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Abstract

Future overheating risk in dwellings can be poten-
tially mitigated by minimising the variability of over-
heating hours against uncertainties in future climate
via robust optimisation. However, the estimation
of this variability value through the utilisation of
percentile-based probabilistic weather data has yet to
be sufficiently investigated. In this simulation-based
study, the bootstrap method is used to quantify the
accuracy of the variability estimation via percentile-
based weather data. The results indicate significant
overheating risk in regulation-compliant houses. An
increased degree of difficulty is also suggested in ob-
taining accurate estimations when considering time
periods further in the future and when assuming
higher carbon emissions. In addition, the skew nor-
mal distribution can be used for a simpler and faster
estimation, but the underlying uncertainties must be
strengthened throughout its implementation.

Key Innovations

e (Quantification of the estimation accuracy of the
overheating variability against climate uncer-
tainties under different weather scenarios;

e Proposed use of the skew normal distribution as
an alternative for an adequately accurate esti-
mation of overheating variability in the case of
limited computational resources.

Practical Implications

The full range of future weather probabilities, rather
than the medium one, should be considered in evalu-
ating domestic overheating risk.

Introduction

Summertime overheating in dwellings has been a
pressing issue for decades in heating-dominant regions
such as the UK, where domestic mechanical cooling
is not widely used. This issue has recently further in-
tensified, as a result of both global warming and the
unintended consequences of decarbonising the build-
ing stock. Links have been forged between overheat-
ing and its significant impact on occupant health and

well-being (van Hooff et al., 2014; Sheridan and Allen,
2018). As the lifespan of the housing stock is nor-
mally considerable, accounting this issue is necessary
at the design stage for both new-build and retrofit, in
order to maintain expected performance in the long
term. To achieve this, building performance simu-
lation (BPS) alongside optimisation can be used to
evaluate and mitigate overheating risk under future
climate conditions.

Typical BPS processes consist of model parameters
and the simulation engine, where weather data is
one of the mandatory inputs. Even though BPS has
gone through rapid development and increasing im-
plementation over the past few decades, the handling
of input uncertainties is still one of the major chal-
lenges facing the accurate prediction of building per-
formance (Wang and Zhai, 2016; Hong et al., 2018).
There are two common aspects in BPS that lead to
this challenge. The first is the lack of knowledge in
the quantification of these uncertainties, where many
relevant studies have assumed arbitrary probability
distributions (e.g. normal, uniform, etc.) for their
evaluated inputs. The second concerns the integra-
tion of these quantified uncertainties into modelling,
as existing modelling tools mainly require determin-
istic values as inputs. Consequently, these issues are
inherited by simulation-based optimisation (Nguyen
et al., 2014; Tian et al., 2018).

Issues of weather uncertainties

In assessing future overheating risk, future weather
data and its use in BPS-based optimisation play a
critical role. Climate uncertainties caused by natu-
ral and anthropogenic factors have seen considerable
progress in their quantification (IPCC, 2014). The
latest advance resulted in BPS-compatible probabilis-
tic weather data within individual climate scenar-
ios (year X emissions), such as the PROMETHEUS
dataset (Eames et al., 2011), which is presented in
different percentiles (i.e. 10**, 3374, 508 66, 90th).
On the other hand, challenges still remain in applying
these probabilistic data in building design optimisa-
tion. One viable approach that has seen some initial
investigations is robust optimisation. The philosophy
of this approach is to reduce the sensitivity of the



evaluated system performance against the uncertain
boundary condition of interest, when it is infeasible
to design a system that caters for all possible condi-
tions (Gorissen et al., 2015). The capability of be-
ing insensitive against the uncertainty in boundary
conditions (e.g. weather) for the target performance
(e.g. thermal comfort) is termed as robustness, and
this capability can be approached by seeking a certain
measure of robustness implemented as the optimi-
sation objective (Wright et al., 2016).

In existing efforts to investigate robust optimisation
for building design under future climate, two types
of measure of robustness can be found. One type in-
volves the worst-case scenario approach (Kotireddy
et al., 2017; Moazami et al., 2019), where a set of
plausible future weather scenarios were evaluated to
identify and mitigate the worst performing amongst
them. However, this approach tends to yield what
are referred to as ‘fat solutions’ that can excessively
compromise design solution optimality due to high
risk aversion (Kall and Wallace, 1994). The other is
based on conventional statistical methods such as the
standard deviation (Hoes et al., 2011). This approach
is promising in avoiding ‘fat solutions’, but the num-
ber of weather scenarios is usually fairly small, and
statistical inference on small-size sample is basically
unreliable (Button et al., 2013; Wisz et al., 2008).
Furthermore, although it has been over a decade since
the publication of UKCP09, very limited research to
date has utilised probabilistic weather data to facil-
itate robust building design against climate uncer-
tainties. Therefore, it still remains unclear how in-
formation on robustness can be derived from simula-
tion outputs by applying the percentile-based weather
data. Two key obstacles are (a) sample sizes being
too small to support reliable conventional statistical
inference, and (b) BPS models being too non-linear
to enable an appropriate distribution assumption to
facilitate parametric statistics.

Bootstrap and its Bayesian variant

The bootstrap, initiated by Efron (1979), is a non-
parametric statistical approach to the accuracy quan-
tification for the estimator of interest (e.g. standard
deviation), when the population characteristics of the
assessed sample data are unknown. It is a useful tool
to consult with, on occasions that the size of sample
data is relatively small, and its normality is question-
able (Dekking et al., 2005). The philosophy of the
bootstrap is to perform random sampling with re-
placement on sample data, to mimic sampling directly
from its original population. Let x = (z1,x2,...,Zy)
denote the observed univariate sample, 8 (x) denote
the estimator of interest, x* = (z7, 23, ..., 27) denote
a bootstrap sample, the bootstrap procedure can be
described as follows:

1. Generate a bootstrap sample x* by sampling x
with replacement;

2. Calculate the value of  (x*) to represent 0 (x);
3. Repeat the above two steps for B times.

Sampling with replacement means randomly select-
ing n original data from the observed sample via the
Monte Carlo method, for instance, a bootstrap sam-
ple x* = (x7,25,23) from x = (z1,%2,23) can be
x* = (@3,21,21). The bootstrap distribution of 0
can thus be obtained to investigate the accuracy of
the estimator . It is suggested by Chernick (2008)
that B should be at least 1,000 to construct accurate
confidence intervals (CIs) of 6.

Integrating Bayesian inference, the Bayesian boot-
strap is a variant of the aforementioned standard ap-
proach, introduced by Rubin (1981). One benefit of
implementing the Bayesian bootstrap is its higher tol-
erance to the sample size (Gu et al., 2008), with an
additional prior distribution. Its procedure mostly
resembles that of the standard bootstrap, differing
in the resampling step. Sampling with replacement
only allows the original data to be selected, whilst a
probability vector g = (g1, 92, .-, gn) is assigned as
weights to these data instead in the Bayesian boot-
strap, where Z?:l g; = 1. The flat Dirichlet distribu-
tion is usually used as the prior distribution, which
can generate a given number (n) of uniformly ran-
dom numbers between zero and one that sum up to
one as g. It should be noted that although an ad-
ditional assumption is made, the flat Dirichlet distri-
bution is a non-informative prior that is fairly weak,
and the Bayesian bootstrap is still deemed as a non-
parametric statistical approach. Despite of this, an
important disadvantage for both the standard and
the Bayesian bootstrap is their high computational
cost, as a result of the large number of resampling
simulation.

In recognition of the knowledge gap in deriving ro-
bustness information via the percentile-based prob-
abilistic weather data to facilitate robust building
design optimisation, this paper aims to apply the
Bayesian bootstrap to investigate the variability of
domestic overheating risk against the future climate
uncertainty. Specific objectives are:

e to assess overheating risk in regulation-compliant
dwellings under different future weather condi-
tions via the PROMETHEUS dataset;

e to investigate the estimation accuracy of the
variability of future overheating risk against the
weather uncertainty via the Bayesian bootstrap;

e to compare results between bootstrap and con-
ventional estimation methods in exploring a sim-
plified approach with acceptable accuracy and
less computational cost.

Methods

A UK dwelling archetype was selected for the case
study of this research, using EnergyPlus as the BPS
engine. Statistical inference on simulation results was
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Figure 1: Workflow of research methods.

conducted using Python. For clarity, variability is
only referred to as the variability of overheating risk
against uncertainties in future climate (measure of ro-
bustness) throughout the whole paper, the accuracy
of variability estimates is described in other terms
like dispersion. Figure 1 illustrates the workflow of
simulation and data processing, whose details are de-
scribed as follows.

Models and overheating assessment

A two-storey mid-terraced dwelling archetype, ini-
tially developed by Oikonomou et al. (2012), was
used for simulation due to its high incidence (14.5%)
in the English housing stock (Figure 2). The dwelling
layout includes a living room and a kitchen on the
ground floor, and three bedrooms on the first.

Figure 2: Case study mid-terraced house.

The thermal properties of the building envelope, sum-
marised in Table 1, reflect the performance of a typ-
ical retrofitted dwelling of the selected archetype.
They were developed in accordance with Approved
Document L1B (HM Government, 2018), the regula-
tion for dwelling retrofit in England & Wales. The
model was set as free-running during summertime, as
the majority of the UK houses currently have no me-
chanical cooling system.

TM 59 (CIBSE, 2017) was used for the overheating
assessment, which provides a set of modelling param-
eters, internal gains profiles (Table 2) and overheat-
ing criteria. The reference occupant heat gain was
assumed as 75 W sensible and 55 W latent per per-
son. Windows and doors were modelled as open when
internal dry bulb temperature exceeded 22 °C and oc-
cupants were present and awake. In this study, the

suggested weather files in TM 59 were not followed,
and the PROMETHEUS future Design Summer Year
(DSY) weather dataset for London (Islington) was
instead used. This is available in three time peri-
ods (2030s, 2050s, 2080s), two emissions scenarios
(A1B, A1FI) and five percentiles (10", 334, 50"
661, 90t1) (Eames et al., 2011). It should be noted
that the UKCP(09-based PROMETHEUS dataset was
used as DSYs based on the latest UKCP18 were not
yet available (at the time of writing). A full-factorial
parametric analysis was executed, with weather being
the only variable.

Table 1: Envelope U-values.

Envelope Value
(Wm™2K™1)

External wall 0.24

Roof 0.16

Ground floor  0.25

Window 1.58

Bayesian bootstrap and comparison

The implementation of the Bayesian bootstrap fol-
lowed the aforementioned process, conducted indi-
vidually under each weather scenario (year x emis-
sions). In this study, the original sample size n
is five, representing overheating assessment results
varied against weather data in five percentiles x =
(xloth,x33rd7m50th,x66th, xgoth) within each weather
scenario. The estimator 0 (x) for the overheating vari-
ability was the standard deviation with no correction
Gpootstrap (X) defined as follows:

n
&bootstrap (X) = Z 9i (1’1 - ﬂbootstrap)2 (1)
=1

Where: .
ﬂbootstrap (X) = Z GiZq (2)
=1

The repeat number B was set to 1,000,000, consider-
ably greater than 1,000 suggested by Chernick (2008),



Table 2: Internal gains profiles.

Room Occupancy

Equipment

Kitchen 3 people, 25% gains, 9 am - 10 pm.

Living room 3 people, 75% gains, 9 am - 10 pm.

Bedroom 2 people, 70% gains, 11 pm - 8 am;

2 people, full gains, 8 am - 9 am & 10 pm - 11 pm;

1 person, full gains, 9 am - 10 pm.

300 W, 6 pm - 8 pm;

50W, 9 am - 6 pm & 8 pm - 9 am.
150 W, 6 pm - 10 pm;

60 W, 9 am - 6 pm & 10 pm - 12 am;
35W, 12 am - 9 am.

80W, 8 am - 11 pm;

10W, 11 pm - 8 am.

so as to guarantee the convergence of bootstrap itera-
tions. The interquartile range (IQR) was used as Cls
to denote the acceptable dispersion of the overheat-
ing variability estimates.

Comparisons of the bootstrap results were under-
taken against estimates using two distribution as-
sumptions and using the direct calculation of the
standard deviation with correction. The distribu-
tions assessed were skew normal and normal , both
applying the maximum likelihood estimation (MLE)
method to fit the five data points. The estimator by
direct calculation & grect (x) was defined as follows:

n

! Z(xz - ﬂd’i’rect)Q (3)

n—1
i=1

&direct (X) =

Where:
1 n
1 irec = - i 4
faree (9= 3, 3 ()

Results

Overheating risk of regulation-based dwellings

The overheating assessment results for the case study
dwelling for two typical weather scenarios are illus-
trated in Figure 3. In each individual graph, it is
evident that an overall upward trend in the percent-
age of overheating hours can be seen as the percentile
increases, in spite of some slight anomalies that are
mainly between the 50'" and 66" ones within the
2030s A1B scenario. Bedrooms and non-bedrooms
also show marked differences in the magnitude of
overheating risk, which is deemed reasonable as bed-
rooms are regulated by more strict criteria. The fact
that they are on different floors may also contribute
to this dissimilarity.

The inter-comparison between the two cases indicates
that more distant (future) years and higher emissions
can significantly worsen the indoor thermal environ-
ment in summer, which is in line with common expec-
tations under climate change. Even more important
is the fact that with lower emissions in 2030s, over-
heating still has a significant opportunity to occur in
this regulation-compliant house, suggesting the po-
tential need to revise building regulations in order to
better consider thermal comfort.
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Figure 3: Overheating rate of assessed rooms in (a)
2030s A1B and (b) 2080s A1FI weather scenarios.

Estimation accuracy of overheating variability

Figure 4 is a compilation of results related to the
bootstrap estimation of the overheating variability
under varied weather scenarios across the five rooms.
Both blue and grey histograms represent the same fre-
quency distributions, but depicted in different scales.
The blue ones are all plotted in the same scale on
their shared bottom z axis, to facilitate their inter-
comparisons; the grey ones are stretched to varied
scales on their individual top z axis, so that their
statistical characteristics like IQRs (dark grey) can be
more clearly shown. Besides, the three cross marks
indicate the variability estimates (top = axis) using
the parametric statistics assuming the skew normal
(green) and the normal (orange) distribution, and us-
ing the direct calculation (red).

Regarding the bootstrap distribution of the vari-
ability estimates, dissimilar patterns for different
weather-room cases can be clearly seen in blue his-
tograms across the graph matrix. Vertically in
weather scenarios, the locations of all bootstrap dis-
tributions gradually shift towards right from near to
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far future and from low to high emissions. This in-
dicates that the increment of the year and emissions
can not only increase overheating risk per se, but
also the degree of difficulty to accurately predict it,
because of its raised variability within each weather
scenario. In addition, the spread of the bootstrap
distribution also tends to increase vertically on the
graphs (mainly in year variations), further suggest-
ing considerable uncertainties in long-term climate
projections and their percentile representatives.

As to horizontal variations between different rooms
in Figure 4, remarkable contrasts between bedrooms
and non-bedrooms exist in their bootstrap estimates,
in line with Figure 3. The bootstrap distribution
locations are closer to zero for both non-bedrooms
than those for bedrooms coincidently, indicating
lower overheating risk. The spreads of their boot-
strap distributions are also much less significant,
however, this disparity diminishes considerably in
later years, probably due to increased uncertainties
in long-term climate projections.

In further interpreting these results quantitatively,
the definition of statistical significance in this context
should be considered, as relevant results are all fairly
small in their absolute values. The TM 59 over-
heating indicator is expressed as percentages, which
is a real number between zero and one. Further,
the TM 59 threshold of overheating is 1% and 3%
for nocturnal and diurnal occupancy respectively.
As such, variations larger than 0.005 and 0.015 in
variability values of overheating risk can be consid-
ered statistically significant, because the standard
deviation shares the same unit of measurement as
the data whereby it is calculated.

The key benefit of implementing the bootstrap
method is its capability of quantifying the accuracy
of estimated statistics via Cls. The dark grey areas
depict IQRs for corresponding bootstrap distribu-
tions, used as Cls in this study. As analysed above,
a general trend can be found that the spread of
bootstrap distributions rises from upper right cases
to lower left ones in Figure 4. The minimum IQR is
0.001 (kitchen, 2030s A1B), while the maximum one
is 0.039 (bedroom 1, 2080s A1FI). The dispersion
ranges for non-bedrooms are all less than 0.016 in
2030s and 2050s, suggesting that the variability of
overheating risk in these cases can be accurately
estimated with fairly small errors. In contrast, all
bedrooms, whose IQRs are greater than 0.005 in all
the weather scenarios, and non-bedrooms in 2080s
can hardly be point-wise estimated via simulation
informed by only the percentile-based weather data.

Comparisons with conventional statistics

Despite of difficulties in their point-wise estimation,
these estimates for the overheating variability can
still be trusted with CIs, which can also be used to
evaluate the validity of other conventional estimation

methods. Inferred from the positions of the three
vertical lines, the direct calculation method yields es-
timates that are all outside the bootstrap Cls, which
clearly strengthen its inappropriate usage with only
five data points. Comparatively, both distribution
assumptions can lead to variability results all within
the coincident Cls.

To further evaluate their discrepancies from the boot-
strap method, the mean of the bootstrap distribution
is used as a benchmark, illustrated in Figure 5. The
top graph 5-(a) using the raw error values reveals an
outstanding positive skewness in assuming a normal
distribution or using the direct calculation, whilst a
fairly limited one in assuming skew normal distribu-
tions. The bottom graph 5-(b) using their moduli in-
dicates that the skew normal distribution also leads
to a smaller mean absolute error, with a similar dis-
persion when compared to the normal one.
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Figure 5: Errors of the variability estimates of over-
heating risk via other methods against the bootstrap
method in (a) raw and (b) absolute values.

Discussion

Applying the variability of overheating risk as the
measure of robustness in robust optimisation provides
a beneficial means to avoid ‘fat solutions’, where per-
formance gaps between the average-case scenario and
others are minimised, and the worst-case scenarios
(which are very unlikely to occur) may be allowed to
not strictly meet the overheating criteria. This study
overall suggests that the underlying uncertainties
in the long-term climate projections significantly
influence not only the variability of overheating risk
under individual weather scenarios, but also the
ability to accurately estimate it via percentile-based
weather data. The former supports the importance
of adopting techniques, such as robust optimisation,
to mitigate future overheating risk due to warming



climate, ironically, the latter implies great challenges
to achieve that.

Such dilemma can be considered to be a result of the
high non-linearity in building energy models. This
leads to two important consequences in the context
of this study, which are also implied in the results of
Kershaw et al. (2011), that (1) percentiles of climate
inputs do not necessarily correspond to those of
outputs, and (2) a certain skewness may arise during
this non-linear physical process. Therefore, it is not
reasonable to rely on percentile-based weather data
to point-wise infer the variability of the targeted
building performance against climate uncertainties,
only their value range (max/min) should be trusted.
In other words, the performance variables simulated
with weather data in five percentiles should only
be regarded as five data points with no percentiles
assigned (not even strictly monotonic, see Figure 3),
which brings difficulties to study their probability
distributions and characteristics as demonstrated
in detail above. It should also be noted that the
bootstrap is no magic to the scarcity of sample
data, yet it provides a useful means to quantify the
accuracy of the statistical inference on them.

In comparison of overheating risk and its variability
between bedrooms and non-bedrooms, their disparity
is remarkable despite its reduction over the time,
where TM 59 criteria play a crucial role as speculated
above. In detail, as aforementioned, non-bedrooms
are only required to be assessed for their diurnal use
with a 3% threshold, whilst bedrooms are assessed
for 24 hours along with a stricter 1% threshold
during sleeping. Furthermore, unlike the diurnal
assessment with an adaptive thermal comfort model,
the nocturnal one for bedrooms applies a fixed tem-
perature limit of 26 °C. Such deterministic threshold
is apparently easier to exceed than a fluctuated
one. It may be worth separating the overheating
assessment for bedrooms by day and night for further
investigation of this subject in the future research,
whose findings may be able to inform a more robust
alternative procedure for overheating assessment.
The implications of the comparison between the
bootstrap method and other conventional ones
also merit further investigation. Firstly, it can be
firmly concluded that the standard deviation with
correction is an invalid estimator with only five data
points, because its results are outside the CIs in all
cases. This corresponds to the findings from several
literature that statistics point-wise derived from
small-size samples are intrinsically unreliable, due to
their high sensitivity to random errors (Button et al.,
2013; Wisz et al., 2008). In regard to parametric
statistics, the skew normal distribution has a slightly
better estimation than the normal one in terms
of the error mean and dispersion. However, the
skew normal estimator shows a considerably better
performance in the error skewness in the case study.

This can be plausibly reasoned by the discussion
above, that a certain skewness may be introduced in
assessing some building performance variables due
to the model non-linearity. On occasions where a
relatively accurate deterministic estimation for the
overheating variability is desired but computational
resources are limited, the skew normal distribution
can be used as a simple approach to this value.
However, the uncertainties of this simple approach
should be highlighted throughout its implementation.

Conclusion

This paper initiates the investigation into the esti-
mation of the variability of overheating risk within
individual weather scenarios, which is intended to in-
form better implementation of robust optimisation
regarding future heat resilience against climate un-
certainties in dwellings. Three levels of values for
future domestic thermal comfort were evaluated via
the Bayesian bootstrap, namely overheating risk, the
variability of overheating risk, the estimation accu-
racy of the variability. Results suggest that all three
values are expected to increase, following the increase
of the year and emissions. Considerable dissimilari-
ties exist in different rooms in the case study dwelling,
where bedrooms tend to have greater overheating risk
in general. Suggestion has also been made that the
skew normal distribution can be used to estimate the
overheating variability in a simpler and faster fashion,
but uncertainties should be acknowledged throughout
its implementation.

The present study provides some initial findings as
part of a larger doctoral research project, and is
intended to better inform future research involving
the use of robust building design optimisation in
mitigating overheating risk via probabilistic weather
data. Ideally, future work should undertake a system-
atic investigation of the original full weather dataset,
whereby the percentile-based one was derived, to fur-
ther evaluate the implications of this study. The
UKCP18-based weather files will be used in future
work when available, but it should be highlighted that
the use of UKCP09 does not compromise the main
findings of this paper, since the method introduced
here can be easily implemented with ‘newer’ climate
projections. The validation of simulation results us-
ing these future weather files will be investigated in
the future. It is also attempting to investigate other
dwelling archetypes to evaluate the generalisation of
the findings in this paper. Besides, of the two types
of measure of robustness in existing literature, this
research only discussed the conventional statistics ap-
proach, as the worst-case scenario approach cannot be
directly compared. Future work is expected to draw
this comparison on the level of optimisation results.



References

Button, K. S., J. P. A. Ioannidis, C. Mokrysz, B. A.
Nosek, J. Flint, E. S. J. Robinson, and M. R. Mu-
nafo (2013). Power failure: Why small sample size
undermines the reliability of neuroscience. Nature
Reviews Neuroscience 14(5), 365-376.

Chernick, M. R. (2008). Bootstrap Methods: A Guide
for Practitioners and Researchers (Second ed.).
Hoboken, New Jersey: John Wiley & Sons.

CIBSE (2017). TM59: Design Methodology for the
Assessment of Overheating Risk in Homes. Lon-
don, England: The Chartered Institution of Build-
ing Services Engineers.

Dekking, F. M., C. Kraaikamp, H. P. Lopuhaa, and
L. E. Meester (2005). A Modern Introduction to
Probability and Statistics: Understanding Why and
How. London, England: Springer-Verlag London.

Eames, M., T. Kershaw, and D. Coley (2011). On
the creation of future probabilistic design weather
years from UKCP09. Building Services Engineering
Research and Technology 32(2), 127-142.

Efron, B. (1979). Bootstrap methods: Another look
at the jackknife. Annals of Statistics 7(1), 1-26.

Gorissen, B. L., I. Yanikoglu, and D. den Hertog
(2015). A practical guide to robust optimization.
Omega 53, 124-137.

Gu, J., S. Ghosal, and A. Roy (2008). Bayesian
bootstrap estimation of ROC curve. Statistics in
Medicine 27(26), 5407-5420.

HM Government (2018). Approved document
L1B: Conservation of fuel and power in existing
dwellings.

Hoes, P., M. Trcka, J. L. M. Hensen, and B. H. Bon-
nema (2011). Optimizing building designs using
a robustness indicator with respect to user behav-
ior. In Proceedings of Building Simulation 2011:
12th Conference of International Building Perfor-
mance Simulation Association, Sydney, Australia,
pp. 1710-1717. IBPSA.

Hong, T., J. Langevin, and K. Sun (2018). Build-
ing simulation: Ten challenges. Building Simula-
tion 11(5), 871-898.

Intergovernmental Panel on Climate Change (2014).
Climate Change 2014: Synthesis Report.

Kall, P. and S. W. Wallace (1994). Stochastic Pro-
gramming. Chichester, England: John Wiley &
Sons.

Kershaw, T., M. Eames, and D. Coley (2011). As-
sessing the risk of climate change for buildings: A
comparison between multi-year and probabilistic

reference year simulations. Building and Environ-
ment 46(6), 1303-1308.

Kotireddy, R., P.-J. Hoes, and J. L. M. Hensen (2017).
Simulation-based comparison of robustness assess-
ment methods to identify robust low-energy build-
ing designs. In Proceedings of the 15th IBPSA
Conference, San Francisco, CA, USA, pp. 892-901.
IBPSA.

Moazami, A., S. Carlucci, V. M. Nik, and S. Geving
(2019). Towards climate robust buildings: An inno-
vative method for designing buildings with robust
energy performance under climate change. Energy
and Buildings 202, 109378.

Nguyen, A.-T., S. Reiter, and P. Rigo (2014). A
review on simulation-based optimization methods
applied to building performance analysis. Applied
Energy 113, 1043-1058.

Oikonomou, E., M. Davies, A. Mavrogianni, P. Bid-
dulph, P. Wilkinson, and M. Kolokotroni (2012).
Modelling the relative importance of the urban
heat island and the thermal quality of dwellings
for overheating in london. Building and Environ-
ment 57, 223-238.

Rubin, D. B. (1981). The Bayesian bootstrap. Annals
of Statistics 9(1), 130-134.

Sheridan, S. C. and M. J. Allen (2018). Temporal
trends in human vulnerability to excessive heat.
Environmental Research Letters 13(4), 043001.

Tian, W., Y. Heo, P. de Wilde, Z. Li, D. Yan, C. S.
Park, X. Feng, and G. Augenbroe (2018). A re-
view of uncertainty analysis in building energy as-
sessment. Renewable and Sustainable Energy Re-
views 98, 285-301.

van Hooff, T., B. Blocken, J. L. M. Hensen, and
H. J. P. Timmermans (2014). On the predicted ef-
fectiveness of climate adaptation measures for res-

idential buildings. Building and Environment 82,
300-316.

Wang, H. and Z. J. Zhai (2016). Advances in build-
ing simulation and computational techniques: A
review between 1987 and 2014. Energy and Build-
ings 128, 319-335.

Wisz, M. S., R. J. Hijmans, J. Li, A. T. Peter-
son, C. H. Graham, A. Guisan, and NCEAS
Predicting Species Distributions Working Group
(2008). Effects of sample size on the performance
of species distribution models. Diversity and Dis-
tributions 14(5), 763-773.

Wright, J., E. Nikolaidou, and C. J. Hopfe (2016). Ex-
haustive search: Does it have a role in explorative
design? In Proceedings of the 3rd IBPSA-England
Conference BSO 2016, Newcastle, UK, pp. 1074.
IBPSA-England.



