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The anti-depressant and mood stabilizing effects of lithium were dis-
covered the mid 20th century (Cade, 1949, Schou et al., 1954), and 
administration of lithium salts is still the first-line therapy for bipolar 
disorders (Alda, 2015). Lithium can also ameliorate pathology in an-
imal models of neurodegeneration (Partridge et al., 2020), through 
multiple molecular mechanisms, and has been proposed as a therapy 
for Alzheimer's Disease (Damri et al., 2020). Suggesting that it may 
have a broader therapeutic range, lithium can also extend lifespan in 
fission yeast (Sofola-Adesakin et al., 2014), C. elegans (McColl et al., 
2008; Tam et al., 2014) and Drosophila (Castillo-Quan et al., 2016 
and 2019), in the last by inhibition of GSK-3 and activation of the 
transcription factor NRF2. Human survival across 18 Japanese mu-
nicipalities correlated with increased lithium level in drinking water 
(Zarse et al., 2011). These findings suggest that conserved molecular 
responses to lithium treatment could improve health during ageing 
in mammals (Partridge et al., 2020). In this study, we therefore ana-
lysed the influence of lithium treatment on lifespan and parameters 
of health during ageing in mice.

To determine the concentration of lithium suitable to be admin-
istered in a longitudinal ageing study, we first tested the effects 
of lithium chloride (LiCl) in doses from 0.01 to 2.79 g LiCl) per kg 
chow, which includes the dosing range in published mouse studies 
(Fiorentini et al., 2010, Noble et al., 2005, Tajes et al., 2009, Kitazawa 
et al., 2008, Gomez-Sintes and Lucas, 2010). C57Bl/6J mice fed 
with 1.05–2.79  g/kg LiCL in the diet showed lithium plasma lev-
els between 0.4 and 0.8  mM/l. We assessed the effect of lithium 
on serine-9 phosphorylation of hippocampal GSK-3β, which was 
significantly increased for all doses down to 0.1  g LiCl/kg (Figure 
S1). While plasma levels to 0.4 and 0.8 mM/l are well tolerated by 
human patients, at doses above 1.44 g LiCl/kg, we observed an ob-
vious dose-dependent polydipsia combined with a distinct polyuria, 
pointing towards a significant degree of kidney toxicity. Similarly, a 
washout effect caused by highly increased drinking behaviour was 
observed when male and female mice of the same C57Bl/6J strain 
were treated with 0.64 g LiCl/kg from 19 months of age (Evans et al., 
2021). For the doses from 1.05 to 1.44  g LiCl/kg, we additionally 
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observed dose-dependent focal karyomegaly characterized by en-
larged nuclei in the renal tubular epithelium, a form of kidney tox-
icity. The focal karyomegaly was absent from mice receiving lower 
lithium doses (0.01 – 0.1 g/kg diet) and also from control mice.

We therefore carried out life-long lithium treatment in the 
range from 0.02 to 1.05 g/kg diet. Administration to both sexes at 
doses of 0.02 and 0.05 g/kg starting at 3 months or 18 months of 
age did not affect lifespan (Figure 1b, Figure S2). In an additional 
group, treatment of females with 0.1  g/kg starting at 19  months 
of age also had no significant effect (Figure S3). Treatment of male 
and female mice from an age of 3 months with 0.02 and 0.05 g/kg 
LiCl, and then switching late in life at 22 months to 0.5 and 1.05 g/
kg, respectively, had no effect on male survival and reduced max-
imum lifespan of females (survival of last 20% of animals to die), 
(Figure 1c).

Different mouse strains can respond differently to drugs, 
and we therefore assessed the effect of lithium on lifespan in 
C3B6F1  mice (F1  hybrids of C3H/HeOuJ females and C57Bl/6N 
males). Lithium can also be administered either as the chloride or 
the carbonate, which is mostly used in higher concentrations than 
the chloride without causing harmful side effects at 2 to 2.4 g/kg 
(Choi et al., 2011; Contestabile et al., 2013; Kim et al., 2013). In a 
pre-experiment, we used a concentration range well below these 
doses and determined an optimal dose of 1.0 g/kg Li2CO3 as the 
highest dose that inhibited GSK-3β and did not induce increased 
drinking (Figure S4) to assess lifespan and healthspan. Lifelong 
treatment at this dose starting at 14 months of age and also did not 
extend lifespan of either sex (Figure 1d). Administration of 0.64 g 
Li2CO3 /kg from 19 months of age to male and female C57Bl/6J 
mice has also been reported to have no effect on mouse survival 
(Evans et al., 2021).

We assessed the effects of lithium on other age-related pheno-
types of the mice. During the first year of their life, doses of 0.02 
and 0.05 g/kg LiCl administered from 3 months of age significantly 
decreased the growth of male mice, due to reduced fat content 
(Figure 2b), while females were not affected (Figure S5a). Old male 
mice (26–28 months) that were treated from an age of 18 months with 
0.02 and 0.05 and then switched at 22 months to 0.5 and 1.05 g/kg, 
respectively, had a dose-dependent lower body weight and fat con-
tent compared to age-matched controls (Figure 2d), while females 
were less affected (Figure S5b). The reduced fat content in old males 
compared to midlife (Figure 2d vs. 2b) may be explained by their more 
advanced ageing process given that they have considerably shorter 
lifespans than females (Figure S5b vs. a). The decreased fat mass 
despite unaffected food consumption indicates an effect of lithium 
on lipid metabolism. Mice on the low doses of 0.02 and 0.05 g/kg 

LiCl administered from 3 months of age showed delayed age-related 
loss of glucose tolerance (Figure 2c). In addition, male mice that were 
switched to 0.5 and 1.05 g/kg at 22 months, after being treated with 
0.02 and 0.05 g/kg from an age of 18 months, respectively, showed 
significantly increased tolerance to glucose at ages over 26 months 
(Figure 2e). Neither treatment improved glucose tolerance in females 
(Figure S6).

There was a dose-dependent increase in motor function on the 
rotarod in old males under LiCl treatment (Figure 2f), possibly re-
lated to their lower body weight, while similar trends in forelimb grip 
strength or treadmill were not significant (Figure S7). Additionally, 
in 24-month-old Li2CO3-treated mice, both motor function on the 
rotarod and endurance on the treadmill were significantly increased 
in males (Figure 2gandh), with no effect in females (Figure S7a and 
S8). Administration of 0.64 g Li2CO3 /kg from 19 months of age on to 
120 mice did not increase metabolic and activity phenotypes (Evans 
et al., 2021). However, we found that, at least in males, lithium can 
positively affect health at old age.

Histopathological analysis of 2-year-old, Li2CO3-treated, 
C3B6F1  mice showed reduced age-related pathologies in the kid-
neys, with significantly decreased kidney inflammation (leukocyte 
infiltration) in both sexes, which in males coincided strongly with a 
reduction of glomerulopathy (Figure 2i). This is interesting, because 
lithium commonly causes renal side effects in humans, such as poly-
uria, proteinuria and reduction in glomerular filtration rate (Gong 
et al., 2016; Grünfeld & Rossier, 2009; Xu et al., 2014). However, 
the antiproteinuric mode of action of lithium reduces glomeruloscle-
rosis in mice with nephropathies (Xu et al., 2014) and protects the 
glomeruli in experimental models of glomerular disease, such as the 
NZB/W mouse with a spontaneous lupus-like autoimmune disease 
(Lenz et al., 1995), and reduces renal inflammation through GSK-3 
inhibition (Wang et al., 2009). These direct kidney protective effects 
of lithium (Gong et al., 2016) may explain our results, which may have 
resulted from the low doses of lithium used. Other organs seemed to 
be largely unaffected.

Considering the use of a broad range of well-tolerated lithium 
concentrations, different lithium salts and different mouse strains, 
we conclude that, in contrast to the findings in yeast, worms and 
flies, lithium does not seem to be a promising candidate for gero-
protection in humans. Although it caused mild improvements in 
body weight and composition, glucose tolerance and motor per-
formance, these were largely confined to males and were not ac-
companied in either sex by increased lifespan. Further work on 
the mechanisms underlying the geroprotective effects of lithium 
in invertebrates may reveal more specific targets for intervention 
in mammals.

F I G U R E  1 Effects of lithium administration at varying doses on lifespan. (a) Schematic overview of the different treatment regimens. 
Group A: ♀ & ♂, n = 49–50 per treatment; Group B: ♀ & ♂, n = 50 per treatment; Group C: ♀ & ♂, n = 43–53 per treatment; Group D: ♂, 
n = 43 per treatment; Group E: ♀ & ♂, n = 108–109 per treatment. (b) Survival curves for male and female C57Bl/6J mice exposed to LiCl 
from 3 months of age (see arrow, n = 49–50). (c) Survival curves for male and female C57Bl/6J mice exposed to 0.02 and 0.05 g/kg LiCl from 
18 months of age and then switched at 22 months (see arrow) to the indicated doses (female maximum lifespan < 20% survival: p = 0.0003, 
n = 43–53). (d) Survival curves for male and female C3B6F1 mice exposed to Li2CO3 from 14 months of age (see arrow, n = 109). Statistical 
analyses by log-rank test
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F I G U R E  2 Effects of lithium administration at varying doses on age-related phenotypes of mice. (a) Schematic overview of the 
different treatment regimens. Group A: ♀ & ♂, n = 15 per treatment; Group C: ♀ & ♂, n = 9–11 per treatment; Group E: ♀ & ♂, n = 10–
15 per treatment. (b) Growth curve (p = 0.0001, n = 10–29) and development of fat content (p < 0.0001, n = 10–15), and (c) glucose 
tolerance (p = 0.018, n = 9–15) of C57Bl/6J males exposed to LiCl from 3 months of age (see arrow) during their first year of life. (d) 
Body weight (p = 0.047, n = 9–11) and fat content (p = 0.0507, n = 9–11), (e) glucose tolerance (p = 0.049, n = 7–10) and (f) rotarod 
performance (p = 0.047, n = 5–9) of C57Bl/6J males exposed to LiCl from 22 months of age at age of 26–28 months (26 mo). (g) Rotarod 
(p = 0.0101, n = 10–12) and (h) treadmill (p = 0.013, n = 10) performance of C3B6F1 males, and (i) inflammation (p = 0.0003, n = 18–20) 
and glumerulopathy (p < 0.0001, n = 18–20) score in the kidney of C3B6F1 mice of both sexes exposed to Li2CO3 from 14 months of age at 
age of 24 months (24 mo). Error bars indicate SEM. Statistical analyses were performed using the restricted maximum likelihood method in 
a mixed-effects model for (b) and (c), one-way ANOVA for (d), two-way ANOVA for (e), (f), (g) and (i), two-tailed unpaired t test for (h), and 
Dunnett's or Tukey's multiple comparisons test for (b), (c), (e), (f), (g) and (i). *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001
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