [−1.28,−.06] [−2.37,−.13] / / /

Post. Mean Bounds / / / [−.20, .07] [−.83, .27] [−1.58, .62]

90% robust CR / / / [−.37, .28] [−1.43, .97] [−2.62, 2.00]

Set of ΠIRh|Y {IRh < 0} .92 .97 .97 [.25, .99] [.28, .99] [.24, .99]

M3 M4

h = 2 h = 10 h = 20 h = 2 h = 10 h = 20

Post. Mean / / / −.40 −.52 −.52

90% CR / / / [−.47,−.31] [−.67,−.38] [−.67,−.38]

Post. Mean Bounds [−.99, 1.01] [−3.03, 3.08] [−5.73, 5.93] / / /

90% robust CR [−1.16, 1.16] [−3.69, 3.60] [−6.93, 6.94] / / /

Set of ΠIRh|Y {IRh < 0} [0, 1] [0, 1] [0, 1] 1 1 1

Averaging M1,M2 Averaging M1,M3

h = 2 h = 10 h = 20 h = 2 h = 10 h = 20

Post. Mean / / / / / /

90% CR / / / / / /

Post. Mean Bounds [−.18,−.04] [−.76,−.21] [−1.41,−.31] [−.64, .52] [−2.05, 1.53] [−3.85, 2.98]

90% robust CR [−.38, .21] [−1.44, .76] [−2.63, 1.55] [−1.13, 1.12] [−3.52, 3.48] [−6.60, 6.72]

Set of ΠIRh|Y {IRh < 0} [.59, 95] [.62, .99] [.61, .98] [.38, .96] [.40, .98] [.40, .98]

Averaging M3,M4 Averaging M1,M2,M3,M4

h = 2 h = 10 h = 20 h = 2 h = 10 h = 20

Post. Mean / / / / / /

90% CR / / / / / /

Post. Mean Bounds [−.91, .82] [−2.71, 2.60] [−5.05, 5.05] [−.48, .30] [−1.55, .94] [−2.89, 1.89]

90% robust CR [−1.14, 1.16] [−3.61, 3.57] [−6.88, 6.80] [−1.09, 1.07] [−3.32, 3.37] [−6.27, 6.51]

Set of ΠIRh|Y {IRh < 0} [.13, 1] [.13, 1] [.13, 1] [.40, .96] [.43, .99] [.42, .99]

Table 2: Output Responses: Estimation and Inference

5 Conclusion

We proposed a method to average point-identified models and set-identified models from the

multiple prior (ambiguous belief) viewpoint. The method combines single priors in point-

identified models with multiple priors in set-identified models, and delivers a set of posteriors.

The post-averaging set of posteriors can be summarized by the set of posterior means and robust

credible regions, which are easy to compute numerically. Our averaging method can effectively

reduce the amount of ambiguity (the size of the posterior class) relative to the analysis based on

a set-identified model only, and hence offers a simple and flexible way to introduce additional

identifying information into the set-identified model. In the opposite direction, when the set-

identified model nests the point-identified model, our method offers a simple and flexible way

to conduct sensitivity analysis for the point-identified model.
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