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Abstract 31 

The immune microenvironment influences tumour evolution and can be both prognostic and 32 

predict response to immunotherapy1,2. However, measuring tumour infiltrating lymphocytes 33 

(TILs) is restricted by lack of appropriate data. Whole exome sequencing (WES) of DNA is 34 

frequently performed to calculate tumour mutational burden and identify actionable mutations. 35 

Here we develop a method for T cell fraction estimation from WES samples, utilising a signal 36 

from T cell receptor excision circle (TRECs) loss during VDJ recombination of the T cell 37 

receptor alpha (TCRA) gene. This score significantly correlates with orthogonal TIL estimates 38 

and is agnostic to sample type. Blood TCRA T cell fraction is higher in females and correlates 39 

with both tumour immune infiltrate and presence of bacterial sequencing reads. Tumour TCRA 40 

T cell fraction is prognostic in lung adenocarcinoma and using a meta-analysis of 41 

immunotherapy-treated tumours, we show that this score predicts immunotherapy response, 42 

providing value beyond tumour mutational burden. Applying this score to a multi-sample pan-43 

cancer cohort revealed high diversity in immune infiltration within tumours. Subclonal loss of 44 

12q24.31-32, encompassing SPPL3, was associated with reduced TCRA T cell fraction. Our 45 

method, T cell ExTRECT (T cell Exome TREC Tool), quantifies the T cell infiltrate of WES 46 

samples. 47 

 48 

Introduction  49 

Checkpoint inhibitors (CPIs) have emerged as revolutionary cancer treatments, acting to 50 

release the brakes on the immune system3,4. Clinical response, however, is not universal5 and 51 

is principally governed by the presence of an immune stimulus, such as neoantigens, and an 52 

immune response, mediated by T cells2.  While neoantigens can be predicted from WES1, 53 

Until now, T cell quantification has required additional biological material, time, and expertise, 54 

adding to the cost of immunotherapy. 55 

  56 
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Here we propose a method for the estimation of the T cell fraction present in a WES sample. 57 

This method utilises a somatic copy number-based signal from VDJ recombination and the 58 

loss of TRECs. We explore the underlying features which predict T cell infiltrate in tumours 59 

and blood and evaluate determinants of immune heterogeneity within tumours. Finally, we 60 

demonstrate that our estimated T cell fraction can be used as a predictor of clinical response 61 

to CPI therapy.  62 

 63 

Results 64 

Inferring T cell fraction from WES data 65 

T cell diversity, which is required for immune system recognition of foreign antigens, is a 66 

product of VDJ recombination, where segments within the T cell receptor genes recombine. 67 

The alpha chain of the T cell receptor is encoded by the TCRA gene (also known as TRA) and 68 

the result of VDJ recombination is the excision of unselected gene segments from TCRA as 69 

TRECs, with the T cell undergoing a deletion event within TCRA.   70 

 71 

Tools to infer cancer somatic copy number alteration (SCNA)6–9 rely on the read depth ratio 72 

(RDR), reflecting the log of the ratio of reads between the tumour sample and its matched 73 

control (e.g. buffy coat in a centrifuged blood sample). Deviation in the RDR from zero is 74 

assumed to reflect a tumour SCNA. However, within TCRA this assumption does not hold; a 75 

deviance in the RDR may reflect T cell specific deletion events and SCNA tools may thus 76 

erroneously infer tumour SCNA. Indeed, in the TRACERx100 cohort multiple SCNA within 77 

TCRA were inferred in 165/327 tumour regions (Extended Data Fig. 1a). The RDR deviated 78 

the most within segments frequently included within TRECs (Extended Data Fig. 1b-c). This 79 

suggests that most detected SCNAs within TCRA reflect a signal of relative T cell content 80 

rather than cancer SCNAs. 81 

 82 
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To exploit this signal to quantify T cell content we developed T cell ExTRECT (T cell Exome 83 

TREC Tool). T cell ExTRECT uses a modified RDR within TCRA to directly quantify T cell 84 

infiltrate in WES samples (Figure 1a), referred to as the TCRA T cell fraction. Unlike RNA-seq 85 

scores, the TCRA T cell fraction represents a direct quantification of the proportion of T cells 86 

within a sample. We identified no systematic significant difference in TCRA T cell fraction 87 

dependent on whether samples were fresh frozen or formalin-fixed paraffin-embedded (FFPE) 88 

(Methods, Extended Data Fig. 1d-e). T cell ExTRECT can be applied to any WES sample, 89 

thus permitting analysis of T cell fraction in both tumour and blood samples. 90 

 91 

 92 

Validation of TCRA T cell fraction 93 

To evaluate the accuracy of T cell ExTRECT, we used five orthogonal approaches.  94 

 95 

First, to assess the ability to accurately determine the presence or absence of T cells within a 96 

sample, we used WES data from cell lines originating from T cell lymphoma (JURKAT, PEER, 97 

and HPB-ALL) and 14 colorectal cancer cell lines derived from HCT116 with varying degrees 98 

of genomic complexity10,11. All HCT116 cell lines had a calculated fraction of 0. Conversely, 99 

the three T cell lymphoma-derived cell lines had scores close to 1 (~0.95-0.96) (Extended 100 

Data Fig. 1f).  101 

 102 

Second, we used an alternative DNA based method of inferring immune content12, based on 103 

the number of reads that align to the CDR3 region following VDJ recombination (CDR3 VDJ 104 

score, Methods). In the TRACERx10013 cohort (Extended Data Fig. 1g) we observed a 105 

significant positive correlation between TCRA T cell fraction and the CDR3 VDJ score 106 

(Extended Data Fig. 1h, ρ = 0.36, P = 1.4e-13). However, the CDR3 VDJ score was 107 

constrained by sequencing depth; the number of reads aligning to the CDR3 region was 108 

typically very low (1st quartile = 0, medium = 2, mean = 2.335, 3rd quartile = 3, maximum = 109 

14).  110 
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 111 

Third, we simulated NGS data with a range of T cell fractions (Extended Data Fig. 2a-d). We 112 

observed a highly significant relationship between simulated and calculated T cell fraction (ρ 113 

= 0.99986, P < 2.2e-16, Extended Data Fig. 2b). Using downsampling and simulations, we 114 

found that the TCRA T cell fraction estimates remained consistent at coverage above and 115 

including 30X (ρ = 0.84, P = 1.4e-14) (Extended Data Fig. 2e-f). In contrast, the results from 116 

the CDR3 method were heavily skewed by sequencing coverage; when selecting the five 117 

samples with the highest CDR3 coverage and downsampling to 50X, only one sample with ≥ 3 118 

CDR3 reads was detected (Extended Data Fig. 2g).  119 

 120 

Fourth, to further confirm the accuracy of the TCRA T cell fraction, we evaluated its association 121 

with histopathology-derived TIL scores from H&E slides. Selecting the subset of tumour 122 

regions with both RNA-seq data and histopathology-derived TIL scores (147 regions), we 123 

evaluated how the TCRA T cell fraction, CDR3 VDJ score, and six RNA-seq based immune 124 

measures for CD8+ cells (Danaher14, Davoli15, xCell16, TIMER17, CIBERSORT18, and EPIC19) 125 

compared to histopathology-derived TIL scores (Figure 1b). The Danaher CD8+ score had 126 

the strongest association (ρ = 0.49), followed by the TCRA T cell fraction (ρ = 0.41), Davoli (ρ 127 

= 0.4), xCell (ρ = 0.36), CIBERSORT (ρ = 0.23), TIMER (ρ = 0.2), CDR3 VDJ score (ρ = 0.2), 128 

and EPIC (ρ = 0.082). 129 

 130 

Finally, the TCRA T cell fraction from WES was directly compared with RNA-seq methods and 131 

was found to have a significant positive relationship with multiple immune scores1,14–19 with 132 

the strongest associations being with T cell related scores (Figure 1c).  133 

 134 

Determinants of T cell content in blood  135 
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We next explored the key determinants of T cell immune infiltrate in matched control blood 136 

WES samples. 137 

 138 

Within the TRACERx10013 cohort, blood TCRA T cell fraction was significantly higher in 139 

females than males (Figure 2a, P = 0.0057, ES = 0.28) and we observed a trend for higher 140 

blood T cell fraction in LUSC compared to LUAD patients (Extended Data Fig. 3a,  P = 0.066, 141 

ES = 0.19). We also observed a significant positive relationship between blood TCRA T cell 142 

fraction and matched tumour TCRA T cell fraction (Figure 2a, ρ = 0.42, P = 1.7e-05). These 143 

data suggest that tumour immune infiltrate may influence T cell levels in circulating blood or 144 

vice versa. We observed broadly consistent results in LUAD and LUSC TCGA20,21 patients 145 

(Extended Data Fig. 3b-c).  146 

 147 

To further examine the determinants of blood T cell fraction, we explored WES samples 148 

derived from both blood and physiologically normal oesophagus epithelia (PNE) tissue22. 149 

While blood samples exhibited a wide range of TCRA T cell fraction levels, the majority of 150 

PNE tissue had no detectable T cell infiltration (Extended Data Fig. 3d-e). Dividing the PNE 151 

samples by presence of T cell infiltration revealed a significant association with blood TCRA 152 

T cell fraction (Figure 2b, P = 0.021, ES = 0.29). Therefore, similarly to tumour samples, high 153 

levels of T cell infiltration in normal tissue may influence the TCRA T cell fraction observed in 154 

blood. In a linear model predicting T cell fraction in blood, only the infiltration level in normal 155 

tissue was significant (Extended Data Fig. 3f); no genomic factors, such as mutation burden 156 

or driver mutation status were predictive of T cell infiltration in PNE tissue (Extended Data Fig. 157 

3g). 158 

 159 

Viral or bacterial infections could also influence T cell levels in blood. To explore this we 160 

obtained normalised estimates for the abundance of microbial reads from blood and tumour 161 

samples from the LUAD and LUSC TCGA cohorts23. Blood samples with elevated microbial 162 

reads (> median, 6.81) had significantly higher blood TCRA T cell levels (Figure 2c, P = 163 
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0.00092, ES = 0.31, Wilcoxon test). No corresponding association was identified in tumour 164 

samples (Extended Data Fig. 3h, P = NS). No specific virus or bacteria were associated with 165 

blood TCRA T cell fraction. In tumour samples significant associations for bacteria of the 166 

genus WIlliamsia in LUAD (ρ = -0.17, P = 0.00011, FDR P = 0.013) and Paeniclostridium in 167 

LUSC (ρ = -0.2, P = 0.00013, FDR P = 0.015) were observed (Extended Data Fig. 3i-k). Both 168 

had higher normalised log-cpm values when TCRA T cell fraction was lower, suggesting they 169 

may be opportunistic species exploiting an immune-cold tumour microenvironment. 170 

 171 

Determinants of tumour T cell content 172 

Next, we explored factors influencing T cell infiltrate in tumour tissue. We utilised a recently 173 

published pan-cancer cohort of multi-sample data24 to investigate both the extent and possible 174 

genomic basis for immune infiltrate heterogeneity. In total, we evaluated T cell infiltrate in 731 175 

tumour samples from 178 tumours, from 12 cancer types (Extended Data Fig. 4a-b). 176 

 177 

We classified each multi-sample tumour as uniformly hot (all samples ≥ 0.11, the mean TCRA T 178 

cell fraction), uniformly cold (all samples < 0.11) or heterogeneous. There was a significant 179 

difference in the proportion of these categories by cancer type (Figure 2d, chi-squared test: P 180 

= 1.62e-07) with ER+ breast cancer (BRCA ER+) tumours being the most heterogeneous (83%) 181 

and LUSC tumours being the least (22%). Clear differences in the prevalence and heterogeneity 182 

of immune infiltrate was observed across cancer types; for instance, while bladder cancer 183 

(BLCA) and LUAD had similar numbers of heterogeneous tumours (36% vs 37%), ~64% of BLCA 184 

tumours were uniformly immune-hot and 0% were uniformly immune-cold, whereas in LUAD 185 

37% tumours were uniformly immune-cold and 25% uniformly immune-hot. This suggests that 186 



8 

 

for certain cancer types there is a highly localised immune infiltrate, which can be subject to 187 

considerable sampling bias. 188 

 189 

Next, we examined the relationship between SCNAs and immune diversity. We restricted the 190 

analysis to tumours with at least three samples and a heterogeneous mixture of T cell infiltrate. 191 

Pairwise SCNA heterogeneity between any two samples was calculated as the sum of the 192 

proportion of the genome with unique SCNAs in either region. Pairs of tumour samples with a 193 

large disparity in TCRA T cell fraction (≥ the mean of all pairwise distances, 0.065) were 194 

associated with a larger differences in SCNA heterogeneity compared to matched region pairs 195 

with low TCRA T cell fraction heterogeneity (Figure 2e, All events: P = 0.0025, ES = 0.347; 196 

gain events: P = 0.0056, ES = 0.318; loss or LOH events: P = 0.028, ES = 0.253, n = 76). 197 

 198 

To explore whether any specific subclonal SCNA were associated with immune depletion or 199 

activation, we identified cytobands that were subclonally lost or gained > 30 tumours in the 200 

pan-cancer multi-sample cohort (Extended Data Fig. 4c) and investigated whether specific 201 

SCNAs were associated with changes in TCRA T cell fraction. Subclonal loss of 12q24.31-32 202 

was found to be significantly associated with decreased TCRA T cell fraction (Figure 2f: P = 203 

5.9e-06, ES = 0.75).  204 

 205 

RNA-seq analysis of the TRACERx100 cohort identified SPPL3 as exhibiting the most 206 

significant differential expression between samples with and without subclonal 12q24.31-32 207 

loss (Extended Data Fig. 4d). The absence of SPPL3 has been found to augment B3GNT5 208 

enzyme activity which upregulates cell surface glycosphingolipids that in turn impede class I 209 

HLA function and diminish CD8+ T cell activation25. Thus, these data suggest that subclonal 210 

loss of 12q24.31, encompassing SPPL3, may be selected in tumour evolution across cancer 211 

types (occuring in 18.7% of tumours within the cohort) as a mechanism of immune evasion. 212 
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 213 

T cell fraction is prognostic in LUAD 214 

To explore the clinical utility of T cell ExTRECT, we considered whether the TCRA T cell 215 

fraction was prognostic in the TRACERx100 non-small cell lung cancer (NSCLC) cohort13. We 216 

categorised tumour regions as either ‘hot’ or ‘cold’ depending on whether TCRA T cell fraction 217 

was ≥ the mean in the cohort (0.081). In LUAD, we observed that patients harbouring an 218 

elevated number of immune-cold tumour regions were associated with significantly inferior 219 

prognosis (Figure 3, LUAD: ≥ 2 immune-cold regions, HR = 3.1, P = 0.0063 log-rank test, 220 

LUAD: ≥ 3 immune-cold regions HR = 7.3, P = 0.00024 log-rank test). In contrast, in LUSC 221 

patients there was no significant difference in survival. Using the median (0.074) as a threshold 222 

for immune hot or cold regions yielded similar results (Extended Data Fig. 5a). These results 223 

are consistent with previous analysis based on TIL scores inferred from computational 224 

pathology on the TRACERx100 cohort26. An association between high TCRA T cell fraction 225 

and good outcome was also observed in the TCGA LUAD (Extended Data Fig. 5b overall 226 

survival (OS): HR = 0.61, P = 0.0043, progression free survival (PFS): HR = 0.67 P = 0.016), 227 

but not LUSC cohort (Extended Data Fig. 5c). A range of possible thresholds yielded similar 228 

results (Extended Data Fig. 5d). 229 

 230 

Consistent with the importance of the tumour region with the lowest immune infiltrate26, the 231 

minimum, but not the maximum or mean, TCRA fraction across tumour regions was prognostic 232 

in the TRACERx100 cohort. Other continuous measures such as a TCRA T cell fraction 233 

divergence between tumour region score (Extended Data Fig. 5d, LUAD: HR = 2.2 P = 0.023 234 

log-rank test) and a model combining both the minimum and maximum scores (Extended Data 235 

Fig. 5e, LUAD and LUSC: minimum HR = 0.5, P = 0.005, maximum HR = 1.5 P = 0.061; 236 

LUAD: minimum HR = 0.36, P = 0.016, maximum HR = 2.52, P = 0.029) reached significance, 237 
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suggesting that there is added predictive potential when considering the heterogeneity of the 238 

TCRA T cell fraction. 239 

 240 

T cell fraction and response to CPIs 241 

To further explore the clinical utility of T cell ExTRECT, we evaluated its ability to predict 242 

clinical response to CPIs.  The CPI1000+ cohort2 consists of 1070 CPI-treated tumours 243 

receiving either anti-CTLA-4, anti-PD-L1 or anti-PD-1 therapy across eight main cancer types 244 

(Extended Data Fig. 6a-b). A responder was defined as a patient with complete response (CR) 245 

or partial response (PR), while a non-responder was defined as stable disease (SD) or 246 

progressive disease (PD), on imaging by RECIST criteria27.  247 

 248 

Consistent with the importance of T cells in influencing response to CPIs, we observed a 249 

significantly higher (Figure 4a, P = 2.3e-07, ES = 0.17) tumour TCRA T cell fraction in 250 

responders. Likewise, immune-cold tumours (tumours with TCRA T cell fraction < 0.067, the 251 

mean TCRA T cell fraction), were significantly enriched for non-responders (Figure 4b, 252 

Fisher’s exact test, odds ratio (OR) = 2.12, P = 2.25e-06).  253 

 254 

Separating the cohort by the medians for both clonal TMB and TCRA T cell fraction revealed 255 

that the association between TCRA T cell fraction and clinical response was independent of 256 

clonal TMB (Figure 4b).  257 

 258 

To evaluate the utility of T cell ExTRECT in comparison to RNA-seq based measurements, all 259 

studies with ≥ 10 samples from a cancer type with both RNA-seq and TCRA T cell fractions 260 

were selected for univariate meta-analyses (Figure 4c: 557 patients across 7 studies and 5 261 

cancer types). TCRA T cell fraction (OR = 1.39, P = 0.00858), clonal TMB (OR = 1.59, P = 262 

6.021e-05) and CD8A expression (OR = 1.45, P = 0.0004479) were all significantly associated 263 

with response.  264 
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 265 

To assess whether tumour TCRA T cell fractions improves prediction of response beyond 266 

clonal TMB and to a greater extent than CD8A expression we evaluated different linear models 267 

(Extended Data Fig. 6c). Only the clonal TMB + TCRA model was significant compared to 268 

clonal TMB alone (ROC test, P = 0.0028, GLM: clonal TMB + TCRA, AUC = 0.68, GLM: clonal 269 

TMB, AUC = 0.62). When examining the significance of the variables in all models, TCRA T 270 

cell fraction was more significant than CD8A (GLM: clonal TMB + TCRA, P = 4.62e-05; GLM: 271 

clonal TMB + CD8A, P = 0.000431) and when combined into a multivariable model, TCRA T 272 

cell fraction remained significant, but CD8A expression did not (TCRA, P = 0.00601, CD8A, P 273 

= 0.06246). 274 

 275 

Finally, we assessed the predictive potential of the TCRA T cell fraction in a combined NSCLC 276 

CPI cohort (Extended Data Fig. 6d-e) lacking any RNA-seq immune measures. In univariate 277 

analyses, (Figure 4d), TCRA T cell fraction (OR = 1.44, P = 0.0071) and blood TCRA T cell 278 

fraction (OR = 1.39, P = 0.015) were significantly associated with response to CPI. Tumour 279 

TCRA T cell fraction had OR > 1 in two of three cohorts while blood TCRA T cell fraction had 280 

OR > 1 in all three cohorts.  281 

 282 

Taken together, these results suggest the TCRA T cell fraction can be used as a substitute 283 

for RNA-seq measures of CD8+ infiltrate, and, moreover, TCRA T cell fraction estimation adds 284 

prognostic value to TMB estimates.  285 

 286 

Discussion 287 

In summary, we present a method, T cell ExTRECT, by which DNA WES can be harnessed 288 

to study the immune microenvironment. T cell ExTRECT provides an accurate estimate of 289 

immune infiltrate which shows clinical utility.  We find tumour TCRA T cell fraction is prognostic 290 

in LUAD and validate this finding in the TCGA LUAD cohort. Relatedly, we find the TCRA T 291 

cell fraction is associated with response to CPI in a pan-cancer cohort and improves upon the 292 
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predictive value of clonal TMB. T cell ExTRECT enables the T cell fraction to be calculated in 293 

any WES sample. Leveraging this, we demonstrate that T cell fraction in blood is 294 

heterogeneous, associated with microbial infections and was found to be significantly higher 295 

in females than males in TRACERx100 NSCLC patient data, consistent with previous 296 

findings30,31. Our analysis of blood samples in the lung CPI cohort revealed that blood TCRA 297 

T cell fraction is predictive of response to immunotherapy.  298 

 299 

The T cell ExTRECT method has limitations. While the tool provides a quantification of the 300 

proportion of T cells in a sample, it cannot distinguish neoantigen-reactive from bystander T 301 

cells, and is unable to detect clonotypes. Further, T cell ExTRECT loses fidelity below 30X 302 

sequencing depth. Nevertheless, this relatively low depth means it should be applicable to 303 

most DNA sequencing datasets. T cell ExTRECT has so far only been optimised for WES, but 304 

further work will extend the method to whole-genome and to other species including much 305 

studied model organisms. T cell ExTRECT has clear applications in the immuno-oncological 306 

exploration of tumour samples, however it could also be utilised in a wider clinical setting, such 307 

as newborn screening of severe combined immunodeficiency disease32.  308 

 309 

In summary, our approach, T cell ExTRECT, could have important applications in both basic 310 

and translational research by providing a cost-effective technique to characterise immune 311 

infiltrate alongside somatic changes, without the need for RNA sequencing.  312 

 313 

Methods 314 

 315 

A detailed and full description of the T cell ExTRECT method is given in Supplementary 316 

Information. 317 

 318 

Statistics 319 
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All statistical tests were performed in R 3.6.1. No statistical methods were used to 320 

predetermine sample size. Tests involving correlations were done using ‘stat_cor’ from R 321 

package ggpubr (v0.4.0) with the Spearman’s method. Tests involving comparisons of 322 

distributions were done using ‘stat_compare_means’ using either ‘wilcox.test’ using the 323 

unpaired option, unless otherwise stated. Effect sizes for the corresponding Wilcoxon tests 324 

were measured using the ‘wilcox_effsize’ function from the rstatix package (v0.6.0). Hazard 325 

ratios and P values were calculated with the ‘survival’ package (v3.2-3) for both the Kaplan-326 

Meier curves and Cox proportional hazard model. For all statistical tests, the number of data 327 

points included are plotted or annotated in the corresponding figure. Plotting and analysis in 328 

R also made use of the ggplot2 (v3.3.3), dplyr (v1.0.4), tidyr (v1.1.1), gridExtra (v2.3) and 329 

gtable (v0.3.0) packages.  330 

 331 

Fresh frozen vs FFPE samples 332 

To test that the TCRA T cell fraction was reliable and consistent for both fresh frozen and 333 

FFPE samples the non-GC corrected TCRA T cell fractions were calculated for six different 334 

studies within the CPI1000+ cohort. Three of these studies utilised WES derived from FFPE 335 

tissues (n = 460) while the other three utilised WES samples derived from fresh frozen tissue 336 

(n = 357). 337 

 338 

Fitting a linear model to predict TCRA T cell fraction by histology and FFPE status (Extended 339 

Data Fig. 1i) revealed that cancer type however was the main driver of this significance with 340 

FFPE status not being significant. Additionally, for melanoma and bladder tumours that had 341 

FFPE and fresh frozen WES samples there was no significant difference found (Extended 342 

Data Fig. 1f). This led us to conclude that whether a WES sample is derived from fresh frozen 343 

or FFPE tissue does not significantly affect the values of the TCRA T cell fraction calculated 344 

by T cell ExTRECT. 345 

 346 

Calculation of CDR3 VDJ scores 347 
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The procedure outlined in Levy et al.12 was followed to calculate the CDR3 VDJ scores. First 348 

reads aligning to TCRB (hg19:chr7:142000817-142510993) and unaligned reads were 349 

extracted with samtools, this resulting bam was converted to fastq using bedtools and then 350 

the tool IMSEQ (v1.1.0)33 was used on the resulting output to identify VDJ recombinant reads 351 

aligning to the CDR3 region, the number of aligned reads was than normalised by the total 352 

number of reads in the original bam file (as measured by samtools flagstat) to create the CDR3 353 

VDJ scores. 354 

 355 

Kraken TCGA analysis 356 

Pre-processed microbiome data output from the Kraken34 analysis performed by Poore et al.23 357 

was downloaded from ftp://ftp.microbio.me/pub/cancer_microbiome_analysis/. 358 

 359 

To create the high and low Kraken microbiome groups for both the blood and tumour samples 360 

the file Kraken-TCGA-Voom-SNM-Most-Stringent-Filtering-Data.csv was downloaded 361 

containing normalised log-cpm values, for each sample the rows were summed giving a 362 

overall ‘microbiome’ score. The samples were then divided into high and low groups based on 363 

the median of this score. 364 

 365 

To investigate the role of any individual microbial species in influencing TCRA T cell fraction 366 

a reduced list of the species from the Kraken-TCGA-Voom-SNM-Most-Stringent-Filtering-367 

Data.csv file were selected, by removing all species with less than 1000 total raw reads in the 368 

TCGA LUAD and LUSC cohort as called from the raw data file Kraken-TCGA-Raw-Data-369 

17625-Samples.csv. This left a total of 59 microbial species that were individually tested for 370 

association with TCRA T cell fraction using Spearman’s correlation for both LUAD and LUSC 371 

blood and tumour samples.  372 

 373 

TRACERx100 patients 374 

http://ftp.microbio.me/pub/cancer_microbiome_analysis/
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The first 100 patients prospectively analysed by the NSCLC TRACERx study 375 

(https://clinicaltrials.gov/ct2/show/NCT01888601, approved by an independent research 376 

ethics committee, 13/LO/1546) were used in this study. This is identical to the 100 patient 377 

cohort originally described in Jamal-Hanjani et al13. 378 

 379 

Describing this cohort in brief, informed consent was a mandatory requirement for entry into 380 

the TRACERx study. This NSCLC cohort consisted of 68 males and 32 female patients with 381 

a median age of 68. Finally, the cohort is predominantly made up of early-stage tumours (Ia 382 

(26), Ib (36), IIa (13), IIb (11), IIIa (13) and IIIb (1)) and 28 patients also had adjuvant therapy. 383 

 384 

TRACERx100 WES and RNA-seq samples 385 

Both WES (aligned to hg19) and RNA-seq samples were obtained from the TRACERx study 386 

for the first 100 patients, the method for processing these samples is as previously 387 

described13. Notably for the WES samples, exome capture was performed using a custom 388 

version of Agilent Human All Exome V5 kit as per the manufacturer instructions. 389 

 390 

TCGA LUAD and LUSC cohorts 391 

Aligned BAM files (hg38) from the TCGA LUAD and LUSC cohorts were downloaded from the 392 

genomic data commons (dataset ID: phs000178.v10.p8). Sample purity and ploidy calls were 393 

generated from ASCAT (v2.4.2) from a previous analysis of the TCGA data35, in short 394 

Affymetrix SNP6 profiles from paired tumour-normal samples (dataset ID: phs000178.v10.p8) 395 

were processed by PennCNV libraries36 to obtain BAFs and log ratios which were GC 396 

corrected before being processed with ASCAT6. 397 

 398 

Cancer cell line data 399 

The non-T cell derived colorectal cancer cell lines HCT116 were sequenced with Illumina 400 

HiSeq 2500 and aligned with bwa mem using hg19 as described in López et al.10. The T cell 401 

derived cell lines were from the dataset were described in Ghandi et al.11 and downloaded 402 
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from the Sequence Read Archive (SRA) under accession number PRJNA523380. Cell lines 403 

derived from T cells were chosen ensuring that any cell line derived from precursor T cell 404 

acute lymphoblastic leukemia were excluded as these have not undergone VDJ 405 

recombination. This process led to WES data from three cell lines being chosen: JURKAT, 406 

HPB-ALL, and PEER. 407 

 408 

Due to the difficulty of running ASCAT without matching germline samples, the naïve TCRA T 409 

cell fraction was used for all cell line work. 410 

 411 

Multi-sample tumour cohort of patients 412 

The multi-sample pan-cancer cohort (Extended data Fig. 4b) was created by combining the 413 

TRACERx cohort with a subset of the cohort presented recently by Watkins et al.24. Tumours 414 

were included if they had at least two regions sequenced in the primary tumour for which it 415 

was possible to calculate the TCRA T cell fraction using T cell ExTRECT. The final cohort 416 

therefore consisted of a multi-region primary tumour data set with the addition of any 417 

metastasis samples that were also sequenced for these patients. 418 

Besides TRACERx100 the following datasets were combined into the final multi-sample pan-419 

cancer cohort: 420 

  421 

1. Brastianos et al.37 - a cohort focused on studying brain metastasis originating from 422 

different histologies, only tumours with multi-region primary samples from this cohort 423 

were included. 424 

2. Gerlinger et al.38,39 - A multi-sample primary cohort of renal clear cell carcinoma (KIRC) 425 

patients. 426 

3. Harbst et al.40 - A multi-region primary cohort of skin cutaneous melanoma (SKCM) 427 

patients. 428 

4. Lamy et al.41 - A multi-region primary cohort of bladder cancer patients (BLCA) 429 
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5. Savas et al.42 - A multi-sample cohort of ER+ and triple-negative breast cancer patients 430 

(BRCA ER+ and TNBC) 431 

6. Suzuki et al.43 - A multi-region primary cohort of glioma. 432 

7. Turajlic et al44. - A multi-region primary cohort of clear cell renal cell carcinoma (KIRC). 433 

8. Messaoudene et al.45 - A multi-region primary cohort of HER2+ and ER+ breast cancer 434 

patients. 435 

 436 

 437 

Selection of subregions for multi-region sequencing in different data sets 438 

In all of the multi-region cohorts regions were selected though by different methods (see 439 

associated publications) with two main criteria in mind, first that tumour content be maximised 440 

at the expense of stromal in order to assure good quality mutation and copy number analysis 441 

for the main goal of the genomic analysis and second that each region represent a physically 442 

separate and distinct part of the tumour. In cases where these were not at separate sites 443 

different measures were used. In the TRACERx100 cohort for example regions sequenced 444 

were a minimum of 3mm apart.  445 

 446 

Identification of gain, loss, and LOH events in a pan-cancer multi-sample cohort  447 

Analysis of whole-exome sequencing was performed as described previously13. Copy-number 448 

segmentation, tumour purity and ploidy for each sample were estimated using ASCAT6 as 449 

described previously13. These data were used as input to a multi-sample SCNA estimation 450 

approach to produce genome-wide estimates of the presence of loss of heterozygosity as well 451 

as loss, neutral, gain and amplification copy-number states relative to sample ploidy. The log 452 

ratio values present in each copy-number segment with ≥5 log ratio values in all samples of a 453 

tumour were examined relative to three sample-ploidy-adjusted log ratio thresholds using one-454 
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tailed t-tests with a P < 0.01 threshold. These log ratio thresholds were equivalent to 455 

<log2[1.5/2] for losses, >log2[2.5/2] for gains in a diploid tumour. Any segment not classified 456 

as a loss or gain were classed as neutral. For each segment, these relative to ploidy definitions 457 

were combined with loss of heterozygosity detection across all samples from a single tumour.  458 

 459 

Pairwise subclonal SCNA scores 460 

To calculate pairwise subclonal SCNA measures, the classifications outlined in the previous 461 

methods section were used to create three groups of pairwise subclonal SCNA scores. First, 462 

we considered any segment affected by any of gain or loss relative to ploidy or LOH as 463 

aberrant and compared each pair of regions from a single patient’s disease, classifying 464 

aberrant areas as clonal if aberrant in both samples or subclonal if aberrant in only one 465 

sample. This same process was repeated for gains relative to ploidy alone and then losses 466 

relative to ploidy and LOH considered together. 467 

 468 

Cytoband-level SCNA analysis 469 

To enable comparisons across tumours, segments were mapped to hg19 cytobands. If 470 

multiple segments mapped to a cytoband, the SCNA status (gain or loss relative to ploidy) of 471 

the segment with the largest overlap with the cytoband was chosen. 472 

 473 

For the SCNA gain and loss analysis, cytoband level events were selected if they occurred 474 

subclonally across the entire cohort greater than 30 times. Bands passing this threshold within 475 

the same region (e.g. all cytobands on 1p36) were then grouped together. A Wilcoxon paired 476 

test was used to assess whether the tumour regions within a single patient with the subclonal 477 

SCNA events had a significant difference in TCRA T cell fraction to those regions without the 478 

event. 479 

 480 
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Selection of multi-sample tumours with heterogeneous immune infiltration 481 

To be included a tumour had to have at least 3 regions sequenced and meet the following two 482 

requirements, 1) have a pair of regions with a large change in immune infiltration as defined as 483 

having ≥ 0.065 difference in TCRA T cell fraction, and 2) have a pair of regions with a small 484 

or no change in immune infiltration as defined as having < 0.065 difference in TCRA T cell 485 

fraction. An example of a tumour matching this requirement would be one with three regions 486 

R1, R2 and R3 with TCRA T cell fractions of 0.01, 0.01 and 0.2 respectively. The R1-R2 pair 487 

has a difference in TCRA T cell fraction of 0 while the R1-R3 and R2-R3 pairs would both 488 

have a large difference of 0.19. Within the multi-sample tumour cohort 76 patients matched 489 

these criteria. 490 

 491 

RNA-seq differential gene expression analysis for patients with subclonal 12q24.31-32 loss 492 

Differential gene expression analysis was performed on the TRACERx100 RNA-seq patients 493 

with subclonal 12q24.31-32 loss. Using R 4.0.0, first the edgeR R package (version 3.32.1) 494 

was used for sample-specific TMM normalisation, any genes with low expression were then 495 

filtered out using the standard edgeR filtering method before using the Limma-Voom method 496 

from the limma R package (version 3.46.0) to calculate the Voom fit and obtain p-values for 497 

the gene expression differences. The comparison controlled for patient and histology as 498 

blocking factors and p-values were FDR corrected for multiple testing. Results were then 499 

visualised with the R EnhancedVolcano package (version 1.8.0). 500 

 501 

CPI1000+ meta-analysis of cohorts 502 

 503 

The CPI1000+ cohort is fully described in Litchfield et al.2  and contains the following datasets: 504 

1. Snyder et al.46, an advanced melanoma anti-CTLA-4 treated cohort. 505 

2. Van Allen et al.47, an advanced melanoma anti-CTLA-4 treated cohort. 506 

3. Hugo et al.48, an advanced melanoma anti-PD-1 treated cohort. 507 
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4. Riaz et al.49, an advanced melanoma anti-PD-1 treated cohort. 508 

5. Cristescu et al.50, an advanced melanoma anti-PD-1 treated cohort. 509 

6. Cristescu et al.50, an advanced head and neck cancer anti-PD-1 treated cohort. 510 

7. Cristescu et al.50 “all other tumour types” cohort (from KEYNOTE-028 and KEYNOTE-511 

012 studies), treated with anti-PD-1. 512 

8. Snyder et al.51, a metastatic urothelial cancer anti-PD-L1 treated cohort. 513 

9. Mariathasan et al.52, a metastatic urothelial cancer anti-PD-L1 treated cohort. 514 

10. McDermott et al.53, a metastatic renal cell carcinoma anti-PD-L1 treated cohort. 515 

11. Rizvi et al.29, a non-small cell lung cancer anti-PD-1 treated cohort. 516 

12. Hellman et al., a cohort of non-small cell lung cancer samples treated with anti-PD-1 517 

used by Litchfield et al.2. 518 

13. Le et al.54,a colorectal cancer cohort treated with anti-PD-1 therapy. 519 

  520 

Of these studies Snyder et al.51 was excluded from the analysis due to extremely poor 521 

coverage within the TCRA gene. Additionally, 55 patients were either on treatment at the time 522 

of the biopsy or had prior treatment with CPIs and were removed from the analysis. All 523 

samples were aligned to hg19 using bwa mem (v0.7.15) with purity and SCNA data calculated 524 

using ASCAT as described in Litchfield et al.2. 525 

Notably, 953/1070 (89%) samples had WES data, 888/1070 (83%) had sufficient purity and 526 

coverage to enable copy number calculation enabling the TCRA T cell fractions to be 527 

calculated. 643/1070 (60%) of these samples had matched RNA-seq data allowing orthogonal 528 

assessment of T cell estimates. 529 

  530 

For an extension to this dataset, Shim et al.28 a NSCLC anti-PD-1 treated cohort was added 531 

for a specific NSCLC analysis. In this entire cohort mutations were called as either clonal or 532 

subclonal using PyClone as described by Litchfield et al.2. 533 

 534 
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Orthogonal immune measures 535 

RNA-seq signatures 536 

We used the method of Danaher et al.12 as our primary method of estimating T cell content 537 

from RNA-seq measures as it has been previously demonstrated that this is most strongly 538 

correlated to TIL scores calculated in TRACERx1. Other RNA-seq signatures tested against 539 

the TCRA T cell fractions were theDavoli method15, xCell16, TIMER17 and EPIC19 and 540 

CIBERSORT18. 541 

 542 

Histopathology-derived TIL scores 543 

TILs were estimated, as previously described in Rosenthal et al.1, from histopathology slides 544 

using internationally established guidelines, developed by the International Immuno-Oncology 545 

Biomarker Working Group55. In brief, the relative proportion of stromal area to tumour area 546 

was determined from the pathology slide of a given tumour region. TILs were reported for the 547 

stromal compartment (= percent stromal TILs). The denominator used to determine the 548 

percent stromal TILs was the area of stromal tissue (that is, the area occupied by mononuclear 549 

inflammatory cells over total intratumoral stromal area) rather than the number of stromal cells 550 

(that is, the fraction of total stromal nuclei that represent mononuclear inflammatory cell 551 

nuclei). This method has been demonstrated to be reproducible among trained pathologists56. 552 

An inter-person concordance was performed, and this demonstrated high reproducibility. The 553 

International Immuno-Oncology Biomarker Working Group has developed a freely available 554 

training tool to train pathologists for optimal TIL assessment on haematoxylin–eosin slides 555 

(www.tilsincancer.org). 556 

 557 

Univariate and multivariable model for CPI response 558 

For the univariate model an adapted procedure from Litchfield et al.2 was followed with the 559 

main difference being that only samples with complete data (RNA-seq for CD8A, clonal TMB 560 

and TCRA T cell fraction) were included. The univariate model meta-analysis was conducted 561 

using R package ‘meta’ (version 4.13-0). The multivariable model was created with general 562 
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linear models using the function `glm` from the ‘stats’ R package using default values. The R 563 

package ‘ROCR’ (version 1.0-11) was used for the ROC curve analysis.  564 

 565 

Code 566 

The code used to produce TCRA T cell fraction scores is available for academic non-567 

commercial research purposes upon reasonable request. 568 

 569 

All other code used in the analysis and to produce figures is available at: 570 

https://github.com/McGranahanLab/T-cell-ExTRECT-figure-code-2021 571 

 572 

Data availability 573 

The RNA-seq data and WES data (in each case from the TRACERx study) generated, used 574 

or analysed during this study are not publicly available and restrictions apply to the availability 575 

of these data. Such RNA-seq and WES data are available through the Cancer Research UK 576 

& University College London Cancer Trials Centre (ctc.tracerx@ucl.ac.uk) for academic non-577 

commercial research purposes upon reasonable request, and subject to review of a project 578 

proposal that will be evaluated by a TRACERx data access committee, entering into an 579 

appropriate data access agreement and subject to any applicable ethical approvals. 580 

 581 

Details of all other datasets obtained from third parties used in this study can be found in 582 

Extended Data Table 1. Clinical trial information (if applicable) is also available within the 583 

associated publications described in Extended Data Table 1. 584 

 585 

Figure Legends 586 

Figure 1 – Overview and validation of T cell ExTRECT  587 

a, Overview of how VDJ recombination signal is identified from read depth within TCRA in T 588 

cell fraction calculation. b, Association with histopathology TIL scores and measures of CD8+ 589 
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T cell content from either RNA-seq (Danaher, Davoli, EPIC, TIMER, CIBERSORT and xCell) 590 

or DNA (T cell ExTRECT and CDR3 VDJ score). c, Association between TCRA T cell fraction 591 

with RNA-based scores for immune cell types (Danaher14, Davoli15, EPIC19, TIMER17, 592 

CIBERSORT18, and xCell16) ordering determined by strength of association (Spearman’s Rho 593 

coefficient) with TCRA T cell fraction.  594 

 595 

Figure 2: Determinants of T cell fraction. 596 

a, TRACERx100 blood TCRA T cell fraction predictors. b, Association of TCRA T cell fraction 597 

in PNE with blood TCRA T cell fraction. c, Microbial reads from Kraken versus blood TCRA T 598 

cell fraction (n = 111). d, Proportion of tumours uniformly immune-hot, uniformly immune-cold 599 

or heterogeneous (Methods). e, Multi-sample tumours (n = 76) with heterogeneous immune 600 

infiltrate defined as having both a pair of regions with pairwise TCRA T cell fraction difference 601 

< 0.065 and another with pairwise difference ≥ 0.065, versus pairwise SCNA heterogeneity 602 

score (Methods). Threshold 0.065 being the mean of all pairwise differences between regions. 603 

f, TCRA T cell fraction difference between regions with or without subclonal loss of 12q24.31-604 

32. All Wilcoxon tests two sided and boxplots represent lower quartile, median, and upper 605 

quartile.  606 

 607 

Figure 3 – Prognostic value of TCRA T cell fraction within LUAD but not LUSC 608 

TRACERx100 multi-region LUAD (top) and LUSC (bottom) Kaplan-Meier curves divided by 609 

the number of immune-cold regions in the tumour (increasing left to right). Immune-hot and 610 

immune-cold regions defined using threshold of the mean of all tumour regions (0.08095). 611 

Patients in Kaplan-Meier analyses were restricted to those with total regions greater than the 612 

number of immune-cold regions used in defining the threshold.  613 

 614 

Figure 4 – TCRA T cell fraction is predictive of survival and response to immunotherapy 615 
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a, Violin plot showing the tumour TCRA T cell fraction for non-responders versus responders 616 

across the CPI1000+ cohort, dotted black line shows mean TCRA T cell fraction (0.067) b, 617 

Tumour TCRA T cell fraction versus clonal TMB, dashed lines divide cohort into four quadrants 618 

with high/low clonal TMB and immune-hot/immune-cold tumours separated by the median 619 

values. Inset pie charts indicate the percentage of patients demonstrating CPI response. c, 620 

Univariate meta-analysis of predictors of CPI response across multiple cohorts with ≥ 10 621 

patients of a cancer type and both DNA and RNA-seq data. Left panel: forest plot of OR values 622 

from different clinical factors with associated p-values in terms of predictive value of response. 623 

Right panel: heatmap of OR values across individual studies from the CPI1000+ dataset, 624 

focusing on cohorts with both RNA-seq and TCRA T cell fraction. d, Univariate meta-analysis 625 

across three CPI lung datasets with DNA but no RNA- seq data.  626 

 627 

Extended Data Fig. 1: Overview and validation of T cell ExTRECT 628 

a, Outline of quantification of the TCRA T cell fraction utilising VDJ recombination and TRECs. 629 

top: Schematic demonstrating how RDR signals are used to detect SCNA gain or loss events 630 

in a standard tumour and matched control sample analysis. In this analysis cells consist of 631 

three distinct cell types: tumour cells, T cells and all other stromal cells. bottom: Schematic of 632 

how this same process works when focussing on the TCRA gene in relation to VDJ 633 

recombination and TRECs, the lower right panel indicates an increased number of breakpoints 634 

detected in the TRACERx100 dataset within the TCRA gene relative to surrounding areas of 635 

14q, suggesting that the TREC signal is captured. b, c, Plots showing examples of RDR in 636 

two TRACERx100 regions demonstrating either increased levels of T cell content in blood 637 

compared to matched tumour (b) or increased levels of T cell content in tumour compared to 638 

matched blood (c). VDV segments refer to variable segments in both the TCRα and TCRδ 639 

locus. d, TCRA T cell fraction (non-GC corrected) value for FFPE and fresh frozen samples 640 
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for bladder and melanoma tumours within the CPI1000+ cohort (bladder: n = 228, melanoma: 641 

n= 297, two sided wilcoxon test used, boxplot shows lower quartile, median and upper quartile 642 

values). e, Summary of linear model for prediction of non-GC corrected TCRA T cell fraction 643 

from histology and FFPE sample status within the CPI cohort. f, Pie charts of calculated TCRA 644 

T cell fraction from WES of either T cell-derived cell lines or non-T cell derived cell lines, all 645 

HCT116 cell lines had calculated fractions < 1 e-15. g, Overview of samples in the 646 

TRACERx100 cohort. e, Association of the CDR3 VDJ read score based on the iDNA method 647 

to TCRA T cell fraction in TRACERx100, error bands represent the 95% confidence interval 648 

of the fitted linear model. 649 

  650 

Extended Data Fig. 2: Accuracy of TCRA T cell fraction by copy number and depth 651 

a, Simulated log RDR from a sample consisting of 24% T cells, 75% tumour, and 1% non-T 652 

cell stroma (TCRA copy number = 1). b, Calculated TCRA T cell fraction versus actual T cell 653 

fraction value for simulated data c, Difference between calculated naïve T cell fraction and 654 

actual fraction for range of tumour purities and local tumour copy number states at the TCRA 655 

locus. d, Difference between TCRA T cell fraction and actual fraction for a range of tumour 656 

copy number and purities. e,. Downsampling of 5 TRACERx100 regions to different depths. f, 657 

Downsampling of simulated data to different depth levels. g, Downsampling of the 5 658 

TRACERx100 regions that with the highest CDR3 read counts to different depths and the 659 

resulting CDR3 read counts. 660 

 661 

Extended Data Fig. 3: Extended analysis on determinants of TCRA T cell fraction 662 

a, Association of  blood TCRA T cell fraction to histology in TRACERx100 (n = 93 LUAD and 663 

LUSC patients, two sided wilcoxon test used for P value). b, Predictors of blood TCRA T cell 664 

fraction in TCGA LUAD and LUSC cohort (left panel: n = 1017, middle panel: n = 976, right 665 

panel: n = 714). c, Overview of samples in the TCGA LUAD and LUSC cohort. d, Summary 666 

of mean TCRA T cell fraction in PNE cohort. e, Overview plot of PNE cohort containing multi-667 

region microdissected tissue paired with normal blood samples. f, Summary of linear model 668 
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for predicting blood TCRA T cell fraction, PNE infiltration defined as TCRA T cell fraction > 669 

0.001, ESCC = Oesophageal squamous cell carcinoma, HGD = high grade dysplasia. g, 670 

Linear model for TCRA T cell fraction in PNE samples from genomic factors. h, Association 671 

of microbial reads from Kraken with TCRA T cell fraction in tumour samples (n = 880). i, -672 

Log10 p-values for 59 microbial species tested for association with TCRA T cell fraction in 673 

blood and tumour sample in LUAD and LUSC. Red line represents the significance threshold 674 

at P = 0.000423. j, The significant hit Willamsia in LUAD tumours, red dots represent samples 675 

where reads were detected while blue represent samples with no reads detected (n = 501). 676 

k, The significant hit Paeniclostridium in LUSC tumours (n = 379). All wilcoxon tests two sided 677 

and boxplots represent lower quartile, median and upper quartile.  678 

 679 

Extended Data Fig. 4: Subclonal SCNAs and T cell infiltration  680 

a, Overview of immune heterogeneity across multi-sample pan-cancer cohort with tumour 681 

regions ranked by TCRA T cell fraction, upper panel: histogram of entire cohort, lower panel: 682 

tumour regions grouped by patients with solid horizontal lines joining regions from the same 683 

patient, each line includes 2 or more tumour region and dashed red line is at the mean TCRA 684 

T cell fraction in the cohort (0.11). b, Overview of patients in the multi-sample pan-cancer 685 

cohort. c, Lower panel: number of tumours in pan-cancer multi-sample cohort with subclonal 686 

gains (dark red) or losses (dark blue) across the genome, horizontal lines signify the regions 687 

which have more than 30 tumours (Methods) with subclonal gains or losses. Upper panel: - 688 

log10(p-value) of the 160 cytoband regions tested for association between TCRA T cell fraction 689 

and subclonal gains (dark red points) or losses (dark blue points). Red horizontal line marks 690 

significance threshold, only one region is significant, a loss event on chromosome 12q24.31-691 

32. d, Volcano plot for the RNA-seq analysis in the TRACERx100 cohort between regions with 692 

12q24.31-32 loss and regions without, genes within the locus are labeled, dotted lines at fold 693 

change of 0.25 and adjusted P = 0.05.  694 

 695 

Extended Data Fig 5 : Association of TCRA T cell fraction with prognosis 696 



27 

 

a, Kaplan-Meier curves for the multi-region TRACERx100 cohort for LUAD (top) and LUSC 697 

(bottom) divided by the number of cold regions in the tumour. Hot and cold regions were 698 

defined by using the median of all the tumour regions (0.0736) as a threshold. In each Kaplan-699 

Meier curve the included patients were restricted to those with total regions greater than the 700 

number of cold regions used in defining the threshold. b, Kaplan-Meier curves for overall and 701 

progression free survival in the TCGA LUAD cohort, dividing the cohort into immune hot and 702 

cold groups using the mean of the TCGA LUAD cohort (0.109) as a threshold. c, Kaplan-703 

Meier curves for the TCGA LUSC, and TCGA LUAD & LUSC cohorts for overall and 704 

progression free survival using the mean of the TCGA LUAD cohort (0.109) as a threshold for 705 

distinguishing hot and cold tumours. d, Log2(Hazard ratios) from Kaplan-Meier plots for the 706 

TCGA separating the tumour samples into hot and cold based on different thresholds from 0 707 

to 0.16 in steps of 0.0025 for overall and progression free survival. e, Hazard ratios of separate 708 

Cox regression models relating disease free survival to different multi-region measures 709 

related to the TCRA T cell fraction in the entire TRACERx100 cohort as well as the LUAD and 710 

LUSC patients separately. TCRA  divergence score is defined as the maximum divided by the 711 

upper 95% confidence interval of the minimum. f, Hazard ratios of separate Cox regression 712 

models for TCRA T cell fraction for the TCGA LUAD and LUSC cohort for both overall survival 713 

(OS) and progression free survival (PFS).  714 

 715 

Extended Data Fig 6: Overview of CPI1000+ cohort 716 

a, Cohort overview of the CPI1000+ dataset. b, Overview of samples in the CPI1000+ cohort 717 

excluding Snyder et al., 2017 and those with prior CPI treatment. c, ROC plot of GLM models 718 

for predicting CPI response (blue: clonal TMB, red: clonal TMB + TCRA T cell fraction, green: 719 

clonal TMB + CD8A expression). d, Cohort overview of the CPI lung dataset, red lines in 720 

upper panel reflect the median TCRA T cell fraction in patients with (0.10) or without (0.0070) 721 

a response to CPI, note that Tumour TCRA T cell fraction particularly in non-responders is 722 

often zero. e, Overview of patients in the CPI Lung cohort. 723 

 724 
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Extended Data Table 1: Original source publications  725 

Original source publications (excluding TRACERx studies) containing the sequencing data 726 

used in either the multi-sample pan-cancer cohort, PNE cohort or the CPI1000+ cohort. 727 

Studies including lung cancer patients used in the lung CPI cohort are noted. 728 

 729 

 730 

 731 
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