- 1 The first choristoderan record from the Upper Cretaceous of Asia, Tamagawa Formation, Kuji
- 2 Group, Japan
- 3
- 4 Ryoko Matsumoto¹, Ren Hirayama², Shinya Miyata³, Masataka Yoshida⁴, Shunsuke
- 5 Mitsuzuka⁵, Toshio Takisawa⁶, and Susan E. Evans⁷.
- 6
- ⁷ ¹Kanagawa Prefectural Museum of Natural History, 499 Iryuda, Odawara, Kanagawa, 250-
- 8 0031, Japan. E-mail: r-matsumoto@nh.kanagawa-museum.jp
- 9 ²School of International Liberal Studies, Waseda University, Nishi-waseda 1-6-1, Shinjuku-ku,
- 10 Tokyo 169-8050, Japan.
- ³Oishi Fossils Gallery of Mizuta Memorial Museum, Josai University Educational Corporation,
- 12 2-3-20, Hirakawa-cho, Chiyoda-ku, Tokyo 102-00 93, Japan.
- 13 ⁴The University Museum, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033,
- 14 Japan
- ⁵ Nippon Koei Co., Ltd., Japan, 5-4, Koujimachi, Chiyoda, Tokyo, 102-0083, Japan.
- ⁶ Kuji Amber Museum, Japan, 19-156-133, Kokuji, Kuji, Iwate, 028-0071, Japan.

17	⁷ Department of Cell & Developmental Biology, University College London, Gower Street, WC1E
18	6BT, UK Biosciences, London
19	
20	Abstract
21	Choristoderes are freshwater diapsid reptiles that are distributed through Laurasia in Jurassic-
22	Miocene deposits. The group shows great diversity in the Early Cretaceous of Asia, with all
23	recognized morphotypes recorded from that region. However, there is then a substantial gap in
24	the Asian record until choristoderes are reported from the Paleocene of Kazakhstan. This gap
25	has raised questions as to whether the group became extinct in Asia during the Late
26	Cretaceous, with subsequent reinvasion from either North America or Europe. Here we report
27	the discovery of vertebrae attributable to Choristodera indet. from the lower Upper Cretaceous
28	(Turonian) of the Tamagawa Formation, Kuji City, Iwate Prefecture, Japan. This is the first
29	record of Choristodera from the Upper Cretaceous of Asia, and may imply that the group
30	persisted in this region from the Jurassic to the Paleocene. The challenge for the future will be
31	to recover a more complete record of Choristodera in the Upper Cretaceous of Asia.
32	

- 33 Key words: Choristodera, Diapsida, Late Cretaceous, Kuji Group, Japan

36	Choristoderes are an extinct group of amphibious freshwater reptiles that were
37	widely distributed through Laurasia (Dong et al., 2020; Matsumoto and Evans, 2010; Matsumoto
38	et al., 2019ab), and possibly parts of Gondwana (Haddoumi et al. 2016), from the Jurassic to
39	the Miocene (Evans, 1990; Averianov et al. 2006; Evans and Klembara, 2005).
40	By far the greatest diversity of choristoderes is reported from the Lower Cretaceous
41	of eastern Asia, with records from Japan, China, Russia (Transbaikalia, Western and Eastern
42	Siberia), and Mongolia (e.g. Brinkman and Dong, 1993; Efimov, 1975; Evans and Manabe,
43	1999; Gao et al., 2000; Ksepka et al., 2005; Matsumoto et al., 2007, 2014; Skutschas, 2008;
44	Skutschas and Vitenko, 2015). Moreover, between them, these Early Cretaceous Asian
45	choristoderes display an degree of morphological disparity found in no other place or time
46	period, with taxa ranging from brevirostrine and short-necked (e.g. Monjurosuchus,
47	Philydrosaurus), through brevirostrine and long-necked (e.g. Hyphalosaurus), to the derived
48	longirostrine, short-necked neochoristoderes (e.g. Tchoiria, Ikechosaurus); the lower temporal

49	fenestra may also be open (e.g. Tchoiria, Ikechosaurus) or closed (Monjurosuchus,
50	Philydrosaurus). The long-necked morphotype, represented by Shokawa, Hyphalosaurus, and
51	Khurendukhosaurus (Evans and Manabe, 1999; Gao et al., 1999; Sigogneau-Russell and
52	Efimov, 1984; Matsumoto et al., 2019a), is unique to the Early Cretaceous of Asia; the others
53	are more widespread. Given this Early Cretaceous Asian diversity, the complete absence of a
54	Late Cretaceous Asian record has been a frustration. It raised questions as to whether
55	choristoderes survived in the Late Cretaceous of Asia but were unrecorded due to a lack of
56	suitable/ sampled depositional environments, or became extinct in Asia and re-entered
57	(Kazakhstan, Averianov, 2005) during the Paleocene from Europe or North America where the
58	Cretaceous record is more complete (Averianov, 2005; Matsumoto and Evans, 2010).
59	Since 2012, researchers from Waseda University and the Kuji Amber Museum have
60	been jointly excavating a new Upper Cretaceous locality in the Tamagawa Formation (Kuji
61	Group), Iwate Prefecture, northeast Japan. This formation was already well known for amber,
62	but has recently yielded a diversity of vertebrates including fishes, crocodilians, turtles,
63	dinosaurs, and pterosaurs (Hirayama, et al., 2010; Miyata, et al., 2019). Here we report the

64 discovery of isolated choristoderan vertebrae from this locality, representing the first

65 choristoderan record from the lower Upper Cretaceous of Asia.

66

67

68 2. Geological setting

69	The Upper Cretaceous deposits of the main part of the Kuji Group are distributed
70	along a band running from northwest to southeast of Japan (Fig 1). The Kuji Group is composed
71	of three parts, the Tamagawa, Kunitan, and Sawayama formations (e.g. Terui and Nagayama.,
72	1995; Umezu and Kurita, 2007). The lower component of the Tamagawa Formation is formed
73	by shallow marine or terrestrial deposits, about 180 m in maximum thickness (Hirayama et al.,
74	2010). It consists of conglomerate in the lower part, and sandstone and carbonaceous
75	mudstone in the middle to upper parts that have yielded amber and phytolites. Moreover, the
76	middle part also contains oyster shell beds. The Kunitan Formation represents shallow marine
77	deposits, 170 m in thickness. The fine-grained sandstone of the lower to middle parts yields
78	ammonites such as Polyptychoceras and the inoceramid Inoceramus naumanni (Terui and
79	Nagahama, 1995), and teeth of the marine reptilian mosasauroids (Kawakami et al., 1985). The

80	Sawayama Formation comprises terrestrial deposits which have yielded fossil plants, and it is
81	mainly composed of conglomerate and sandstone. The layer is only 70 m in depth, thinner than
82	the other two layers.
83	The joint Kuji Amber Museum and Waseda University research project has
84	excavated the uppermost part of the Tamagawa Formation which is exposed on the east side of
85	the Kuji Amber Museum, Iwate Prefecture, and is roughly 4 m in thickness. It is composed of
86	carbonaceous silt, greenish-white tuff, and greenish-gray medium-grained sandstones. The
87	depositional environment has been reconstructed as a river – river mouth, based on
88	sedimentological studies by Terui and Nagahama (1995). This locality has yielded various
89	terrestrial and aquatic vertebrates, including isolated elements of turtle, crocodilians, dinosaurs,
90	and pterosaurs (Hirayama et al., 2010, 2021), amounting to roughly 2200 specimens by 2020
91	(unpublished data). In 2014, 2015 and 2017, two relatively well preserved isolated
92	choristoderan vertebrae, and another vertebra, possibly attributable to choristoderes, were
93	recovered from the sandstone bed lying above the tuff layer.
94	The lower part of the Kunitan Formation, overlying the Tamagawa Formation, yields
95	ammonites including Texanites cotlignoni, T. (Ptesiotexanites) pacifcus, and inoceramids

96	Sphenoceramus naumanni, which are considered to indicates a Santonian age in the northwest
97	Pacific region (e.g. Ando, 1997; Futakami et al., 1987; Toshimitsu et al., 1995, 2007). Although
98	triprojectate pollen is rare, two genera (Fibulapollis and Aquillapollenites) are known from the
99	upper part of the Tamagawa Formation, as well as from the upper layer of the Sawayama
100	Formation (Umezu and Kurita, 2007). The age of these two layers has been placed as no
101	younger than the Coniacian/ Santonian boundary, at which triprojectate pollen was starting to
102	diversity (Umezu and Kurita, 2007). On the other hand, carbon isotope stratigraphy, based on
103	detrital woods with U-Pb radiometric dating, indicated the depositional age of the bone-bed in
104	the Kuji Group to be the early-middle Santonian (Arimoto et al., 2018). However, more recent
105	studies (Hirayama, et al., 2021; Uno et al., 2018) have suggested that the upper part of the
106	Tamagawa Formation, interbedded in the bone bed, can be dated as 90.51 ± 0.54 Ma based on
107	U-Pb in volcanic ash. In addition, an analysis of the pollen composition in outcrops of the bone
108	bed did not find triprojectate pollen, but other pollens and spores that are consistent with
109	Turonian Flora (Legrand et al., 2019). Overall, the age of the bone bed of the Tamagawa
110	Formation is considered to be between the Turonian and Santonian, but a Turonian age is more
111	(Hirayama et al., 2021).

113 3. Systematic pareonitology	113	3.	Systematic paleontology
---------------------------------	-----	----	-------------------------

- 114 Reptilia Linnaeus, 1748
- 115 Diapsida Osborn, 1903
- 116 Choristodera Cope, 1884
- 117 Choristodera gen. et sp. indet.

118

119 Institutional abbreviations

- 120 AMNH, American Museum Natural History, New York, USA; IVPP, Institute of Vertebrate
- 121 Paleontology and Paleoanthropology, Beijing, China; **OSD**, Osawada River, Kuji Amber
- 122 Museum, Iwate Prefecture, Japan; RTMP, Royal Tyrrell Museum of Palaeontology, Drumheller,
- 123 Canada; SMM, The Science Museum Minnesota, St. Paul, Minnesota, USA.
- 124
- 125 4. Materials
- 126 Two isolated vertebrae found in the Tamagawa Formation as exposed along the
- 127 Osawada River on the eastern side of the Kuji Amber Museum (OSD), Iwate Prefecture, Japan:

128	cervical vertebra (OSD 586); and dorsal or sacral vertebra (OSD 844). Another very worn
129	cervical vertebra (OSD 1600; similar to OSD 586 in having a midventral keel) were also found
130	from this locality but it is too fragmentary for description. These specimens are housed in Kuji
131	Amber Museum.
132	
133	5. Description
134	OSD 586 is a vertebra with an amphiplatyan centrum in which the notochordal canal
135	is closed, and the neurocentral articular surface is clearly preserved, demonstrating that the
136	neurocentral suture remained open (Fig. 2A-F). The centrum is short (length 10.99 mm; height
137	10.71 mm; width 10.86 mm) and the articular surface of the centrum is circular (Fig. 2A, C), and
138	spool-like as in neochoristoderes (Matsumoto et al., 2019b, Appendix 2). The centrum is slightly
139	worn, but the rib parapophyses are weakly visible on the anteroventral margin of the centrum
140	(Fig. 2D–F), and a strong midventral keel is developed (Fig. 2A, C, E). These features suggest
141	that OSD 586 is a cervical vertebra. In most neochoristoderes (e.g. Ikechosaurus
142	Champsosaurus, Simoedosaurus), the parapophysis is first seen from the level of vertebra (v)3-
143	-4, but it is first developed on v 5 in Champsosaurus albertensis [RTMP 86.12.11], C. gigas

144	[SMM 77.33.24] and C. natator (Matsumoto, 2011). The parapophyses of these taxa project
145	laterally from v5 or v6 (e.g. C. gigas [SMM 77.33.24], C. ambulator [AMNH 983], C. laramiensis
146	[AMNH 982]). The anterior-most parapophysis is located on the anteroventral margin of the
147	centrum and it gradually moves dorsally along the cervical series, until it merges with the
148	diapophysis in posterior cervical vertebrae (Russell 1956; Matsumoto, 2011). Ikechosaurus is
149	the earliest known neochoristodere from Asia, and several specimens preserve nearly complete
150	cervical vertebrae (e.g. IVPP V 9611-1, 9611-3, 13283). In Ikechosaurus, the ventral keel
151	becomes strong on v3, and the parapophysis is located ventrally, near the ventral keel. In v4,
152	the parapophysis is placed at the middle of the centrum in lateral view. By comparison with
153	Ikechosaurus and Champsosaurus, OSD 586 was probably from the anterior or middle portion
154	of the neck, somewhere between v3-v5.
155	OSD 844 (Fig. 2G–L) is smaller than the cervical vertebra (OSD 586). The centrum
156	length and height are almost equal (length 8.44 mm; height 7.3 mm; width 8.09 mm). As in OSD
157	586, the centrum is amphiplatyan with a closed notochordal canal (Fig. 2G, I). The articular
158	surface of the centrum has a horizontal dorsal margin in anterior and posterior views (Fig. 2G,
159	I), giving the centrum a subcylindrical morphology. The ventral surface of the vertebra is smooth

160	(Fig. 2K). In OSD 844 the parapophyses have merged with the diapophyses at the border of the
161	neurocentral articulation (Fig. 2J, L). These rib facets do not have a strong lateral projection, a
162	feature that is often shown in neochoristodere sacral vertebra where the sacral ribs are unfused
163	(RM pers obs). Thus, OSD 844 might be a dorsal or sacral vertebra but this cannot be
164	confirmed without further material showing the range of vertebral morphology in this taxon.
165	
166	
167	6. Comparison
168	The Tamagawa Formation has yielded vertebrae of several different vertebrates,
169	including fishes, turtles, squamates and neosuchian crocodilians (Hirayama et al., 2015). OSD
170	586 and OSD 844 are distinguished from those of other reptiles by the following characters:
171	amphiplatyan centra, closed notochordal canal, and open neurocentral suture. Some early
172	crocodyliformes have broadly similar amphicoelous centra (the transition from amphicoelous to
173	procoelous vertebrae occurred in Crocodylia: Salisbury et al., 2006). However, OSD 586 and
174	844 are distinguished from vertebrae of crocodyliforms in the morphology of the articular
175	surface for the neural arch. On the dorsal surface of the centrum in these specimens, a ridge is

- 176 weakly developed along the midline and it is flanked by shallow grooves forming an hourglass
- 177 shape. The sutural surfaces for the neural arch pedicels are shallow and relatively smooth, with
- 178 the surfaces widest anteriorly and narrowing posterolaterally. These are characteristic features
- 179 of choristoderan centra (e.g. Evans, 1991).
- 180 The two vertebrae (OSD 586, 844) resemble those of neochoristoderes (e.g.
- 181 Matsumoto et al., 2019b, Appendix 2) in having a short spool-like centrum (centrum height and
- 182 length almost equal), unlike the more elongated centra seen in most non-neochoristoderes. In
- 183 addition, the articular surfaces of the Tamagawa Formation centra are subcylindrical (OSD 586)
- 184 or cylindrical (OSD 844), unlike those of the long-necked choristoderes
- 185 (Hyphalosaurus, Shokawa, Khurendukhosaurus), whose articular surfaces form a dorsoventrally
- 186 elongated oval (Matsumoto, 2011). Although most known Neochoristodera have a relatively
- 187 larger body size than other choristoderes, *Ikechosaurus sunailinae* (IVPPV 9611-1) from the
- 188 Lower Cretaceous Laohongdong Formation is small and may be a juvenile (snout-vent length;
- 189 0.32 m). This small Ikechosaurus (IVPPV 9611-1) has cervical centra ~7 mm in length
- 190 (Brinkman and Dong, 1993) and dorsal vertebrae that are slightly smaller than either OSD 586
- 191 or 844 (pers. obs. RM). Although the body proportions of the Tamagawa choristodere are

192	unknown, the individual would have been relatively small (< 1m in snout-vent length). Here we
193	refer these vertebrae from the Tamagawa Formation to Choristodera indet. A more precise
194	taxonomic identification is not possible due to a lack of diagnostic characters in isolated
195	choristoderan centra, but the Tamagawa vertebrae more closely resemble those of known
196	neochoristoderes than those of non-neochoristoderan genera.
197	
198	7. Discussion
199	Two vertebrae from the Tamagawa Formation (Turonian), Iwate Prefecture have
200	been identified as those of choristoderes, and are thus the first record of choristoderes from the
201	Upper Cretaceous of Asia. Although fragmentary, these specimens are important in filling a gap
202	in the Asian choristodere record between the Early Cretaceous and the Paleocene (Fig. 3).
203	They support the suggestion (Matsumoto and Evans 2010) that the apparent absence of
204	choristoderes in the Late Cretaceous might be an artefact cause by a lack of suitable
205	depositional environments for the preservation of warm, temperate fresh-water reptiles. As
206	outlined above, the depositional environment of the uppermost part of the Tamagawa Formation
207	has been reconstructed as a fluvial (Legrand et al., 2019), and the locality has yielded both

208	terrestrial and aquatic vertebrates, including turtles, crocodilians, dinosaurs, and pterosaurs
209	(Hirayama et al., 2010). A paleovegetational study based on fossil pollen and spore indicates
210	that the Tamagawa Formation represents a humid environment (Legrand et al., 2019). Thus,
211	recent field work in the Tamagawa Formation and the new discoveries have confirmed that
212	choristoderes persisted in Asia from at least the Jurassic to the Paleocene, and in freshwater
213	localities with humid and warm-temperate environments. There are several other Late
214	Cretaceous vertebrate assemblages from Middle and Central Asia (Averianov and Sues, 2012).
215	Of these localities, the Zhirkindek Formation in Kazakhstan is similar to the Tamagawa
216	Formation, with several horizons that mark marine transgressions and yield vertebrates such as
217	fish, squamates, turtles, salamanders, crocodilians, pterosaurs, and dinosaurs (Averianov, et
218	al., 2016). Some of these vertebrates are shared with the Tamagawa Formation, such as adocid
219	turtles (Hirayama et al., 2010; 2021), and the marine-to-brackish-water shark Scapanorhynchus
220	(Miyata et al., 2019). In addition, the age of Zhirkindek Formation is considered to be Turonian
221	(Nesov, 1993), similar to that of the Tamagawa Formation. The last record of choristoderes in
222	Asia is also from Kazakhstan (Averianov, 2005), and the Zhirkindek Formation may therefore
223	have the potential to yield choristoderes.

224	The choristodere material from the Tamagawa Formation is too fragmentary to
225	determine the morphotype (e.g. rostral length) of the taxon represented. However, although
226	vertebral morphology changes along the trunk, short, spool-like cervical centra of the kind found
227	in the Tamagawa Formation are characteristic of those found in short-necked neochoristoderes
228	(Matsumoto et al., 2019b, Appendix 1,2). Neochoristoderes are known to have diversified in the
229	Late Cretaceous of North America and Europe. These Euramerican neochoristoderes are
230	known from deposits representing low-lying river channels and deltaic deposits, whereas small
231	non-neochoristoderes have generally been recovered from continental lake environments
232	(Matsumoto and Evans, 2010). The Tamagawa Formation has been reconstructed as
233	representing a river (Legrand et al., 2019), whereas Lower Cretaceous Japanese choristoderan
234	localities in the Okurodani and Kuwajima formations of the Tetori Groups are considered to
235	represent floodplain environments (Isaji et al., 2005). In addition, the Tamagawa Formation
236	differs from that typically associated with Early Cretaceous choristoderes (Matsumoto and
237	Evans, 2010) in the presence of crocodilians. The crocodilians from the Tamagawa Formation
238	were tentatively identified as Neosuchia based on vertebrae, osteoderms and isolated teeth
239	(Hirayama et al., 2015). The maximum total adult length is estimated to be roughly \sim 3 m, based

240	on comparisons with extant crocodilian species (pers. obs. RH). Under this interpretation, the
241	young crocodilians from the Tamagawa Formation could possibly compete with the
242	choristoderes, in terms of their size.
243	There may have been a transition in the choristoderan fauna between the Early and
244	the Late Cretaceous, with neochoristoderan genera gradually replacing the smaller non-
245	neochoristoderan taxa. Further discoveries from the Tamagawa Formation will be important to
246	our understanding of the evolutionary history and diversification of choristoderes in Asia.
247	
248	8 Conclusions
249	Two isolated vertebrae from the Upper Cretaceous (Turonian) Tamagawa Formation,
249 250	Two isolated vertebrae from the Upper Cretaceous (Turonian) Tamagawa Formation, Iwate Prefecture, Japan, are attributed to the Choristodera (and probably Neochoristodera)
249 250 251	Two isolated vertebrae from the Upper Cretaceous (Turonian) Tamagawa Formation, Iwate Prefecture, Japan, are attributed to the Choristodera (and probably Neochoristodera) based on amphiplatyan centra; a closed notochordal canal; open neurocentral sutures; shallow
249 250 251 252	Two isolated vertebrae from the Upper Cretaceous (Turonian) Tamagawa Formation, Iwate Prefecture, Japan, are attributed to the Choristodera (and probably Neochoristodera) based on amphiplatyan centra; a closed notochordal canal; open neurocentral sutures; shallow facets for neural arch pedicels, widest anteriorly, narrowing posteriorly, bearing hourglass-
249 250 251 252 253	Two isolated vertebrae from the Upper Cretaceous (Turonian) Tamagawa Formation, Iwate Prefecture, Japan, are attributed to the Choristodera (and probably Neochoristodera) based on amphiplatyan centra; a closed notochordal canal; open neurocentral sutures; shallow facets for neural arch pedicels, widest anteriorly, narrowing posteriorly, bearing hourglass- shaped grooves along the midline; and a short spool-like centrum. These new specimens, albeit
249 250 251 252 253 254	Two isolated vertebrae from the Upper Cretaceous (Turonian) Tamagawa Formation, Iwate Prefecture, Japan, are attributed to the Choristodera (and probably Neochoristodera) based on amphiplatyan centra; a closed notochordal canal; open neurocentral sutures; shallow facets for neural arch pedicels, widest anteriorly, narrowing posteriorly, bearing hourglass- shaped grooves along the midline; and a short spool-like centrum. These new specimens, albeit fragmentary, provide the first record of Choristodera from the Upper Cretaceous of Asia and fill

- 256 They demonstrate that choristoderes may have persisted in this region from the Jurassic to the
- 257 Paleocene, and highlight the importance of searching other Upper Cretaceous Asian deposits
- 258 for choristodere remains. Additional specimens, especially of the skull, are required in order to
- 259 identify the Tamagawa Formation choristoderes.
- 260

```
261 Acknowledgments
```

262	Our thanks to Kazuhisa	a Sasaki (Kuji City)	, Masatoshi Okura	(Aichi Prefecture),	, Ai Ito (⊺	The
-----	------------------------	----------------------	-------------------	---------------------	-------------	-----

- 263 University of Tokyo), Mariko Kurosu (China University of Geosciences) for help during the
- 264 excavation; Hikaru Uno (Waseda University) and Yukiyasu Tsutsumi (National Museum of
- 265 Nature and Science) for providing new data of U-Pb radiometric dating of the Tamagawa
- 266 Formation; and Daichi Nakai (Nagoya University) who found one of the specimens described in
- this study (OSD 586). We also acknowledge Alexander Averianov (Zoological Institute, Russian
- 268 Academy of Sciences) and Pavel Skutschas (Saint Petersburg State University) for comments
- 269 on an earlier version of the manuscript, which helped to improve this paper.

272 References

273	Averianov, A.O., 2005. The first choristoderes (Diapsida, Choristodera) from the Paleogene of
274	Asia. Paleontological Journal 39, 79–84.
275	Averianov A.O., Martin, T., Evans, S.E., Bakirov, A.A., 2006. First Jurassic Choristodera from
276	Asia. Naturwissenschaften 93, 46–50.
277	Averianov, A.O., Sues, H-D., 2012. Correlation of Late Cretaceous continental vertebrate
278	assemblages in Middle and Central Asia. Journal of Stratigraphy 36, 462–485.
279	Ando, H., 1997. Apparent stacking patterns of depositional sequences in the Upper Cretaceous
280	shallow-marine to fluvial successions, Northeast Japan. Memoirs of the Geological
281	Society of Japan 48, 43–59.
282	Arimoto, J., Takashima, R., Nishi, H., Yamanaka, T., Orihashi, Y., Jo, S., Yamamoto, K.,
283	Umetsu, K., 2018. Constraining the depositional age of an Upper Cretaceous non-marine
284	and shallow marine siliciclastic succession, Kuji Group, northeastern Japan, based on
285	carbon isotope stratigraphy and U-Pb radiometric dating. Cretaceous Research 92, 264–
286	27.

287	Brinkman, D. B., Dong, Z.M., 1993. New material of <i>Ikechosaurus sunailinae</i> (Reptilia:
288	Choristodera) from the Early Cretaceous Langhongdong Formation, Ordos Basin, Inner
289	Mongolia, and the interrelationships of the genus. Canadian Journal of Earth Sciences
290	30, 2153–2162.
291	Dong, L., Matsumoto, R., Kusuhashi, N., Wang, Y., Wang, Y., Evans, S.E., 2020. A new
292	choristodere (Reptilia: Choristodera) from an Aptian-Albian coal deposit in China. Journal
293	of Systematic Palaeontology 18, 1223–1242.
294	Efimov, M.B., 1975. [Champsosaurs from the Lower Cretaceous of Mongolia]. Trudy
295	Sovmestnoi Sovetsko-Mongol'skoi Paleontologicheskoi Ekspeditsii, 2, 84–93. [in
296	Russian].
297	Evans, S.E., 1990. The skull of <i>Cteniogenys</i> , a choristodere (Reptilia, Archosauromorpha) from
298	the Middle Jurassic of Oxfordshire. Zoological Journal of the Linnean Society 99, 205–
299	237.
300	Evans, S.E., 1991. The postcranial skeleton of the choristodere Cteniogenys (Reptilia:
301	Diapsida) from the Middle Jurassic of England. Geobios 24, 187–199.

- 302 Evans, S.E., Klembara, J., 2005. A choristoderan reptile (Reptilia; Diapsida) from the Lower
- 303 Miocene of northwest Bohemia (Czech Republic). Journal of Vertebrate Paleontology 25,

304 168–181.

- 305 Evans, S.E., Manabe, M., 1999. A choristoderan reptile from the Lower Cretaceous of Japan.
- 306 Special Papers in Paleontology 60, 101–119.
- 307 Futakami, M., Kawakami, T., Obata, I., 1987. Santonian texanite ammonites from the Kuji
- 308 Group, Northeast Japan. Bulletin of the Iwate Prefectural Museum 5, 103–112.
- 309 Gao, K., Fox, R.C., 2005. A new choristodere (Reptilia: Diapsida) from the Lower Cretaceous of
- 310 western Liaoning Province, China, and phylogenetic relationships of Monjurosuchidae.
- 311 Zoological Journal of the Linnean Society 145, 427–444.
- 312 Gao, K., Tang, Z., Wang, X., 1999. A long-necked diapsid reptile from the Upper Jurassic/Lower
- 313 Cretaceous of Liaoning Province, northeastern China. Vertebrata PalAsiatica 37, 1–8.
- 314 Gao, K., Evans, S. E., Ji, Q., Norell, M., Ji, S., 2000. Exceptional fossil material of a semi-
- 315 aquatic reptile from China: the resolution of an enigma. Journal of Vertebrate
- 316 Paleontology 20, 417–421.
- 317 Haddoumi, H., Allain, R., Meslouh, S., Metais, G., Monbaron, M., Pons, D., Rage, J-C., Vullo,

318	R., Zouhri, S., Gheerbrant. E., 2016. First continental flora and fauna including mammals
319	from the Middle Jurassic of Africa. Gondwana Research 29, 290–319.
320	Hirayama, R., Kobayashi, K., Sonoda, T., Sasaki, K., 2010. Preliminary report of terrestrial
321	vertebrates from the Late Cretaceous Tamagawa Formation of the Kuji Group of Kuji
322	City, Iwate Prefecture, northeastern Japan. Journal of Fossil Research 42, 74–82.
323	Hirayama, R., Takisawa, T., Sasaki, K., Sonoda, T., Yoshida, M., Takekawa, A., Mitsuzuka, S.,
324	Kobayashi, Y., Tsuihiji T., Tsutsumi, Y., 2015. Terrestrial vertebrates from the Late
325	Cretaceous (Santonian) of Iwate Prefecture, eastern Japan. Society of Vertebrate
326	Paleontology, 75, Meeting Program and Abstracts, pp: 143.
327	Hirayama, R., Sonoda, T., Uno, H., Horie, K., Tsutsumi, Y., Sasaki, K., Mitsuzuka, S., Takisawa,
328	T., 2021. Adocus kohaku, a new species of aquatic turtle (Testudines: Cryptodira:
329	Adocidae) from the Late Cretaceous of Kuji, Iwate Prefecture, Northeast Japan, with
330	special references to the geological age of the Tamagawa Formation (Kuji Group).
331	International Journal of Paleobiology and Paleontology, 4(1), 1–12.
332	Isaji, S., Okazaki, H., Hirayama, H., Matsuoka, H., Barrett, P., Tsubamoto, T., Yamaguchi, M.,
333	Yamaguchi, I., Sakumoto, T., 2005. Depositional environments and taphonomy of the

334	bone-bearing beds of the Lower Cretaceous Kuwajima Formation, Tetori Group, Japan.
335	Bulletin of the Kitakyushu Museum of Natural History and Human History A 3, 123–133.
336	Ji, Q., Chen, W., Wang, W.L., Jin, X.C., Zhang, J.P., Liu, Y.Q., Zhang, H., Yao, P.Y., Ji, S.A.,
337	Yuan, C.X., Zhang, Y., and You, H.L., 2004. Mesozoic Jehol Biota of western Liaoning,
338	China, 375 pp. Geological Publishing House, Beijing [in Chinese].
339	Kawakami, Y., Terui, K., Hasegawa, Y., Oishi, M., 1985. Upper Cretaceous mosasaurid teeth
340	from the Kunitan Formation of Kuji Group, in the northeast of Kitakami Mountains, Japan.
341	Bulletin of the Iwate Prefectural Museum 3, 133–142.
342	Ksepka, T.D., Gao, K., Norell, A.M., 2005. A new choristodere from the Cretaceous of Mongolia.
343	American Museum Novitates, 3648, 1–22.
344	Legrand, J., Nishida, H., Hirayama, R., 2019. Paleoenvironmental reconstruction from
345	palynological analysis of the Upper Cretaceous Tamagawa Formation, Kuji Group, at the
346	Osawada River locality (Kuji City, Iwate Prefecture, Japan) Journal of Fossil Research

347 51, 59–67.

348	Liu, J. 2004. A nearly complete skeleton of <i>lkechosaurus pijiagouensis</i> sp. nov. (Reptilia:
349	Choristodera) from the Jiufotang Formation (Lower Cretaceous) of Liaoning, China.
350	Vertebrata PalAsiatica 42, 120–129.
351	Matsumoto, R. 2011. The Palaeobiology of Choristodera (Reptilia: Diapsida) (Unpubl. PhD
352	thesis). University of London, 443 pp.
353	Matsumoto, R., Evans, S.E. 2010. Choristoderes and the freshwater assemblages of Laurasia.
354	Iberian Journal of Geology 36, 253–274.
355	Matsumoto, R., Evans, S.E., Manabe, M. 2007. The choristoderan reptile Monjurosuchus from
356	the Early Cretaceous of Japan. Acta Palaeontologica Polonica 52, 329–350.
357	Matsumoto, R., Buffetaut, E., Escuillie, F., Hervet, S., Evans, S.E. 2013. New material of the
358	choristodere Lazarussuchus (Diapsida, Choristodera) from the Paleocene of France.
359	Journal of Vertebrate Paleontology 33, 319–339.
360	Matsumoto, R., Tsogtbaatar, K., Ishigaki, S., Tsogtbaatar, C., Enkhtaivan, Z., Evans, S.E.,
361	2019a. Revealing body proportions of the enigmatic choristodere reptile
362	Khurendukhosaurus from Mongolia. Acta Palaeontologica Polonica 64, 363–377.

363	Matsumoto, R., Dong, L., Wang, Y., Evans, S.E., 2019b. The first record of a nearly complete
364	choristodere (Reptilia: Diapsida) from the Upper Jurassic of Hebei Province, Peoples'
365	Republic of China. Journal of Systematic Palaeontology 17, 1031–1048.
366	Miyata, S., Hirayama, R., Nakajima, Y., Maekawa, Y., Okura, M., Sasaki, T., 2019. A
367	preliminary report of elasmobranch fossils from the Upper Cretaceous Tamagawa
368	Formation (Turonian-Santonian), Kuji Group, Iwate Prefecture, Northeast Japan. Journal
369	of Fossil Research 51, 68–75.
370	Richter, A., Wings, O., Pfretzschner, H-U., Martin, T., 2010. Late Jurassic Squamata and
371	possible Choristodera from the Junggar basin, Xinjiang, Northwest China.
372	Palaeobiodiversity and Palaeoenvironments 90, 275–282.
373	Russell, L.S., 1956. The Cretaceous reptile Champsosaurus natator Parks. National Museum of
374	Canada Bulletin 145, 1–51.
375	Salisbury, S.A., Molnar, R.E., Frey, E., Willis, P.M.A., 2006. The origin of modern
376	crocodyliforms: new evidence from the Cretaceous of Australia. Proceedings of the Royal
377	Society B: Biological Sciences 273, 2439–2448.
378	Sigogneau-Russell, D., Efimov, M., 1984. Un Choristodera (Eosuchia?) insolité du Crétacé

- inferieur de Mongolie. Paläontologische Zeitschrift 58, 279–294.
- 380 Skutschas, P. P., 2008. A choristoderan reptile from the Lower Cretaceous of Transbaikalia.
- 381 Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 247, 63–78.
- 382 Skutschas, P. P., Vitenko, D. D. 2017. Early Cretaceous choristoderes (Diapsida, Choristodera)
- 383 from Siberia, Russia. Cretaceous Research 77, 79–92.
- 384 Terui, K., Nagahama, H., 1995. Depositional facies and sequences of the Upper Cretaceous
- 385 Kuji Group, Northeast Japan. Memoirs of the Geological Society of Japan 45, 238–249.
- 386 Toshimitsu, S., Matsumoto, T., Noda, M., Nishida, T., Maiya, S., 1995. Towards an integrated
- 387 mega-, micro- and magneto-stratigraphy of theUpper Cretaceous in Japan. Journal of the
- 388 Geological Society of Japan 101, 19–29. [In Japanese with English Abstract].
- 389 Toshimitsu, S., Hasegawa, T., Tsuchiya, K., 2007. Coniacian–Santonian stratigraphy in Japan:
- a review. Cretaceous Research 28, 128–131.
- 391 Umezu, K., Kurita, Y., 2007. Palynostratigraphy and age of the Upper Cretaceous Kuji Group,
- 392 northeast Iwate Prefecture, Northeast Japan. Journal of the Japanese association for
- 393 Petroleum Technology 72, 215–223. [In Japanese with English Abstract].
- Uno, H., Mitsuzuka, S., Horie, K., Tsutsumi, Y., Hirayama, R., 2018. U-Pb dating of turtle fossils

395	from the Upper Cretaceous Tamagawa Formation in Kuji, Iwate, Japan. Turtle Evolution
396	Symposium, Program & Abstracts, 87.
397	
398	
399	Figure Captions
400	Figure 1. Map showing the position of the fossil locality and the distribution of the Tamagawa
401	Formation Kuji Group within Japan. The geological map is modified from Umezu et al. (2013).
402	
403	Figure 2. Vertebrae of Choristodera indet. from the Tamagawa Formation, Kuji Group, Upper
404	Cretaceous, northeast Japan. A-F OSD 586, cervical centrum, in anterior (A), dorsal (B),
405	posterior (C), left lateral (D), ventral (E), and right lateral (F) views. G–L, OSD 844, dorsal or
406	sacral centrum, in anterior (G), dorsal (H), posterior (I), left lateral (J), ventral (K), and right
407	lateral (L) views. Abbreviations; kl, keel; n.a facet, neural arch pedicel; pa, parapophysis. Scale
408	bars are 5 mm.

410	Figure 3. Provisional stratigraphic correlation of the occurrence of choristoderes through the
411	Jurassic to Paleocene in Asia. Black squares (1–13) indicating localities where choristoderes
412	are known, and grey squares (14-21) showing localities where choristoderes are not yet known
413	(Averianov and Sues, 2012), but have a faunal composition or palaeoenvironment similar to that
414	of choristodere bearing localities elsewhere. 1, Balabansai Svita (Kyrgyzstan), Choristoderan
415	indet. (Averianov, 2005); 2, Dzhylga (Kazakhstan), Simoedosaurus indet. (Averianov, 2006); 3,
416	Murtoi Formation, Khurendukhosaurus sp. (Skutschas, 2008)/ Khilok Formation, Choristodera
417	indet. (Skutschas and Vitenko, 2017); 4, Ilek Formation, ?Neochoristodera indet. (Skutschas
418	and Vitenko, 2017); 5, Laohongdong Formation (Inner Mongolia), Ikechosaurus sunailinae
419	(Brinkman and Dong, 1993); 6, Two Volcanoes (Gobi Desert of Mongolia), Tchoiria klauseni
420	(Ksepka et al., 2005); 7, Khuren Dukh Formation (Mongolia), Tchoiria namsarai (Efimov, 1975),
421	Khurendukhosaurus orlovi (Sigogneau-Russell and Efimov, 1984; Matsumoto et al., 2009,
422	2019a); 8, Tiaojishan Formation, Coeruleodraco jurassicus (Matsumoto et al., 2019b)/ Qigu
423	Formation, Choristodera indet. (Richter et al., 2010); 9, Yixian Formation, Monjurosuchus
424	splendens (Endo, 1940; Gao et al., 2000), Hyphalosaurus lingyuanensis (Gao et al., 1999), H.
425	<i>bitaigouensis</i> (Ji et al., 2004); 10, Jiufotang Formation, <i>Philydrosaurus proseilus</i> (Gao and Fox,

426	2005), Ikechosaurusu pijiagouensis (Liu 2004); 11, Shahai Formation, Heishanosaurus
427	pygmaeus (Dong et al., 2020); 12, Kuwajima Formation, Monjurosuchus sp., Neochoristodera
428	indet. (Matsumoto et al., 2014); 13. Okurodani Formation, Shokawa ikoi (Evans and Manabe,
429	1999), Monjurosuchus sp. (Matsumoto et al., 2007); 14, Zhirkindek Formation; 15, Bostobe/
430	Syuk Shuk formations; 16, Darbasa Formation; 17, Lower Bayn Shire Formation; 18, Upper
431	Bayn Shire Formation; 19, Djadokhta Formation; 20, Barun Goyot Formation; 21, Nemegt
432	Formation (14–21, Averianov and Sues, 2012).
433	

Figure 1

Figure 2

What do you mean by the grooves described in the text? Label them?

Figure 3

Kyrgyzstan

