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ABSTRACT
We present a computationally efficient and fast semi-numerical technique for simulating the Lyman α (Ly α) absorption optical
depth in presence of neutral hydrogen ‘islands’ left over from reionization at redshifts 5 � z � 6. The main inputs to the
analysis are (i) a semi-numerical photon-conserving model of ionized regions during reionization (named script) along with
a prescription for simulating the shadowing by neutral islands and (ii) the fluctuating Gunn–Peterson approximation to model
the Ly α absorption. Our model is then used for simulating the large-scale fluctuations in the effective optical depth as observed
along sightlines towards high-z quasars. Our model is fully described by five parameters. By setting two of them to default
values and varying the other three, we obtain the constraints on reionization history at 5 � z � 6 as allowed by the data. We
confirm that reionization is not complete before z ∼ 5.6 at �2σ confidence, with the exact confidence limits depending on how
the non-detections of the flux in the data are treated. We also confirm that the completion of reionization can be as late as z ∼
5.2. With further improvements in the model and with more sightlines at z ∼ 6, we can take advantage of the computational
efficiency of our analysis to obtain more stringent constraints on the ionization fraction at the tail end of reionization.
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1 IN T RO D U C T IO N

The detection of quasars at high redshifts z ∼ 6 enabled a novel way
of studying the end stages of reionization of neutral hydrogen (H I)
by the early star formation (Fan et al. 2000, 2001, 2002, 2003, 2004;
Songaila 2004; Fan et al. 2006a,b). The Lyman-α (Ly α) absorption
spectra of these quasars are expected to contain information on the
distribution of H I in the intergalactic medium (IGM) along the lines
of sight. These observations of the Ly α optical depth, combined
with high-quality numerical simulations, allowed one to estimate
the H I photoionization rate �H I and thus the number of ionizing
photons available in the IGM (Fan et al. 2006b; Bolton & Haehnelt
2007; Calverley et al. 2011; Wyithe & Bolton 2011). More detailed
studies of these spectra based on, e.g. the damping wings and near
zones (Wyithe & Loeb 2004; Bolton & Haehnelt 2007; Maselli
et al. 2007; Bolton et al. 2011; Wyithe & Bolton 2011; Eilers et al.
2017; Greig et al. 2017; Eilers, Hennawi & Davies 2018b; Davies,
Hennawi & Eilers 2020; Ďurovčı́ková et al. 2020), evolution of the
IGM temperature (Raskutti et al. 2012; Boera et al. 2019), fraction
of ‘dark’ pixels in the spectra (McGreer, Mesinger & Fan 2011;
McGreer, Mesinger & D’Odorico 2015), dark gap statistics (Songaila
& Cowie 2002; Gallerani, Choudhury & Ferrara 2006; Gallerani et al.
2008), have revealed a wealth of information on reionization.

The constraints obtained on the global H I fraction from these
studies were relatively straightforward to interpret and to implement

� E-mail: tirth@ncra.tifr.res.in

in semi-analytical models (Wyithe & Loeb 2003; Choudhury &
Ferrara 2005; Pritchard, Loeb & Wyithe 2010; Mitra, Choudhury
& Ferrara 2011, 2012). When combined with other observations,
e.g. the Thomson scattering optical depth of the cosmic microwave
background (CMB) photons (Hinshaw et al. 2013; Planck Collabo-
ration V 2019), these models were able to constrain the reionization
history to a significant extent. Being analytical or semi-analytical
in nature, probing a wide range of parameter space was natural for
these models and hence they could be coupled to advanced statistical
techniques, e.g. Markov chain Monte Carlo (MCMC; Mitra et al.
2011, 2012; Greig & Mesinger 2015; Greig, Mesinger & Bañados
2019). Overall, the data seemed to be consistent with a picture
wherein the reionization was completed by z ∼ 5.8.

More recently, the Ly α effective optical depth τ eff of the quasar
absorption spectra at 5.5 < z < 6, when averaged over large scales
(50 h−1 cMpc), showed significant fluctuations (Becker et al. 2015;
Bosman et al. 2018; Eilers, Davies & Hennawi 2018a; Eilers et al.
2019). These fluctuations could not be explained by simple models
of uniform �H I and thus led to various extensions to the existing
picture of that time. These included, e.g. temperature fluctuations
in the IGM (D’Aloisio, McQuinn & Trac 2015), presence of an
undetected population of faint quasars (Chardin et al. 2015; Chardin,
Puchwein & Haehnelt 2017), fluctuations in the mean-free path λmfp

of ionizing photons (Davies & Furlanetto 2016), presence of H I

islands left over from reionization (Nasir & D’Aloisio 2020), shot
noise in the placement of bright sources like quasars (Meiksin 2020).
The state of the IGM at these redshifts has been modelled extensively
through radiative transfer in the numerical simulations of Kulkarni
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et al. (2019) and Keating et al. (2019), where the essential features of
many of the other models have been incorporated in a self-consistent
manner (e.g. the mean-free path and temperature fluctuations, and
the presence of left over neutral islands).

In case the τ eff fluctuations are indeed due to the neutral islands,
then these fluctuations are directly probing the tail end of reioniza-
tion. Hence, these observations need to be taken into account while
attempting to constrain the reionization history. As mentioned above,
Kulkarni et al. (2019) have modelled these neutral patches using high-
resolution SPH simulations and a cosmological radiative transfer
code. Such simulations are usually computationally expensive and
hence are not suited for probing the parameter space. Using semi-
analytical or semi-numerical models to constrain reionization has the
advantage that one is able to identify all possible histories allowed
by the data by varying the free parameters, and subsequently study
the state of the IGM along with the properties of the ionizing sources
(e.g. cooling, feedback, escape of ionizing photons; Mitra, Ferrara
& Choudhury 2013; Mitra, Choudhury & Ferrara 2018). In case one
wants to include the τ eff fluctuation data in such statistical analyses,
it becomes imperative to devise ways to model the H I islands in a
computationally efficient manner.

The main aim of this work is to build a model of reionization and
Ly α forest at z ∼ 5.5, which is computationally efficient and hence
can be used for parameter space exploration. To achieve this, we use
a previously developed semi-numerical method to generate ionized
regions, driven by Lyman-continuum photons from galaxies, within
relatively low-resolution but large simulation volumes (Choudhury
& Paranjape 2018). Once the distribution of the ionized (and neutral)
regions is generated, we then model the Ly α optical depth of neutral
hydrogen (as would be imprinted on spectra of background point
sources such as quasars) using the so-called fluctuating Gunn–
Peterson approximation (Croft et al. 1998). The resulting realizations
of the quasar absorption spectra are then used for calculating the
τ eff along large lines of sight to allow proper comparison with
observations. Because of the simplifications employed, we need to
introduce a few free parameters in the model, thus decreasing its
predictive power as compared to radiative transfer simulations. The
free parameters are constrained by comparing the model predictions
with the observational data, the analysis being possible due to the
computational efficiency of our algorithm. The end result of the
analysis is that we obtain the range in reionization histories at 5 � z

� 6 that are statistically allowed by the data.
This paper is organized as follows: We discuss our method of

calculating the Ly α optical depth in Section 2. In Section 3, we
present the main results of our analysis before summarizing and
discussing the future outlook in Section 4. The Appendices are
devoted to exploring the model parameters beyond their default
values and testing the convergence of our results with respect to
the resolution. The cosmological parameters used in this work are
�m = 0.308, �	 = 1 − �m, �b = 0.0482, h = 0.678, ns = 0.961,
and σ 8 = 0.829 (Planck Collaboration XVI 2014).

2 ME T H O D

2.1 Generation of ionization maps using SCRIPT

The ionization maps needed for this work are generated using
the semi-numerical method introduced in Choudhury & Paranjape
(2018). The method consists of two steps. In the first, we use a
collisionless N-body simulation to generate the large-scale smoothed
density fields, which are then used for generating the large-scale
distribution of the collapsed haloes through a subgrid prescription. In

the second step, the density and the halo fields are used as input to an
explicitly photon-conserving semi-numerical formalism to generate
the distribution of ionized regions.

For the N-body simulation, we use the publicly available
code GADGET-21 (Springel 2005) and simulate a box of length
256 h−1 cMpc with 5123 particles. The initial conditions for the
simulation are generated using the N-GenIC code.2 At redshifts of
interest, the simulation outputs in the form of the particle positions
are smoothed using a Cloud-in-Cell (CIC) algorithm to generate
the matter overdensity field 
i = ρi/ρ̄ in a uniform grid with cells
labelled by i.

Since the particle resolution of our box is not sufficient to identify
the collapsed haloes of interest, we employ a subgrid scheme to
compute the large-scale halo distribution from the density field.
Given the overdensity field, we use the conditional mass function
from ellipsoidal collapse (Sheth & Tormen 2002), with parameters
calibrated to match simulation results, to generate the fraction of
mass fcoll, i in collapsed haloes above mass Mmin inside every grid
cell. Note that this approximate way of computing the collapsed
mass works only for relatively larger grid volumes, hence we do not
use grids finer than 2 h−1 cMpc. Our method not only produces the
halo mass function consistent with N-body simulations (Jenkins et al.
2001), but also the large-scale clustering of haloes.

The generation of ionization maps requires computing two num-
bers in every cell in the box. The first is the number of hydrogen
atoms, which is assumed to follow the dark matter at scales of our
interest:

NH,i = n̄H Vcell 
i, (1)

where n̄H is the mean comoving hydrogen number density and Vcell

is the comoving volume of the grid cells. Secondly, we need the
cumulative number of ionizing photons produced, which can be
assumed to be proportional to the mass within collapsed haloes above
a mass Mmin and is given by

Nion,i = ζ NH,i fcoll,i = ζ n̄H Vcell 
i fcoll,i , (2)

where ζ is the ionizing efficiency.
The ionization maps are generated using the photon-conserving

semi-numerical scheme introduced in Choudhury & Paranjape
(2018), which is named script (Semi-numerical Code for
ReIonization with PhoTon-conservation). The algorithm consists
of two steps: in the first step, we generate ionized ‘bubbles’ around
individual grid cells (or sources, as the case may be) allowing the cells
where multiple bubbles overlap to be ‘overionized’. In the second
step, we deal with the overionized cells in the overlapped bubbles by
distributing the excess photons to nearby cells. The code is developed
primarily for studying the redshifted 21-cm signal from H I during
reionization and includes several improvements over existing semi-
numerical codes based on the excursion-set formalism, namely (i)
it conserves the number of ionizing photons thus fixing a known
shortcoming of earlier models (see, e.g. Zahn et al. 2007; Paranjape,
Choudhury & Padmanabhan 2016), and (ii) consequently ensures
the numerical convergence of large-scale properties of the ionization
field with respect to the resolution at which the maps are made. The
code has recently been optimized so that it takes 2–4 s to complete
on a single processor for a 1283 grid and ∼0.01 s for a 323 grid.

1https://wwwmpa.mpa-garching.mpg.de/gadget/.
2https://wwwmpa.mpa-garching.mpg.de/gadget/right.
html#ICcode.
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2.2 Calculation of the photoionization rate within ionized
regions

The output of the semi-numerical method described above provides
the neutral hydrogen fraction xH I for each cell, which can, in
principle, be zero in regions that are completely ionized. In reality,
however, the recombinations will ensure that there exist some
residual neutral atoms even in these cells. The fraction of such neutral
atoms would be exceedingly small (unless they are in high-density
self-shielded regions) and hence would hardly affect the large-scale
properties of the 21-cm signal (which was the original motivation
for developing SCRIPT). On the other hand, for studying the quasar
spectra, this residual neutral hydrogen in the low-density IGM would
cause the Ly α absorption observed in quasar spectra and hence needs
to modelled properly.

The main ingredient in modelling the residual neutral fraction is
the photoionization rate �H I. To do so, let us start with the flux
incident on the ith cell ,

Ji(ν) =
∑
j �=i

Lj (ν)

(4π)2(a xij )2
e−τij (ν), (3)

where Lj(ν) is the luminosity of the jth cell, xij is the comoving
distance between the ith and the jth cells and τ ij is the optical depth
between the two cells. The summation extends over all cells other
than the cell under consideration. The luminosity Li(ν) is related
to the quantity Nion, i used for generating the ionization maps in
Section 2.1. However, since Nion, i is the cumulative number of
photons produced, we need to introduce a characteristic time-scale
t∗ to relate it to the instantaneous luminosity. We can then write

Li(ν) = Ṅi(ν) hν ≡ Ni(ν)

t∗
hν, (4)

where Ni(ν) is the cumulative number of photons produced per unit
frequency range and is related to Nion, i by

Nion,i =
∫ ∞

νHI

dν Ni(ν), (5)

where νH I is the Lyman-limit frequency.
The optical depth between the two cells i and j can be calculated by

integrating along the sightline joining the cell (Davies & Furlanetto
2016),

τij (ν) =
∫ xj

xi

dx

λmfp(ν, x)
. (6)

As shown in Davies & Furlanetto (2016), computing the mean-
free path self-consistently requires iterative solutions and can be
computationally expensive (Hutter 2018). To start with, for ionized
regions, we can make the simplifying assumption that the mean-free
path takes just one value for the whole box and is determined by
the typical distance between the self-shielded regions. Let us denote
this mean-free path by λss. This approximation is believed to be
adequate in the post-reionization universe. This approximation is
probably acceptable also for cells within an ionized region as long
as its size is significantly larger than λss. However, the assumption
breaks down at early stages of reionization where the mean-free path
is pre-dominantly determined by the bubble size.

With this assumption, we can write a simplified expression for the
optical depth,

τij = xij

λss(ν)
. (7)

The calculation then follows the usual approach outlined in Davies
& Furlanetto (2016) and Hutter (2018), and the photoionization rate

can be shown to be given by

�H I,i = 1

a2

α

α + β

σH I(νH I)

t∗

∑
j �=i

Nion,j

e−xij /λss

4πx2
ij

, (8)

where α is the spectral index of the ionizing sources, β is the spectral
index of the hydrogen ionization cross-section, and σ H I is the cross-
section at ν = νH I. While deriving the above equation, we have
assumed that the mean-free path is independent of ν (which is
reasonable because the hydrogen ionization cross-section is a steeply
declining function of ν).

Note that the summation on the right-hand side depends only on xij,
hence, it can be expressed as a sum over contributions from spherical
shells around the ith cell. Let us write it as

�H I,i = 1

a2

α

α + β

σH I(νH I)

t∗

∑
J

N (i)
ion(rJ )

e−rJ /λss

4πr2
J

, (9)

where the summation index J is over all spherical shells. The Jth
shell has a comoving radius rJ. The quantity N (i)

ion(rJ ) is the number
of photons contributed by all the grid cells within the Jth spherical
shell and the superscript (i) signifies that the spheres are constructed
around the ith grid cell. The summation over shells in the above
equation can be computed using spherical filters and allows the
calculation to be extremely efficient computationally.

A major shortcoming of the above formalism is that it does not
account for ‘shadows’ arising because of the neutral islands. We
expect that the cells close to the boundaries of the ionized regions
will not receive contribution from sources in the direction of the
neutral regions; hence, the photoionization rate in these cells should
be less than what is given by equation (9). Nasir & D’Aloisio (2020)
implement this effect in a direct way by removing contributions from
sources whose lines of sight pass through neutral islands. However,
such a method based on ray-tracing turns out to be computationally
time-consuming in our simulations. Ideally, we would prefer to retain
the summation over spherical shells as this allows the method to be
computationally efficient.

To this end, for every pair of grid cell i and spherical shell J,
we introduce a correction factor for the photon number N (i)

ion(rJ ) to
account for the shadows arising from the neutral islands within radius
rJ around the ith cell. Our method for computing the correction
factor is best explained by the illustration in Fig. 1. To obtain the
photoionization rate �H I, i, we construct spherical shells of different
radii around the ith cell and sum over the contribution from each
of them as given in equation (9). We show a few such shells in the
figure. For convenience of implementing the algorithm, we assume
all spherical shells to have the same thickness 
r.

Let us imagine that there are two neutral regions A and B in
the volume of interest, the corresponding neutral grid cells being
marked in yellow. Although the shapes of the regions look somewhat
contrived in the chosen example, our final expression would be
written in terms of the fraction of volume occupied by the neutral
regions and hence would work even for arbitrary shaped regions.

Clearly, the neutral cells would not allow photons to reach i from
regions on the other side. For example, the neutral region A, which is
situated in shell J, would block photons from the outer shells J + 1, J
+ 2, . . . N, . . . , the affected regions are marked in grey in the figure.
Let the number of neutral cells in shell J be denoted as Ncell, H I(rJ),
which in our example would be the number of cells occupied by A.
The cells in shell J + 1 that would be affected by these neutral cells
would be the ones within the solid angle denoted by the dashed lines
joining i and the edges of region A. Since all the shells have the same
thickness 
r, the effective number of cells in the (J + 1)th shell that
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Figure 1. Illustration of our method of implementing ‘shadows’ arising
from neutral islands. The simulation box is divided into (cubic) grid cells
that are assigned a neutral fraction using semi-numerical method script.
In this example, the grids in yellow are neutral and all others are assumed
to be ionized. The photoionization rate at the grid cell under consideration
i is computed by summing over contributions from ionizing sources within
spherical shells J having radii rJ. The neutral regions will block radiation
from sources within the regions marked in grey (showed only for a few
representative shells).

are affected by the neutral cells in J is approximately given by

N
(i)
cell,shadow(rJ+1) = N

(i)
cell,H I(rJ )

r2
J+1

r2
J

, (10)

as is obvious from the figure. The above relation is approximate due
to edge effects of fitting cubes inside spherical shells. We can now
work out, under the same approximation, the effective number of
cells affected by the neutral cells in shell J + 2 ,

N
(i)
cell,shadow(rJ+2) = N

(i)
cell,shadow(rJ+1)

r2
J+2

r2
J+1

+ N
(i)
cell,H I(rJ+1)

r2
J+2

r2
J+1

, (11)

where the first term on the right-hand side is arising from region A
and the second term from B.

It is straightforward to generalize the relation and write down the
equivalent formula for any given shell at rN :

N
(i)
cell,shadow(rN ) =

[
N

(i)
cell,H I(rN−1) + N

(i)
cell,shadow(rN−1)

] r2
N

r2
N−1

. (12)

Since the total number of cells in a spherical shell Ncell,tot(rN ) ∝
r2
N
r , and since 
r is chosen to be the same for all shells, the

fraction of cells in the Nth shell that are affected by the neutral
islands is given by

Q
(i)
shadow(rN ) = min

[
Q

(i)
H I(rN−1) + Q

(i)
shadow(rN−1), 1

]
, (13)

where Q
(i)
H I(rN ) is the fraction of neutral cells in the Nth shell. As

we consider contributions from shells farther away from the ith
cell, the fraction Q

(i)
shadow(rN ) keeps on increasing (or remains the

same) depending on how the neutral islands are distributed. This
allows us to account for the shadows by simply decreasing the
photon contribution from the Nth shell by a factor N (i)

ion(rN ) −→[
1 − Q

(i)
shadow(rN )

]
N (i)

ion(rN ). Since the equation is written solely in

terms of neutral volume fractions Q
(i)
H I(rN ), it automatically allows

for partially ionized cells (which may arise because the boundaries
of the neutral regions can be of arbitrary shapes).

With the above modification, our new relation for the photoion-
ization rate is given by

�H I,i = 1

a2

α

α + β

σH I(νH I)

t∗

×
∑

J

[
1 − Q

(i)
shadow(rJ )

]
N (i)

ion(rJ )
e−rJ /λss

4πr2
J

. (14)

Since the algorithm operates at the level of spherical shells (instead
of individual cells), it effectively penalizes all sources that happen to
lie in a shell. This is clearly only an approximation, since it ignores
all direction dependence in the placement of neutral islands and
sources around the cell in question. For example, the method tends
to double-count the contribution from the neutral regions that lie
in the shadow of another neutral region. Nevertheless, we expect
the spherical averaging to level some of these discrepancies. Our
method still gives lower fluxes at cells that are close to the neutral
islands and hence are likely to be affected by shadowing. It also
introduces additional fluctuations in the photoionization field within
the ionized regions. The main advantage of the method is that it is
computationally much faster than any method that depends on lines
of sight.

A final point to note is that the summation in equation (14) accounts
only for the cells other than the cell under consideration. For the local
contribution, we assume that the sources within r0 (the radius of the
sphere corresponding to the grid volume) are distributed uniformly;
hence, the photoionization rate is given by (Davies & Furlanetto
2016)

�local
H I,i = 1

a2

α

α + β

σH I(νH I)

t∗
Nion,i

(
1 − e−r0/λss

) 3λss

4πr3
0

. (15)

The final photoionization rate is calculated by adding this local
contribution to the one computed using equation (14).

We can write the expression for �H I, i in a more useful form as

�H I,i

10−12 s−1
= A�

(
1 + z

6.5

)2
Si

2.37 × 1018 cm−2
, (16)

where

A� ≡
(α

3

) (
6

α + β

) (
107 yr

t∗

)
(17)

is a normalization factor and

Si ≡
∑

J

[
1 − Q

(i)
shadow(rJ )

]
N (i)

ion(rJ )
e−rJ /λss

4πr2
J

+Nion,i

(
1 − e−r0/λss

) 3λss

4πr3
0

(18)

is the cumulative photon flux at cell i. Our method of calculating
�H I, i thus depends on two parameters, namely λss and A� (which,
in turn, depends on several other parameters α, β, and t∗). We shall
return to discuss these parameters in Section 2.4.

2.3 The Ly α optical depth

Having calculated the distribution of H I in the IGM, as caused by
the Lyman-continuum photons from galaxies, we now compute the
Ly α optical depth τα arising from the H I field. This τα field would
get imprinted on the spectra of distant quasars that act as background
sources.

For a cell that is identified as completely ionized by our semi-
numerical model of reionization, the residual neutral hydrogen
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fraction is obtained assuming photoionization equilibrium,

xH I,i �H I,i = χHe

a3
αB (Ti) nH,i (1 − xH I,i)

2, (19)

where χHe ≈ 1.08 accounts for the excess electron produced by
singly ionized helium, αB(T) is the case-B recombination rate,
and the factor a3 accounts for the fact that the number densities
used are in comoving units. The solution to the above quadratic
equation is straightforward provided we assume a relation between
the temperature Ti of the cell and the density, which is usually taken to
be a power-law Ti = T0 


γ−1
i , where T0 is the temperature of the cell

at the mean density and γ is the slope. In numerical simulations where
reionization is assumed to be instantaneous and uniform, the value of
γ is found to be around unity right after the reionization is completed
and subsequently approaches a value ∼1.5 (Puchwein et al. 2015;
Gaikwad et al. 2018). In reality, the temperature distribution could be
more complicated given that different points in the IGM get reionized
at different times and hence the Ti–
i relation is not necessarily one-
to-one. Note that the value of γ used in the above applies to pixels that
are ionized. If we make a simplifying assumption that a substantial
fraction of them got ionized sufficiently early, we can take a one-
to-one Ti–
i relation in such regions. One should also realize that
the relation is defined for the 
i field smoothed over some grid size,
hence we expect γ to depend on the resolution used for carrying out
the analysis.

For most cases of interest, applying the above photoionization
equilibrium equation to the completely ionized cells yields neutral
fractions much smaller than unity, which turn out to be

xH I,i ≈ χHe

a3

αB (Ti) nH,i

�H I,i

. (20)

The above relation is applied only to those cells that are identified
as completely ionized by the semi-numerical method, whereas for
cells that are partially or completely neutral, we assign the neutral
fraction as obtained from the semi-numerical calculation itself.

Under the fluctuating Gunn–Peterson approximation, the Ly α

optical depth is given by

τα,i = κres
πe2

mec
fα λα H−1(z) xH I,i

nH,i

a3
, (21)

where κ res is a normalization factor to account for the small-scale
fluctuations in the density and velocity fields that are not resolved in
our coarse-resolution simulations (Dixon & Furlanetto 2009; Davies
& Furlanetto 2016), fα is the Ly α oscillator strength, and all other
symbols have their usual meanings. A straightforward calculation
shows that the optical depth can be written as

τα,i = 5.01 κres

( χHe

1.08

) (
1 − Y

0.76

)2 (
�bh

3/2

0.0269

)2

×
(

1 + z

6.5

)6 (
9.23

H (z)/H0

)

×
(

T0

104 K

)−0.7 (
10−12 s−1

�H I,i

)



2.7−0.7γ

i , (22)

where we have assumed αB(T)∝T−0.7. A more useful form can be
obtained by substituting �H I, i from equation (16):

τα,i = 5.01 Aτ

( χHe

1.08

) (
1 − Y

0.76

)2 (
�bh

3/2

0.0269

)2

×
(

1 + z

6.5

)4 (
9.23

H (z)/H0

)

× 2.37 × 1018 cm−2

Si



2.7−0.7γ

i , (23)

where we define a new normalization factor,

Aτ ≡ κres

(
T0

104 K

)−0.7

A−1
�

= κres

(
T0

104 K

)−0.7 (
3

α

) (
α + β

6

) (
t∗

107 yr

)
. (24)

The transmitted flux for the cell is given by e−τα,i ; hence, the
effective optical depth averaged over N pixels is given by

τeff = − ln

[
1

N

∑
i

e−τα,i

]
. (25)

This is the main observable in our work that will be compared with
the observations.

It is obvious from equation (23) that it is not possible to constrain
the physical quantities α, β, t∗, and T0 individually from observations
of the optical depth, we can only hope to constrain the combination
Aτ . Additionally to be noted is that the value of A� is completely
degenerate with T0 and κ res; therefore, we cannot measure the am-
plitude of �H I from our low-resolution simulations. The fluctuations
in the rate, however, should be correctly captured in our model.

2.4 Model parameters

Our model has five parameters (which, in general, can be functions
of z):

(i) The first parameter is the ionizing efficiency ζ , which is used
for generating the ionization maps. We treat this as a free parameter.

(ii) The other parameter that is required for generating the ioniza-
tion maps is the minimum mass Mmin of haloes that are capable of
producing ionizing photons. In this work, we choose Mmin = 109 M�,
which is appropriate for late stages of reionization. At these redshifts,
most regions are photoheated and hence the star-formation threshold
is set by the radiative feedback. We have also varied Mmin in the
range 108–1010 M� and found that our constraints on the reionization
history are insensitive to the value of Mmin; see Appendix A1.

(iii) The next parameter is the mean-free path λss of ionizing
photons as determined by the distance between the self-shielded
regions. We choose its value as extrapolated from z � 5 observations
(Worseck et al. 2014) having the empirical power-law fitting form

λss(z) = 175 cMpc

(
1 + z

5.0

)−4.4

. (26)

We study the effect of λss values different from the above default
choice in Appendix A2.

(iv) The fourth parameter in our list is the slope γ of the
temperature–density relation in the IGM. We leave it as a free
parameter.

(v) The final parameter is the normalization factor Aτ used for
computing the Ly α optical depth; see equation (24). This too is kept
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free. Since we would want to vary this parameter over orders of
magnitude, we prefer log Aτ as the free parameter while carrying out
the statistical analysis.

To summarize, we treat ζ , γ , and log Aτ as free parameters and
constrain them by comparing with Ly α optical depth data. We
fix the values of Mmin and λss to default values (and check the
effect of varying them in Appendix A). We also emphasize here
that the constraints on γ and Aτ are expected to depend on the
resolution used for the analysis; hence, it is important to check
whether our conclusions regarding the reionization history remain
unchanged with respect to the resolution. We investigate this aspect
in Appendix B.

2.5 Observational data

The main observational data used in this work are from Bosman
et al. (2018), who have measured the Ly α effective optical depth
τ eff averaged over 50 h−1 cMpc chunks in the redshift range 5 �
z � 6. We use their ‘GOLD’ sample that consists of spectra with
various quality-cuts. Their results are presented as ‘optimistic’ and
‘pessimistic’ limits on the cumulative distribution function (CDF)
P(< τ eff) depending on how they treat the non-detections of the
transmitted flux. In the optimistic case, the lower limits on τ eff are
treated as measurements just below the detection sensitivity, while
in the pessimistic case, these are assumed to have τ eff → ∞.

3 R ESULTS

3.1 Constraints on the reionization history

We now compare the predictions of our model with the observational
data on τ eff fluctuations to constrain the reionization history. We
treat each redshift bin as independent and constrain the three free
parameters of our model using a Bayesian likelihood method. The
main steps followed in the analysis can be summarized as follows:

(i) We first convert the observational data on the CDF P(< τ eff)
into the differential PDF p(τ eff) ≡ dP(< τ eff)/dτ eff. Using the dif-
ferential distribution for our analysis ensures that each measurement
of τ eff from the observed spectra contributes to only one bin thus
reducing correlations across different bins.

(ii) The pessimistic and optimistic limits of Bosman et al. (2018)
data differ in the way the non-detections of the transmitted flux
are treated. In principle, one can take the forward modelling
approach and use the noise characteristics of the telescopes to
contaminate the simulated spectra appropriately. This will allow
a fair comparison with the data without making any assumptions
about the value of τ eff in case of non-detections. However, the
features most affected while adding the noise are narrow transmission
spikes (�cMpc across; see Chardin et al. 2018; Gaikwad et al.
2020) that are not resolved by the low-resolution pixels of our
model. Hence, we take a different approach where we treat the
optimistic and pessimistic bounds as two independent data sets and
compare them with the simulated spectra without adding any noise.
Since the bounds provide reliable extrema for the recovery of the
underlying distribution, the two sets of constraints thus obtained
on the reionization history should bracket the full range of allowed
histories.

(iii) The likelihood analysis requires computing the χ2 defined as

χ2 =
Nbins∑
α,β=1


p(τeff,α)
[
C−1

]
αβ


p(τeff,β ), (27)

where τ eff, α is the value corresponding to α-bin, C−1 is the inverse
of the error covariance matrix, and


p(τeff,α) ≡ pmodel

(
τeff,α ; θ

) − p(τeff,α). (28)

In the above definition, p(τ eff, α) is the binned PDF computed from
the observational data and pmodel

(
τeff,α ; θ

)
is the theoretical PDF

for the parameter set θ ≡ {ζ, γ, log Aτ }. For a given redshift, we
compute pmodel

(
τeff,α ; θ

)
from our simulations by first drawing as

many random lines of sight of length 50 h−1 cMpc as there are
in the observational data and then computing the mean over 5000
independent realizations of the sightlines.

(iv) We assume that, for a given data set, the errors on the dis-
tribution are dominated by the variations across different sightlines.
We thus estimate the covariance matrix elements Cαβ from 5000
independent realizations of the PDF from the simulation, accounting
for any possible correlations between different τ eff bins. The number
of realizations is chosen to ensure that the χ2 is numerically
converged. Clearly, the elements Cαβ depend on the parameter
values θ and ideally one should compute them for every point θ

in the parameter space during the Bayesian statistical analysis. This,
however, substantially increases the time taken for exploring the
parameter space, hence, we compute the covariance matrix only for a
fiducial parameter set θ̃ (for each redshift and each data set) and use it
throughout the analysis. The fiducial parameter values θ̃ are obtained
by minimizing the χ2 in equation (27). We use the BOBYQA-
bounded minimization routine of Powell (2009) for this purpose.
During the minimization, we compute Cαβ individually for every
point θ in the parameter space, which is manageable only because
the minimization requires substantially less number of evaluations
of the χ2 compared to the full Bayesian analysis.

(v) We use the publicly available affine-invariant ensemble sam-
pler for MCMC called emcee (Foreman-Mackey et al. 2013) to
obtain the posterior distribution of the parameters. The sampler
requires evaluation of a likelihood for every θ , which we define
as L = e−χ2/2. We use flat priors on all the parameters in the ranges
given below:

(a) ζ is assumed to have a flat prior in the range [0, ζ max],
where ζ max is the value corresponding to complete ionization
of the IGM.

(b) γ is assumed to have a flat prior in the range [0, 3].
This prior is quite conservative and allows for a wide range in
thermal states of the IGM (including ‘inverted’ temperature–
density relations).

(c) log Aτ is assumed to have a flat prior in the range [ −3,
3].

We use 20 walkers and run the chains long enough so that they
converge, which is assessed through the autocorrelation analysis of
Goodman & Weare (2010).

(vi) Our default runs are carried out at grid resolution 
x =
8 h−1 cMpc. Given our box, this leads to 323 grid cells, thus making
the code extremely fast. The sensitivity of our results to the grid size
is investigated in Appendix B.

The result of our analysis, for one representative redshift z = 5.8, is
shown in Fig. 2 where we plot the marginalized posterior distributions
for the three free parameters along with a derived parameter QV

H II.
The distributions are obtained by comparing the model with the
optimistic (black) and pessimistic (red) data sets. We can see that the
allowed values of ζ , and hence of QV

H II, are higher for the optimistic
data set than the pessimistic one. This is along the expected lines as
the inferred values of τ eff for sightlines with no detections are higher
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Figure 2. The marginalized posterior distributions for the free parameters
ζ , γ , and log Aτ and one derived parameter QV

H II obtained from the MCMC
analysis. The results are shown at z = 5.8 for the pessimistic (red) and
optimistic (black) data sets. The contours enclose 68 and 95 per cent of the
points.

in the pessimistic case; hence, matching this data set requires more
neutral patches in the IGM. The statistical errors on the parameters
are typically larger in the pessimistic case. This is because the best-
fitting values of QV

H II for the pessimistic case are usually smaller
and the presence of more neutral islands introduces larger variations
across lines of sight. This naturally leads to larger errors on the
τ eff distribution (i.e. larger values of the covariance matrix elements
Cαβ ).

To further understand the constraints on different parameters, we
show in Fig. 3 the dependence of the observable P(< τ eff) on the
three parameters QV

H II, log Aτ , and γ .3 It is clear from the figure
that increasing QV

H II leads to less number of high-opacity sightlines
(compare the black solid curve with the green dot–dashed), thus
decreasing the scatter in the distribution. This is expected since it is
the presence of neutral islands that leads to the high-opacity regions.
The effect of increasing the normalization Aτ is to increase the value
of τ eff, hence the whole distribution shifts to the right (compare the
black solid curve with the orange dotted). Interestingly, the effect
of γ on the τ eff distribution is quite minimal. One can see that in
spite of increasing γ by ∼2.5, the change in P(< τ eff) is negligible
(compare the black solid curve with the magenta dashed). A closer
look at the curves reveals that a higher γ tends to increase the value
of τ eff along lines of sight of relatively lower opacities and vice
versa, and hence the distribution becomes slightly narrower. If we
ignore the neutral islands for the moment, this can be understood as
follows: High-density regions tend to remain more neutral because
they recombine more efficiently. Increasing γ , on the other hand,
has the opposite effect where it leads to a higher temperature in
the high-density regions, thus making them more ionized. So the

3The dependence of P(< τ eff) on ζ is very similar to that on QV
H II as these

two parameters are perfectly correlated; hence, we do not show the effect of
ζ separately.

Figure 3. Dependence of the cumulative τ eff distribution on model param-
eters. The two thin red curves show the observational data for the optimistic
(left/upper) and pessimistic (right/lower) cases of Bosman et al. (2018). The
black solid curve is the ‘default’ model for the purpose of this plot, which
is essentially the best fit to the pessimistic data at z = 5.8. The green dot–
dashed, orange dotted and magenta dashed curves show the variation of the
τ eff distribution with respect of QV

H II, log Aτ , and γ , respectively.

main effect of increasing γ is to reduce the scatter in the neutral
hydrogen distribution and hence in the optical depth distribution.
This is essentially the reason a higher γ leads to a narrower τ eff

distribution.
Returning to the posterior distribution in Fig. 2, we find that the

constraints on γ are extremely weak, which follows from the fact
that τ eff distributions are relatively insensitive to γ in the probed
range. In fact, there is no constraint for the pessimistic case within
the prior range chosen. For the optimistic case, the statistical errors
on the τ eff distribution are smaller and hence the data are able to put
some constraints on γ . In this case, we can rule out γ > 1.6 (at 2σ ).
This is because for higher values of γ the distribution becomes too
narrow to be allowed by the data. In general, we found that fixing
γ = 1.5 and carrying out a two-parameter MCMC analysis leave
the posteriors of the other parameters unaffected. There is a strong
positive correlation between ζ and log Aτ and, as a consequence,
between QV

H II and Aτ . Higher ζ -values correspond to more ionized
IGM, which lead to less neutral islands and hence lower τα . This can
be compensated by increasing Aτ appropriately that thus gives rise
to the positive correlation. Note that the main goal of our work is to
constrain the reionization history that is achieved essentially from the
marginalized posterior of the derived parameter QV

H II. We find that
the correlations between different parameters and other properties
of the posteriors are similar for other redshifts; hence, we do not
show the detailed contour plots separately. Instead, we provide the
best-fitting values of the parameters γ , log Aτ , and QV

H II along with
their 2σ allowed range in Table 1.

The best-fitting values of QV
H II along with the 2σ errors obtained

from our likelihood analysis for the pessimistic (red squares with
error bars) and optimistic (black circles with error bars, shifted
slightly along the horizontal axis for clarity) cases are shown in
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Table 1. Best-fitting values of the model parameters along with the 2σ confidence limits (in parentheses) obtained from the likelihood analysis.

Parameters: γ log Aτ QV
H II

data type Optimistic Pessimistic Optimistic Pessimistic Optimistic Pessimistic

z = 5.0 0.80 [0.18, 1.82] 0.80 [0.18, 1.82] 1.49 [1.31, 1.66] 1.49 [1.31, 1.66] 0.999 [>0.996] 0.999 [>0.996]
z = 5.2 0.94 [0.09, 1.68] 0.89 [0.15, 2.13] 1.44 [1.39, 1.60] 1.44 [1.36, 1.47] 0.996 [>0.985] 0.997 [>0.983]
z = 5.4 0.52 [<1.67] 0.69 [<2.55] 1.42 [1.36, 1.45] 1.43 [1.33, 1.44] 0.998 [>0.990] 1.000 [>0.984]
z = 5.6 0.25 [<1.62] 0.45 1.37 [1.30, 1.43] 1.30 [1.24, 1.37] 0.983 [0.972, 0.993] 0.969 [0.952, 0.982]
z = 5.8 0.14 [<1.61] 0.34 1.35 [1.26, 1.44] 1.20 [0.78, 1.29] 0.974 [0.959, 0.993] 0.926 [0.757, 0.958]
z = 6.0 0.08 0.70 1.33 [1.31, 1.38] 0.67 [0.36, 1.00] 0.982 [0.971, 0.994] 0.718 [0.561, 0.820]

Notes. Cases for which the 2σ range is not mentioned imply that there were no constraints within the prior range considered. γ and log Aτ are the free parameters
of the model, while QV

H II is a derived parameter that is perfectly correlated with the third free parameter ζ .

Figure 4. Constraints on the ionized volume fraction: The top panel shows
the constraints on QV

H II obtained from the MCMC analysis for the optimistic
(black circles with error bars, shifted slightly along the redshift axis for clarity)
and pessimistic (red squares with error bars) data sets of Bosman et al. (2018).
The horizontal orange dashed line corresponds to QV

H II = 1. The blue dashed
curve corresponds to the late-reion-long-mfp reionization history of
Nasir & D’Aloisio (2020), while the magenta dotted curve is the the default
reionization model of Keating et al. (2019). The green points with error bars
reflect the 2σ lower limits on QV

H II obtained using the dark pixel fraction
(McGreer et al. 2015). The bottom panel shows our constraints on QV

H II

(same as in the top panel), but the vertical axis scaled such that the behaviour
around QV

H II ∼ 1 can be clearly visualized. It is clear that QV
H II = 1 is ruled

out at z ≥ 5.6 with a significance >2σ for either of the data sets.

Fig. 4. The horizontal orange dashed line corresponds to QV
H II = 1.

For reference, we also show the late-reion-long-mfp model
of Nasir & D’Aloisio (2020) (blue dashed curve) and the default
reionization model of Keating et al. (2019) (magenta dotted curve,
almost identical to the very late model of Kulkarni et al. 2019 in the
redshift range of our interest). The 2σ lower limits on QV

H II obtained
using the dark pixel fraction (McGreer et al. 2015) are shown by
green points with error bars. Our QV

H II limits for the optimistic data
set are higher than the simulations of Keating et al. (2019) and Nasir
& D’Aloisio (2020). The constraints for the pessimistic data set, on

the other hand, are consistent with the reionization history of Keating
et al. (2019) within the 2σ error bars (except that our 2σ lower limit is
marginally higher than the Keating et al. 2019 value). However, at z

= 5.6, the allowed values of QV
H II from our analysis are significantly

higher than that of Nasir & D’Aloisio (2020). This indicates that
our method, for the same value of neutral fraction, produces more
τ eff fluctuations than the model of Nasir & D’Aloisio (2020). All
our constraints are consistent with the lower limits on QV

H II from the
model-independent dark pixel fraction (McGreer et al. 2015).

As expected, the allowed values of QV
H II are higher for the

optimistic data set than the pessimistic one at z ≥ 5.2. The differences
between the two data sets decrease at smaller z because of fewer non-
detections. At z = 5.6, the the 2σ upper limit on QV

H II is 0.99 for
the optimistic data set, while it is 0.98 for the pessimistic one. In
fact, we can rule out QV

H II = 1 at 3.98σ (99.993 per cent confidence)
for the pessimistic data and at 2.65σ (99.2 per cent confidence)
for the optimistic data. This indicates that, in order to match the
data, the completion of reionization must be delayed until z ∼ 5.6
(independent of how the non-detections are treated), i.e. the data are
not consistent with complete reionization at z > 5.6. Interestingly, the
2σ lower limit on QV

H II at z= 5.2 is ≈0.98 for both the data sets, which
would imply a rather significantly late completion of reionization.
We find that our analysis requires the IGM to be completely ionized
at z = 5 and is able to limit the range of QV

H II to within a tight limit of
∼0.02 in the redshift range 5.2 ≤ z ≤ 5.4 (irrespective of which data
set is used). The constraints at z = 5.8 and 6 for the pessimistic data
set are rather weak because of the larger errors on the τ eff distribution.
One can see that QV

H II can be as small as 0.76 at z = 5.8 and 0.56 at z

= 6 if the pessimistic data set represents reality, although the lower
limits may be underestimated by ∼0.06 because of resolution effects
(see Appendix B).

This statistical analysis shows the main benefit of our model. Given
its computational efficiency, we can probe the parameter space in a
reasonable amount of time and hence determine the range of histories
allowed by the data. It is important to keep in mind here that, although
our constraints on QV

H II are reasonably robust, our model cannot
constrain other interesting physical quantities like the temperature
and the amplitude of the photoionization rate. With improved data
sets in the future, we can expect to test some of the model assumptions
more critically and put more stringent constraints on reionization.

3.2 Aspects of the best-fitting reionization history

Having obtained the allowed ranges in reionization history from our
model, we now examine in some detail the properties of the best-
fitting model (red squares and black circles in Fig. 4). We first show
the CDF P(< τ eff) for the best-fitting model and the match with
the data in Fig. 5. In each panel, the grey shaded regions denote
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Figure 5. The cumulative τ eff distribution for the best-fitting reionization model obtained from the MCMC analysis in Section 3.1. The two red curves show the
observational data for the optimistic (left/upper) and pessimistic (right/lower) cases of Bosman et al. (2018), with the legend mentioning which of the two data
sets is used for model comparison. The grey shaded regions correspond to the model predictions accounting for statistical fluctuations along different sightlines.
The redshifts and the ionized volume fractions QV

H II are mentioned in the respective panels. Note that we do not show the results for the optimistic data set at z

= 5.0, 5.2, and 5.4 as the best-fitting models in these cases are almost identical to those for the pessimistic data.

the predictions of our model accounting for statistical fluctuations
along different sightlines while the red curves denote P(< τ eff)
for the optimistic (left/upper) and pessimistic (right/lower) cases.
The legend specifies which of the two cases is used for the model
comparison.

The top panels show the predictions for the pessimistic data set
at z = 5 (left-hand panels), 5.2 (middle panels), and 5.4 (right-hand
panels), while the middle panels are at z = 5.6 (left-hand panels),
5.8 (middle panels), and 6 (right-hand panels). The bottom panels
show the match for the optimistic data set at z = 5.6 (left-hand
panels), 5.8 (middle panels), and 6 (right-hand panels). Since the
best-fitting models for the optimistic cases at z = 5, 5.2, and 5.4
are almost identical to the pessimistic cases (see Table 1), we do
not show them separately in the figure. Visual comparisons between
model and data can sometimes be misleading when the data points
are highly correlated (which is the case here as different τ eff bins are

indeed correlated), however, at least in this case, one can see that the
best-fitting model is a good description of the data. In particular, the
model is able to reproduce the high values of τ eff that are required to
match the data. The data at z ≤ 5.4 are consistent with a completely
ionized medium and hence a relatively uniform �H I, which was also
noted by Becker et al. (2015) and Bosman et al. (2018). However,
at higher redshifts, the best-fitting model contains some neutral
patches in the IGM (characterized by a ionized volume fraction
QV

H II < 1). The introduction of neutral islands in the model allows
for sightlines with large τ eff, which captures the high-τ eff tail of the
distribution.

Let us now understand the characteristics of the ionization and
the radiation fields for our model. We choose the best-fitting model
corresponding to the pessimistic data set at z = 5.8 for which the
effect of patchy reionization is quite prominent. The results are shown
in Fig. 6. The left-hand panel shows the neutral fraction xH I map for
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Figure 6. Various quantities obtained from our semi-numerical simulation at z = 5.8 where the ionized volume fraction QV
H II = 0.93. The left-hand panel

shows the neutral hydrogen fraction xH I field for a slice of thickness 4h−1 cMpc, while the middle panel shows the �H I fluctuations for the same slice. The
black curve in the right-hand panel shows the PDF of �H I for only points in the ionized regions, while the blue dashed curve is for the case where the effect of
shadows is turned off.

a two-dimensional slice of thickness 4 h−1 cMpc, while the middle
panel shows the fluctuations in the photoionization rate �H I. The
ionization field resembles an almost ionized universe with patches
of neutral islands in between. As expected, �H I is non-zero in the
ionized regions and (almost close to) zero in the neutral regions,
thus tracing the overall topology of the ionization map. What is
interesting to note is that even in the ionized regions there are pixels
close to the neutral islands where the photoionization rate is quite
small. These regions are the ‘shadows’ that arise because they do
not receive photons from sources beyond the neutral islands. In our
model, this effect is captured via the inclusion of the shadowing
algorithm outlined in Section 2.2.

To see the effect of these shadows on the distribution of �H I in
the ionized regions, we plot the PDF dP/dln �H I (computed using
only pixels in the ionized regions) in the right-hand panel of Fig. 6
(the black line). One can see that the distribution peaks around the
mean 〈�H I〉 and there exists a long tail for small values of �H I. This
tail arises from the shadows near the neutral islands. To confirm this
point, we have plotted in blue dashed curve the �H I distribution
for the case where we turn-off the shadows, i.e. we simply use
equation (9) instead of equation (14) to compute the photoionization
rate. Clearly, the absence of the shadows leads to a very sharply
peaked distribution of �H I. Our �H I distribution can be compared
with those of Davies & Furlanetto (2016) and Nasir & D’Aloisio
(2020), who also find a low-�H I tail. In fact, Nasir & D’Aloisio
(2020) have explicitly checked that such a tail arises from shadowing
of the neutral islands (see their fig. 5). In this sense, our findings are
qualitatively similar to theirs, although the implementations are very
different.

We further compare our model with that of Davies & Furlanetto
(2016) by computing the mean overdensity 
los and the mean
effective optical depth τ eff along different sightlines of length
50 h−1 cMpc and plotting the resulting two-dimensional distribution
in Fig. 7. The black contours correspond to the distribution for the
best-fitting model, while the blue dashed contours are for the case
where the shadows have been tuned off. The three contours in each
case enclose 68, 95, and 99 per cent sightlines from the sample. It is
clear that there is a mild negative correlation between 
los and τ eff for
the best-fitting model, entirely different from the positive correlation
that is expected for an IGM with uniform �H I; see equation (22).
Our model is thus qualitatively consistent with Davies & Furlanetto
(2016). We further conclude from the figure that the presence of

Figure 7. The black curves show the distribution of sightlines in the τ eff–

los plane, where τ eff is the effective optical depth and 
los is the average
overdensity along each line of sight. The distribution is calculated for the best-
fitting model obtained using the pessimistic data at z = 5.8. The contours
contain 68, 95, and 99 per cent of the sightlines. For comparison, we also
show the results when the shadows are turned off (blue dashed contours).

shadows increases the fluctuations in τ eff allowing for a better fit to
the data for the pessimistic case.

4 SUMMARY AND DISCUSSION

Recent observations of the effective optical depth τ eff of Ly α

absorption at 5 � z � 6 show significant fluctuations when averaged
over reasonably large-scale 50 h−1 cMpc scales. One possible inter-
pretation of these observations is that the fluctuations arise because
of left-over H I islands and that H I reionization is complete only at z

∼ 5.2 (Keating et al. 2019; Kulkarni et al. 2019; Nasir & D’Aloisio
2020). If this interpretation of the data is indeed true, it becomes

MNRAS 501, 5782–5796 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/501/4/5782/6074258 by C
atherine Sharp user on 21 Septem

ber 2021



5792 T. R. Choudhury, A. Paranjape and S. E. I. Bosman

imperative to include these observations in any parameter constraints
related to the reionization history (in addition to, e.g. the existing
CMB observations of electron scattering optical depth). Obtaining
constraints, in turn, requires efficient methods of computing the
relevant observables (in this case, the Ly α optical depth) to probe
the space of unknown parameters.

To achieve this goal, we have developed a semi-numerical tech-
nique to constrain the reionization history at 5 � z � 6. Our
method is appropriate for probing large-scale properties of the Ly α

absorption in relatively low-resolution simulation boxes and relies
on two main inputs: (i) the modelling of ionized regions using a
photon-conserving semi-numerical code of reionization (script;
Choudhury & Paranjape 2018) combined with a prescription for
blocking photons from sources along sightlines passing through
neutral regions and (ii) modelling the Ly α optical depth using the
fluctuating Gunn–Peterson approximation. To our knowledge, this is
the least computationally expensive model to study the Ly α opacity
fluctuations.

We find that the model is able to capture the essential properties of
the H I field as observed in the Ly α absorption, similar to those found
in other semi-numerical models (Davies & Furlanetto 2016; Nasir
& D’Aloisio 2020) and more detailed simulations (Keating et al.
2019; Kulkarni et al. 2019). Since the method is computationally
fast, it allows us to probe the parameter space quite efficiently and
thus obtain the range of histories consistent with the data (keeping
in mind that other physical quantities like the temperature and the
amplitude of the photoionization rate cannot be constrained by our
model). We find that the inferred reionization history is delayed
when we use the data set where non-detections of the flux are treated
as having infinite optical depth (the so-called ‘pessimistic’ case of
Bosman et al. 2018) compared to the case where non-detections are
assumed to have optical depths just below the detection limit (the
‘optimistic’ case). The data are inconsistent with reionization being
complete at z > 5.6 (independent of which data set is used). The
completion can be as late as z ∼ 5.2, corresponding to the 2σ lower
limits on the ionized fraction. We also find that the ionized volume
fraction can be as low as ∼60 per cent at z ∼ 6 for the pessimistic
data set. The analysis thus indicates the potential of our technique
in constraining the reionization history with more number of quasar
sightlines at z ∼ 6.

The number of known z > 5 quasars will increase dramatically
in the next decade with the upcoming quasar searches that will
be performed by Euclid (Euclid Collaboration et al. 2019; Griffin
et al. 2020), the Vera Rubin Observatory (formerly LSST; Ivezić
et al. 2019), and the Nancy Grace Roman Space Telescope (formerly
WFIRST; Spergel et al. 2015). Coupled with more efficient spec-
troscopic observations owing to the ELT (Gilmozzi & Spyromilio
2007), new high-z quasars will significantly increase the amount and
quality of Ly α opacity information at z > 6 in the next decade. The
discovery of bright quasars beyond z = 7.5 (Bañados et al. 2018)
ensures we will be able to map the large-scale evolution of opacity
until z ∼ 6.5, where Gunn–Peterson absorption is expected to saturate
fully.

Indeed, fast semi-numerical models like ours often are unable to
track all the physical processes self-consistently. We have also seen
in Fig. 4 that the reionization history inferred from our analysis
can be different from that predicted by other simulations (Keating
et al. 2019; Kulkarni et al. 2019; Nasir & D’Aloisio 2020). One
possible source of uncertainty in our model arises from the treatment
of the regions that do not receive photons from sources whose lines
of sight pass through the H I islands, thus creating shadows and
suppressing the photoionization rate. Another possibility could be

that our assumed value of mean-free path λss is different than that
in reality. In the future, we plan to make a detailed comparison of
our model with simulations to check the validity of our method of
producing shadows as well as test various other assumptions of the
model.

We also plan to further improve the analysis by including various
effects that have been ignored in this work. The first is to model
the Ly β absorption from the same sightlines and compare with the
available data (Eilers et al. 2019), thus obtaining more stringent
constraints on the reionization history. The second is to forward
model the noise in the observations and include it in the model,
instead of considering the two extreme cases as done in this work.
The third and perhaps most important improvement would be to
self-consistently model the temperature evolution in each cell across
redshifts. This would relax the assumption of the power-law relation
between the temperature and density of the cell and should be
able to account for the dependence of the temperature field on
the reionization history. In addition, we also plan to expand the
scope of the analysis to include other data sets and hence constrain
the reionization history accounting for causal correlations between
different redshift bins. Such improvements, combined with the fact
that the model is computationally inexpensive, would then allow for
comparing with a wide variety of observations simultaneously and
hence obtain constraints on reionization.
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Bañados E. et al., 2018, Nature, 553, 473
Becker G. D., Bolton J. S., Madau P., Pettini M., Ryan-Weber E. V., Venemans

B. P., 2015, MNRAS, 447, 3402
Boera E., Becker G. D., Bolton J. S., Nasir F., 2019, ApJ, 872, 101
Bolton J. S., Haehnelt M. G., 2007, MNRAS, 382, 325
Bolton J. S., Haehnelt M. G., Warren S. J., Hewett P. C., Mortlock D. J.,

Venemans B. P., McMahon R. G., Simpson C., 2011, MNRAS, 416, L70
Bosman S. E. I ., Fan X., Jiang L., Reed S., Matsuoka Y., Becker G., Haehnelt

M. I, 2018, MNRAS, 479, 1055
Calverley A. P., Becker G. D., Haehnelt M. G., Bolton J. S., 2011, MNRAS,

412, 2543
Chardin J., Haehnelt M. G., Aubert D., Puchwein E., 2015, MNRAS, 453,

2943
Chardin J., Haehnelt M. G., Bosman S. E. I ., Puchwein E. I, 2018, MNRAS,

473, 765
Chardin J., Puchwein E., Haehnelt M. G., 2017, MNRAS, 465, 3429

MNRAS 501, 5782–5796 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/501/4/5782/6074258 by C
atherine Sharp user on 21 Septem

ber 2021

http://dx.doi.org/10.1038/nature25180
http://dx.doi.org/10.1093/mnras/stu2646
http://dx.doi.org/10.3847/1538-4357/aafee4
http://dx.doi.org/10.1111/j.1365-2966.2007.12372.x
http://dx.doi.org/10.1111/j.1745-3933.2011.01100.x
http://dx.doi.org/10.1093/mnras/sty1344
http://dx.doi.org/10.1111/j.1365-2966.2010.18072.x
http://dx.doi.org/10.1093/mnras/stv1786
http://dx.doi.org/10.1093/mnras/stx2362
http://dx.doi.org/10.1093/mnras/stw2943


Ly α opacity fluctuations using fast methods 5793

Choudhury T. R., Ferrara A., 2005, MNRAS, 361, 577
Choudhury T. R., Paranjape A., 2018, MNRAS, 481, 3821
Croft R. A. C., Weinberg D. H., Katz N., Hernquist L., 1998, ApJ, 495, 44
Davies F. B., Furlanetto S. R., 2016, MNRAS, 460, 1328
Davies F. B., Hennawi J. F., Eilers A.-C., 2020, MNRAS, 493, 1330
Dixon K. L., Furlanetto S. R., 2009, ApJ, 706, 970
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APPENDIX A : D EPENDENCE OF THE R ES ULTS
O N T H E PA R A M E T E R C H O IC E S

In this Appendix, we discuss the dependence of our model on
different parameters once we vary them beyond their default values.

A1 The minimum halo mass Mmin

We have fixed the value of the minimum mass Mmin of haloes that
can produce ionizing photons to 109 M� for the default analysis
in Section 3.1. In this section, we investigate if the choice affects
our constraints on the reionization history. Let us first see the �H I

fluctuations for a two-dimensional slice for three values of Mmin at
a representative redshift, chosen to be z = 5.8. The maps are shown
in Fig. A1. We have fixed the value of QV

H II for the three cases
(by changing the ζ values appropriately). We can see that although
the large-scale properties look very similar, there are some obvious
differences. As Mmin increases, the neutral regions (shown by the
dark points, corresponding to �H I values almost zero), which are
relatively smaller in size, tend to disappear. Since the amount of
neutral volume is the same, the existing neutral regions have larger
sizes for higher Mmin.

However, these changes, which are visually obvious, seem to affect
the maps at scales smaller than 50 h−1 cMpc. As a result, we expect
that these may not affect the τ eff distributions when averaged over
large path lengths. To confirm this, we plot the CDF P(< τ eff) for
the three cases in Fig. A2. For the default case Mmin = 109 M�, we
choose parameters corresponding to the best-fitting model obtained
in Section 3.1. For the other two cases, we keep the same value of QV

H II

and adjust Aτ to match the mean τ eff for the default case. As is clear
from the figure, the three models produce identical P(< τ eff), thus
confirming our expectation that the QV

H II constraints are insensitive
to Mmin (although the values of Aτ could vary by ∼10 per cent as we
change Mmin by an order of magnitude). It is possible that models
with different Mmin can be distinguished when the transmitted flux is
averaged over sightlines of smaller length; this is a possible avenue
that we plan to explore in the future.

We did not investigate whether the τ eff distributions change more
substantially for a reionization model dominated by much rarer
sources, e.g. AGNs (Kulkarni et al. 2017). Such models would require
higher values of Mmin than what is considered here. In such cases, our
subgrid based method of computing the collapsed fraction becomes
less accurate and hence a more careful analysis is warranted. We plan
to study such cases separately in the future.

A2 The mean-free path λss

The default value of the mean-free path λss, determined by the
distance between the self-shielded regions, has been chosen as the
value extrapolated from lower redshift observations. In this section,
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Figure A1. The two-dimensional maps of the photoionization rate fluctuations for a slice of thickness 4h−1 cMpc at z = 5.8 for different values of Mmin (in
units of M�) as mentioned above the respective panels.

Figure A2. The τ eff CDF for three different values of Mmin at z = 5.8 (with
red curves showing the optimistic and pessimistic data sets used in this paper).
The default runs in the paper are for Mmin = 109 M�. All the three cases have
the same value of QV

HII (corresponding to the best-fitting value in the default
case), while the Aτ values are adjusted so as to match the mean τ eff for the
default case. All other model parameters are identical for the three cases.

we investigate if the uncertainty in the value of λss affects our
constraints on QV

HII as discussed in Section 3.1.
We first perform a full MCMC analysis treating λss as a free

parameter. We choose it to have a flat prior in the range 15–
100 cMpc. These limits are set by the resolution and the box size
of our simulation, however, they cover the most interesting range of
values for the parameter. The posterior distribution of the parameters
for this case, along with those of our three-parameter default run
with λss fixed, are shown in Fig. A3. The constraints are obtained
using the pessimistic data set at z = 5.8. We can immediately see
that the posterior distribution of QV

H II is different when λss is left
free. The best-fitting value is smaller than the default case. However,
interestingly, the 2σ limits on QV

H II remain relatively unaffected (the
range is [0.76–0.96] for the default case, while it is modified to [0.73–

Figure A3. The posterior distribution of parameters obtained using MCMC
analysis when λss is kept fixed to the default value (red) and when λss is left
free (blue). The results are shown for the pessimistic data set at z = 5.8. For
the case where λss is fixed, the red straight lines parallel to the axes denote
the fixed value of λss.

0.97] when λss is free). Hence, we can conclude that our constraints
on the reionization history remain relatively unaffected even when
λss is allowed to vary.

We find that it is not possible to constrain λss from our analysis.
The marginalized posterior is almost flat with marginal increase at
lower values. In our approach, it is perhaps more convenient to make
use of constraints on λss from other studies, either observations or
simulations.

We can see from the figure that there is a positive correlation
between λss and log Aτ . The reason is that a larger mean-free path
allows sources from larger distances to contribute to the photon flux
Si, thus decreasing the optical depth τα, i. One requires a higher value
of Aτ to compensate for this increase in the flux and increase τα, i;
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Figure A4. Same as Fig. A1 but for different values of λss.

Figure A5. Same as Fig. A2 but for different values of λss.

see equation (23). This correlation between λss and log Aτ leads to a
wider range of Aτ values to be allowed than that in the default case.

There is also a positive correlation between λss and QV
H II (or ζ ).

To understand this, we compare the �H I maps for different values of
λss in Fig. A4. For this plot, we have fixed the value of QV

H II = 0.93
for all the three cases. In the left-hand panel, we choose a high value
λss = 100 cMpc, which essentially implies that points in the ionized
regions can see sources at large distances (unless blocked by a neutral
region). Thus, for large λss, only points that are considerably far away
from the islands (say, with distance �λss) can receive photons from
all directions without being obstructed by the islands. This implies
that the number of points that are affected by these islands is relatively
larger, which then leads to more fluctuations. Hence, we end up with
a somewhat counter-intuitive result where increasing λss leads to
more large-scale fluctuations in �H I. It follows that, to produce the
same amount of fluctuations as the default λss, we require less neutral
islands and thus larger QV

H II for the case of a higher λss. This is the
cause of the positive correlation found in the MCMC analysis.

In the right-hand panel of Fig. A4, we show the �H I map for a
smaller value λss = 15 cMpc. As expected, we find a lot of small-
scale fluctuations in �H I in this case. Moreover, only points that are
very close to the neutral islands (�15 cMpc) are affected by them,
leading to a much smaller effect of the shadows.

The effect of λss on the τ eff CDF is shown in Fig. A5. Note that
we have kept the value of QV

H II = 0.93 same for the three cases
plotted, while the value of Aτ is chosen to obtain the same mean
τ eff. As expected, the τ eff CDF is wider for larger λss because of
more large-scale fluctuations, and similarly narrower for smaller λss.
However, the variation even in such extreme cases is within the
cosmic variance of the observable, thus not affecting the constraints
on QV

H II that severely.
To summarize the results of this section, we find that the constraints

on the reionization history are, in principle, affected by the chosen
value of λss. In addition, we also find that our model is unable to put
any constraints on λss.

A P P E N D IX B: C O N V E R G E N C E O F T H E
RESULTS W ITH R ESPECT TO RESOLUTIO N

In this Appendix, we study the dependence of our results on the
grid size chosen for generating the ionized bubbles and computing
the Ly α optical depth. This is particularly important as some of the
model parameters depend on the resolution. For this study, we have
chosen the pessimistic data set at z = 5.8 and carried out the MCMC
analysis for grid sizes of 
x = 4 (643 grids) and 2 h−1 cMpc (1283

grids). Recall that our default runs are for a coarser resolution 
x =
8 h−1 cMpc (323 grids). While running for the different resolutions,
we choose the same priors as the default case and fix Mmin and λss

to their default values as mentioned in Section 2.4. The posterior
distributions of the various parameters for the three cases are shown
in Fig. B1.

The first point to note from the figure is that the allowed values
of Aτ decrease with coarsening resolution (i.e. increasing 
x). This
is not surprising as Aτ is directly dependent of κ res, a parameter
that itself depends on the resolution. The fact that the constraints
on Aτ are resolution-dependent is a direct consequence of using
the fluctuation Gunn–Peterson approximation and our inability to
capture the small-scale fluctuations in the low-resolution simula-
tions. We also find that the other parameter that is affected by
resolution, namely, γ , is also different for the different resolutions.
However, the constraints on γ are weak no matter which resolution
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Figure B1. The posterior distribution of parameters obtained using MCMC
analysis for three different grid resolutions used for generating the ionization
maps and the Ly α optical depth. The results are shown at z = 5.8 for
the pessimistic data set. The default run in the paper corresponds to 
x
= 8 h−1 cMpc (red) whose results are identical to those shown by red
contours/curves in Fig. 2.

is chosen and γ ≈ 1.5–2 seems to be a good choice for all the
cases.

What is important for our analysis is that the constraints of QV
H II

remain similar for the three resolutions. The best-fitting values are
almost the same (they differ by only �0.01). The 2σ upper limits
are also within ∼0.005 of each other. There is some difference in the
three cases at the lower tail of the QV

H II posterior distribution. The
2σ lower limit for the default case 
x = 8h−1 cMpc is 0.76, while
they are 0.80 and 0.82 for 
x = 4 and 2h−1 cMpc, respectively. This
implies that our default runs underestimate the lower 2σ values by
∼0.06 compared to the highest resolution probed here. The reason
for QV

H II lower limits to be more stringent for higher resolution is as
follows: More neutral IGM leads to more fluctuations in τ eff, whereas
coarser resolution simulations tend to smooth the fluctuations. Hence,
coarser resolution simulations allow agreement with the data even
for lower values of QV

H II (values that produce more fluctuations in the
finer resolution runs and thus tend to get ruled out). The resolution-
dependence of the constraints is expected to be less prominent for
cases where the allowed QV

H II values are higher, e.g. for the optimistic
data sets and for lower redshifts.

We choose 
x = 8h−1 cMpc as our default grid size because the
MCMC runs take much less time to complete. For the three cases
plotted in Fig. B1, it takes ∼6 h, ∼36 h, and ∼15 d for the runs to
complete for 
x = 8, 4, and 2 h−1 cMpc, respectively. Hence, using
a coarse resolution allows us to perform many more MCMC runs in

Figure B2. The τ eff CDF for three different grid resolutions used while
generating the H I field and the Ly α optical depth at z = 5.8 (with red curves
showing the optimistic and pessimistic data sets used in the paper). The model
parameters correspond to the best-fitting values found from the MCMC run
shown in Fig. B1. Note that all the three cases have the same value of QV

H II,
while the Aτ values are mentioned in the legend.

a reasonable amount of time and study the different features of the
model in more detail. The downside of using the coarse resolution is
that the lower limits quoted are somewhat conservative.

For completeness, we also show the CDF P(< τ eff) for the three
resolutions in Fig. B2. We choose the best-fitting QV

H II and Aτ values
for the three resolutions as found from the MCMC runs and fix γ

= 1.5 for all the cases. It is clear that the models produce almost
identical τ eff distributions for the same value of QV

H II although the
Aτ values are different. This is consistent with our findings that the
reionization constraints are insensitive to the grid size.

Overall, we can safely conclude that our results are not sensitive
to the resolution, except for the lower limits being slightly underes-
timated for the coarser resolution. We use 
x = 8 h−1 cMpc for the
MCMC analysis in the paper.

We have also checked whether our results are sensitive to the box
size by comparing with a smaller box of length 128 h−1 cMpc. We
find that the τ eff distributions remain unchanged for the smaller box.
This is perhaps not surprising as all the relevant scales in the problem
(the size of the neutral regions, the mean-free path, and the length of
the sightlines over which the optical depth is calculated) are smaller
than the boxes used.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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