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Background 

Plasma P-tau181 has been shown to be associated with Alzheimer’s disease (AD) tau pathology. P-tau217 is a 

novel blood-based biomarker that may be diagnostically superior to P-tau181. We compared the diagnostic value 

of plasma P-tau217 and P-tau181 in the same cohort of patients across the AD and frontotemporal lobar 

degeneration (FTLD) spectrum with matched immunological assays. 

Methods 

Retrospective study of 593 cases (64±13 y, 50% female) with both plasma P-tau217 and P-tau181 concentrations. 

The cohort included 15 AD and 68 FTLD pathology-confirmed cases, 360 cases with amyloid-PET (41% positive) 

and 230 cases with flortaucipir (FTP)-PET (49% positive). P-tau was measured using custom 

electrochemiluminiscence-based assays at Lilly. 

Findings 

Plasma P-tau217 and 181 were strongly correlated (r=0.88, p<0.001). P-tau217 and P-tau181 concentrations were 

increased in clinical AD relative to cognitively normal controls (P-tau217 AUC=0.98, P-tau181 AUC=0.97, 

p(difference)=0.31). P-tau217 slightly outperformed P-tau181 in differentiating between clinically diagnosed AD 

and FTLD (P-tau217 AUC=0.93, P-tau181 AUC=0.91, p=0.007), but not in differentiating between pathology-

confirmed AD vs FTLD (P-tau217 AUC=0.96, P-tau181 AUC=0.90, p =0.22). P-tau217 was 3.9-fold and P-tau181 

was 2.5-fold increased in amyloid-PET-positive compared to amyloid-PET-negative cases (P-tau217 AUC=0.91, 

P-tau181 AUC=0.89, p=0.049). Tau-PET binding in the temporal cortex was more strongly associated with P-

tau217 than P-tau181 (r=0.80 vs r=0.72, p difference <0.001).  

Interpretation 

In a direct comparison using matched immunoassays, both P-tau217 and P-tau181 had good diagnostic 

performance for differentiating AD from other groups. There were small, but statistically significant differences 

in favor of P-tau217 for differential diagnosis of neuropathologically confirmed AD and in correlations with FTP-

PET uptake. Plasma P-tau181 and 217 may be useful screening tools to identify individuals with underlying 

amyloid and AD tau pathology. 

Funding: US National Institutes of Health, State of California Department of Health Services, Tau Consortium, 

Michael J Fox foundation, Alzheimer’s Association.  
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Research in context 

Evidence before this study: 

We searched PubMed for all articles published up to October 27, 2020, with no language limitations. Keywords 

included: “plasma phosphorylated tau”, “CSF phosphorylated tau”, “tau-PET”, “amyloid-PET”, “MRI”, “MAPT 

mutation carriers, “Alzheimer’s disease”, “Alzheimer’s pathology”, and “frontotemporal lobar degeneration”. CSF 

P-tau181 is one of the core biomarkers incorporated into the NIA-AA Research Framework to define Alzheimer’s 

disease. Recent studies suggested that CSF p-tau217 is consistently more strongly related to the AD pathological 

process and might be more useful than P-tau181. To make testing for AD pathology more widely accessible, assays 

were developed that are sensitive enough to measure P-tau in blood. Previous cross-sectional and longitudinal 

studies covering the clinical AD continuum have indicated the value of plasma P-tau217 and P-tau181 for 

differentiation of clinical and pathology-confirmed AD, and differentiation of amyloid-PET or tau-PET positive 

cases from amyloid-PET or tau-PET negative cases. One study suggested that P-tau217 outperformed P-tau181, 

however there were important technical differences between the P-tau217 and P-tau181 assays used. 

Added value of this study: 

This study provides a direct comparison between two novel plasma P-tau assays, either measuring P-tau217 or P-

tau181 in a broad range of diagnostic and correlative neuroimaging analyses. The assay conditions were optimized 

to ensure that the immunochemical properties of the P-tau217 and P-tau181 assays were essentially the same.  

Similar to previous work, both P-tau217 and 181 were increased in AD clinical syndromes compared to a spectrum 

of FTLD syndromes, Lewy body dementia and Traumatic Encephalopathy Syndrome (TES) cases. Both P-tau 

species were also increased in pathology-confirmed AD compared to pathology-confirmed FTLD, but neither 

could differentiate between 3R/4R tau versus 4R tau producing MAPT mutation carriers. Both P-tau species were 

increased in amyloid-PET-positive cases compared with amyloid-PET-negative cases, and in tau-PET-positive 

cases compared with tau-PET-negative cases, and correlated with regional tracer uptake on the voxel level. In 

addition, both plasma P-tau measures strongly reflected underlying AD pathology in patients with clinical 

diagnoses of either mild cognitive impairment (MCI) or corticobasal syndrome (CBS), for which underlying AD 

pathology is a possible but uncertain etiology. We show that plasma P-tau217 is slightly superior to P-tau181 in 

some analyses such as association with amyloid- and tau-PET, but overall, measurement of either P-tau epitope 

produced very similar results. 
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Implications of all the available evidence: 

This study shows that careful consideration of assay characteristics is critical to understanding the relative 

performance and utility of plasma P-tau biomarkers. These data, together with other recent reports, suggest that 

both P-tau217 and P-tau181 are useful biomarkers of AD pathology. Plasma biomarkers are likely to be less 

expensive and more accessible than CSF or PET, allowing them to be more highly scalable and more easily 

deployed to medically underserved and remote populations. Plasma P-tau is a particularly powerful tool for 

differential diagnosis between AD and FTLD pathologies, which may further improve the ability to identify 

suitable participants for clinical trials and large-scale epidemiological studies.  
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Main manuscript  

Introduction  

Tau pathology plays an essential role in Alzheimer’s disease (AD) and about half of the frontotemporal lobar 

degeneration (FTLD) spectrum diseases.1,2 The clinical syndromes associated with AD or FTLD pathology are 

heterogeneous and frequently overlap, particularly in younger individuals. Established biomarkers for AD 

including beta amyloid measurements in cerebrospinal fluid (CSF), or amyloid or tau positron emission 

photography (PET) imaging, have been of limited use for screening because of the invasiveness of the lumbar 

puncture and the high costs of PET. Blood-based biomarkers may have advantages due to their lower costs, less 

invasive nature and potential to be deployed widely throughout the community, allowing for early and repeated 

testing. With the development of disease-modifying AD therapies, a blood test could be employed to identify 

patients who are likely to harbor AD pathology to undergo more established CSF or PET diagnostic testing prior 

to initiating therapy. When combined with simple clinical assessment tools, results of screening blood tests could 

also be used to guide referrals to specialized memory clinics for management and research. 

We and other groups have shown the value of plasma P-tau181 for differential diagnosis of clinically defined 

dementia syndromes, with P-tau181 concentrations being 2.5-3.5 times higher in AD compared to normal controls 

(NC).3-5 P-tau181 was not increased in FTLD and could differentiate FTLD from AD with receiver operating curve 

(ROC) area under the curves (AUC) ranging from 0.816 to 1.5 P-tau181 was increased in pathology-confirmed AD 

compared to pathology-confirmed FTLD.3 P-tau181 was a strong indicator of amyloid-PET positivity (AUC: 

0.766-0.91)3 and correlated with tau-PET binding,3-5 successfully predicting tau-PET positivity (AUC: 0.836-

0.935).  

More recently, plasma P-tau217 has been shown to outperform plasma P-tau181 in identifying AD in an autopsy-

confirmed cohort (AUC of 0.89 for P-tau217 vs 0.72 for P-tau181) and in a clinical cohort (AUC of 0.96 for P-

tau217 vs 0.81 for P-tau181). However, there were important technical differences between the P-tau217 and P-

tau181 plasma assays used, complicating the interpretation of which P-tau epitope might be superior for differential 

diagnosis and other purposes.6 Observed differences could be attributable to assay characteristics unrelated to the 

P-tau epitope.  
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When measured simultaneously in CSF using mass spectrometry, P-tau217 showed higher accuracy in 

differentiating AD from FTLD and controls (AUC=0.99) compared to P-tau181 (AUC=0.86),7  8 9 though no direct 

one-on-one comparison has been made between plasma measures of P-tau217 and P-tau181 to date. 

As plasma P-tau measurements become more widely available and are increasingly planned for use in research 

and clinical care, it will be important to understand the relatively merits of different assays. In this study we 

compared plasma P-tau217 and P-tau181 measured using MSD technology and with the same immunochemical 

set-up for both markers across a wide range of neurodegenerative diseases including the full spectrum of AD, mild 

cognitive impairment (MCI), FTLD and other dementia cases as well as age matched controls.  
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Methods  

Participants 

This clinical study included 593 participants from two cohorts; 443 from the University of California San Francisco 

(UCSF) Memory and Aging Center, and 150 from the Advancing Research and Treatment for Frontotemporal 

Lobar Degeneration (ARTFL) consortium. The cohort consisted of clinically normal controls, patients in the AD 

or FTLD spectrum, patients with dementia with Lewy bodies (DLB) and patients with traumatic encephalopathy 

syndrome (TES), detailed in Supplement. Five hundred and seven participants were white. Participants were 

included when both P-tau217 and P-tau181 were successfully measured in plasma.  

Participants provided written informed consent at the time of recruitment. The study was approved by the 

institutional review board of each research center from which the individual was recruited. 

Pathology diagnosis 

Eighty-three cases had a pathology-confirmed diagnosis. The average time between blood draw and death was 

32±20 months. AD neuropathological changes, including Thal phase, CERAD neuritic plaques and Braak 

neurofibrillary tangles were ascertained as described.10 FTLD cases were grouped as FTLD-tau or FTLD-TAR 

DNA-binding protein 43 (FTLD-TDP) as described.11,12 Lewy body disease and chronic traumatic encephalopathy 

(CTE) neuropathological changes were also assessed.13-16 

Plasma P-tau methods for optimal comparison  

P-tau217 and P-tau181 assays were performed in duplicate on the same sample aliquot and processed together in 

the same batch on a streptavidin small spot plate using the MSD platform. Biotinylated-IBA493 was used as a 

capture antibody for the P-tau217 assay and biotinylated-AT270 for the P-tau181 assay. In both assays, SULFO-

TAG-Ru-4G10-E2 (anti-tau monoclonal antibody) was used for the detector antibody (detailed in Supplement).   

Plasma NfL method 

Plasma NfL was measured using Simoa technology with either a homebrew kit or commercial kit on a Quanterix 

HD-1 analyzer (Quanterix, Billerica, MA). 

Imaging methods 
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Image data was acquired across multiple centers; acquisition, processing, and analyses are fully detailed in the 

supplementary analyses and briefly summarized below. Voxelwise analyses and result rendering are detailed in 

the supplement. 

Amyloid-PET  

Amyloid-PET status was available for 360 participants and derived from visual read17,18 based on PET acquired 

with [11C]Pittsburg Compound B (PIB), [18F]florbetapir, or [18F]florbetaben. The average time between plasma 

sample and amyloid-PET was 5±16 months.  

Tau-PET  

Tau-PET was acquired using [18F]flortaucipir in 230 participants (Table 1). The average time between plasma 

sample and Tau-PET was 1.6±7 months. Standardized Uptake Value Ratio (SUVR) values were extracted from 

the temporal cortex and a threshold of 1.27 was used to determine tau-PET positivity.1  

 

MRI  

Magnetization Prepared Rapid Gradient Echo (MP‐RAGE) images were available for 535 participants and 

acquired from various 3 Tesla scanners. The average time between plasma and MRI imaging was 1.7±8 months. 

Total intracranial volume was used as a covariate in analyses.19  

 

Statistical analysis 

All measures were adjusted for age, sex (and CDRsb for pathology-confirmed cases) and corrected for multiple-

comparisons with Bonferroni; η2 was used to measure effect size. For visualization, raw biomarker concentrations 

were used. Differences in biomarker values were assessed with univariate linear models. P-tau217 and P-tau181 

were not normally distributed, therefore Spearman’s correlations were used. The difference in strength between 

two correlations was tested using methods described in Diedenhofen et al.20 ROC analyses determined 

differentiation accuracy. Difference between two AUC curves was tested with the Delong test.21 Youden cut-off 

values were used for sensitivity and specificity. A two-sided p<0.05 was considered significant. Statistical analyses 

were performed using SPSS (version 26; SPSS/IBM, Chicago, IL) and R (version 3.6.1).   
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Results  

Participant characteristics 

The cohort included 118 normal controls (NC) and a broad range of neurodegenerative syndromes:174 cases in 

the clinical AD spectrum (58 ADclin,22 15 logopenic variant primary progressive aphasia, lvPPA, and 2 posterior 

cortical atrophy, PCA), 99 MCI patients23, and 273 individuals with clinical diagnoses in the FTLD spectrum (79 

corticobasal syndrome, CBS24, 74 progressive supranuclear palsy, PSP,25 62 behavioral variant FTD, bvFTD,26 32 

nonfluent variant PPA, nfvPPA, and 27 semantic variant PPA (svPPA)27). In addition, 14 cases with dementia with 

Lewy bodies (DLB) and 13 cases with traumatic encephalopathy syndrome (TES) were included (Table 1). The 

FTLD cases included 76 carriers of FTLD-causing mutations: 44 MAPT associated with FTLD-tau, 13 progranulin 

(GRN) and 20 chromosome 20 open reading frame (C9orf72), associated with FTLD-TDP. The MAPT group 

included 11 individuals with mutations that produce 3R/4R tau (6 V337M and 5 R406W), and 33 with mutations 

that produce 4R tau (20 P301L, 7 N279K, 6 IVS10+16C>T).28  

_________________________________________________________________________________________ 

Table 1 goes here  

__________________________________________________________________________________________ 

Differentiation based on clinical diagnosis 

There was no correlation between age and P-tau217 (R=-0.02, p=0.61) or P-tau181 (R=0.04, p=0.37) and no 

difference in P-tau217 and P-tau181 concentrations between male (P-tau217: 0.26±0.3 pg/mL; P-tau181: 1.2±1 

pg/mL) and female participants (P-tau217:0.31±0.4 pg/mL, p=0.98; P-tau181: 1.2±1 pg/mL, p=0.94). P-tau217 

and P-tau181 concentrations were strongly correlated (r=0.88, p<0.001, eFigure 1). Both P-tau217 and P-tau181 

were increased in the clinical AD spectrum (ADclin+lvPPA+PCA) compared to all other diagnostic groups (Figure 

1). P-tau217 was 4.4-fold increased in patients in the clinical AD spectrum (0.74±0.4 pg/mL, n=75) compared to 

controls (0.17±0.2 pg/mL, n=118, η2=0.63, p<0.001). P-tau181 was 2.8-fold increased in the clinical AD-spectrum 

(2.4±1 pg/mL, n=75) compared to controls (0.87±1 pg/mL, n=118, η2=0.54, p<0.001). The associated AUCs were 

comparable for P-tau217 (0.98, p<0.001) and P-tau181 (AUC=0.97, p<0.001, DeLong test p=0.31, Table 2). In 

MCI patients, P-tau217 was increased compared to controls and lower than AD, whereas P-tau181 was not 

increased compared to controls (Table 1). 
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P-tau217 was increased by 3.5 fold in the clinical AD-spectrum compared to the clinical FTLD-spectrum 

(CBS+PSP+bvFTD+nfvPPA+svPPA) (0.21±0.3 pg/mL, n=274, η2=0.38, p<0.001). P-tau181 was 2.4-fold 

increased in the clinical AD-spectrum compared to the clinical FTLD-spectrum (1.0±1 pg/mL, n=274, η2=0.32 

p<0.001). The associated AUC for P-tau217 (0.93, p<0.001) was higher than for P-tau181 (AUC=0.91, p<0.001, 

DeLong test p=0.007).  

 

Figure 1. P-tau217 and P-tau181 concentrations per clinical diagnosis. A. P-tau217 was increased in the AD 

spectrum compared to all other diagnoses.  B. P-tau18 was increased in the AD spectrum compared to all other 

diagnoses. C. ROC curve analyses of the differentiation between the cases in the AD spectrum and the normal 

controls. D. ROC curve analyses of the differentiation between the cases in the AD spectrum and cases in the 

FTLD spectrum. *Significant difference in AUC.  

 

Differentiation based on pathology confirmed diagnosis and MAPT mutation status 

Both P-tau217 and P-tau181 were associated with AD in pathology confirmed cases. P-tau217 concentrations were 

4.1 fold increased in ADpath (0.62±0.4 pg/mL, n=15) compared to FTLD-tau (0.15±0.1 pg/mL, n=52, η2=0.15, 

p=0.006) and 5.6 fold compared to FTLD-TDP (0.11±0.04 pg/mL, n=16, η2=0.23, p=0.025) (Figure 2A). P-tau217 

concentrations were associated with Braak stage as a continuous variable (β=0.69, p<0.001) and were higher in 

Braak V-VI compared to all earlier Braak stages (p<0.02, eFigure 2A). P-tau217 concentrations were associated 

with neuritic plaque CERAD score (β=0.67, p<0.001) and were higher in CERAD frequent compared to CERAD 
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none and moderate (p<0.01, eFigure 3A, eFigure 4A). P-tau181 concentrations were 2.8 fold increased in ADpath 

(2.2±1 pg/mL, n=15) compared to FTLD-tau (0.8±0.5 pg/mL, n=52,  η2=0.10, p=0.034) and 3.7 fold compared to 

FTLD-TDP (0.6±0.1 pg/mL, n=16, η2=0.23, p=0.026) (Figure 2B). P-tau181 concentrations were associated with 

Braak stage (β=0.63, p<0.001) and were higher in Braak V-VI compared to Braak I-II, and Braak III-IV (p<0.001) 

(eFigure 2B). P-tau181 concentrations were associated with CERAD score (β=0.60, p<0.001) and were higher in 

CERAD frequent compared to CERAD none and moderate (p<0.04, eFigure 3B, eFigure 4B). The AUC for the 

differentiation between AD and FTLD (FTLD-tau+FTLD-TDP) was 0.96 with P-tau217 and 0.90 with P-tau181 

(Figure 2C), which was not statistically different (Delong test: p=0.22, Table 2). 

Seventy-seven individuals had an FTLD-causing mutation. There was no difference in P-tau217 or P-tau181 

concentrations between MAPT, GRN, or C9orf72 mutation carriers or between the mutation carrier groups and 

normal controls. When studying only the MAPT mutation carriers, there was no difference in P-tau217 or P-tau181 

concentrations between age- and sex-matched amyloid-PET negative NC (P-tau217:0.14±0.04 pg/mL, P-

tau181:0.82±0.3 pg/mL, n=8), 4R (P-tau217: 0.23±0.21 pg/mL, P-tau181: 0.9±0.6 pg/mL, n=33), or AD-like 

3R/4R tau pathology mutation carriers (P-tau217: 0.29±0.2, P-tau181: 1.1±0.5, n=11, η2=0.05, p=0.32 for P-

tau217, η2=0.05, p=0.30 for P-tau181). Since these results differed from our previous finding of increased plasma 

P-tau181 concentrations in 3R/4R mutation carriers,3 we directly compared the results from 39 MAPT individuals 

who were measured with both the previous assay and the new P-tau181 assay designed to be more comparable to 

the P-tau217 assay. P-tau181 concentrations with both assays did not correlate (R=-0.002, p=0.99) in MAPT 

mutation carriers, even though the old and new P-tau181 concentrations were correlated in the whole cohort 

(R=0.69, p<0.001, eFigure 5). 
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Figure 2. P-tau217 and P-tau181 concentrations per pathology-confirmed diagnosis and MAPT genotype. 

A. P-tau217 was increased in the pathology-confirmed AD group compared to the FTLD-TDP and FTLD-tau 

groups. B. P-tau181 was increased in the pathology confirmed AD group compared to the FTLD-TDP and FTLD-

tau groups. C. ROC curve analyses of the differentiation between the pathology-confirmed AD and FTLD-tau 

combined with the FTLD-TDP cases. D. There was no difference in P-tau217 concentrations between 4R (n=33, 

58% female, mean age=41.8), 3R/4R (n=11, 45% female, mean age=45.3) MAPT and age- and sex-matched 

amyloid-PET-negative controls (n=8, 50% female, mean age=50.7). There was no difference in P-tau181 

concentrations between 4R (n=33), 3R/4R (n=11) MAPT and age- and sex-matched controls (n=19). ***p<0.001, 

adjusted for sex, age, and CDRsb.  

 

Associations between P-tau217, P-tau181 with clinical and plasma biomarkers of disease status  

Both P-tau217 and P-tau181 similarly correlated with MMSE, CDRsb, functional activities questionnaire (FAQ), 

modified Rey figure recall, trail making test, Stroop color-naming, semantic fluency, and D-word fluency in the 

whole cohort (eTable 3). In the AD spectrum subgroup, P-tau217 remained associated with MMSE, CDRsb, FAQ, 

trail making test, semantic fluency and D-word fluency, whereas P-tau181 was only associated with MMSE. In 

the FTLD spectrum subgroup, both P-tau217 and P-tau181 only correlated with Stroop color-naming and D-word 

fluency. 

There was no correlation between plasma NfL and P-tau217 (R=-0.06, p=0.32, n=268) or P-tau181 (R=0.008, 

p=0.90, n=268), nor in the AD spectrum (P-tau217: R=0.06, p=0.75; P-tau181: R=0.26, p=0.18, n=28) or FTLD 

spectrum (P-tau217: R=-0.05, p=0.61; P-tau181: R=0.003, p=0.97, n=130) subgroup analyses. Plasma NfL was 

not superior to either plasma P-tau for most diagnostic comparisons but performed with similar accuracy in 

differentiating ADpath from FTLDpath (Table 2). CSF P-tau181 was correlation with plasma P-tau217 (R=0.57, 
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p<0.001, n=199) and P-tau181 (R=0.48, p<0.001, n=199). CSF P-tau181 showed similar accuracy to plasma P-

tau217 in all diagnostic comparisons performed (Table 2).  

Association between P-tau217, P-tau181 and amyloid-PET status 

Both plasma P-tau217 and P-tau181 were associated with amyloid-PET positivity. P-tau217 was 3.9-fold increased 

in amyloid-PET-positive (0.58±0.4 pg/mL, n=146) compared to amyloid-PET-negative cases (0.15±0.2 pg/mL, 

n=214, η2=0.33, p<0.001, Figure 3B) across clinical diagnoses. P-tau181 was 2.5-fold increased in amyloid-PET-

positive (2.0±1 pg/mL, n=146, Figure 3B) compared to amyloid-PET-negative cases (0.8±0.6 pg/mL, n=214, 

η2=0.28, p<0.001). P-tau217 differentiated amyloid-PET-positive from negative individuals with an AUC of 0.91, 

which was slightly higher than the differentiating accuracy of P-tau181 (AUC=0.89, Delong test p=0.049, Figure 

3B, Table 2). We assessed whether P-tau217 and P-tau181 could predict amyloid-PET positivity within clinical 

diagnoses of MCI, CBS, or controls, as these clinical groups often have underlying AD pathology.29-33 40% of the 

MCI cases were amyloid-PET-positive (AUC of 0.93 for P-tau217 and 0.92 for P-tau181, both p<0.001, n=73), 

34% of the CBS cases were amyloid-PET-positive (AUC of 0.90 for both P-tau217 and P-tau181, both p<0.001, 

n=50), and 17% of the controls were amyloid-PET-positive (AUC of 0.83 for P-tau217 and 0.85 for P-tau181, 

both p≤0.001, n=64, Table 2, eFigure 6). There was no significant difference in AUC between the two plasma 

biomarkers. 

Association between P-tau217, P-tau181 and tau-PET  

Plasma P-tau217 was more strongly correlated with temporal tau-PET binding (combining bilateral entorhinal, 

amygdala, fusiform, inferior and middle temporal cortices)1 than P-tau181 (R=0.79 vs R=0.72, both p<0.001, 

n=230, ∆R=0.07, 95%CI=[0.030-0.115], p<0.001, Figure 3A-B). The correlation in the amyloid-PET-positive 

group (n=117) was R=0.73, p<0.001 for P-tau217 and R=0.59, p<0.001 for P-tau181 (∆R= 0.14, 95%CI=[0.081-

0.216], p<0.001). There was no correlation in the amyloid-PET-negative group (n=105) with P-tau217 (R=0.17, 

p=0.08) or P-tau181 (R=0.10, p=0.30). P-tau217 was 4.5-fold increased in tau-PET positive cases (0.68±0.4 

pg/mL, n=112) compared to tau-PET-negative cases (0.15±0.1 pg/mL, n=118, η2=0.41, p<0.001) across clinical 

diagnoses. P-tau181 was 2.9-fold increased in tau-PET-positive cases (2.2±1 pg/mL, n=112) compared to tau-

PET-negative cases (0.76±0.6 pg/mL, n=118, η2=0.37, p<0.001). P-tau217 differentiated between tau-PET-

positive and -negative with an AUC of 0.96, which was better than P-tau181 (AUC=0.94, Delong test: p=0.03, 

Figure 3C, Table 2). P-tau217 and P-tau181 could also differentiate between tau-PET-positive and -negative cases 
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within clinical diagnoses of MCI and CBS, with no significant difference in discriminability between the two 

plasma markers (eFigure 7).  

The optimal plasma P-tau cut-off concentrations for Tau-PET positivity were similar to those for differentiation 

between controls and AD patients (Table 2). The cut-off concentrations to differentiate between clinical AD and 

FTLD were similar to those for differentiation between pathology-confirmed AD and FTLD. 

_________________________________________________________________________________________ 

Table 2 goes here  

__________________________________________________________________________________________ 

 

Figure 3. Association between P-tau217, P-tau181, amyloid-PET and tau-PET. A. The correlation between 

plasma P-tau217 and temporal tau-PET SUVR, shapes show clinical diagnosis and color shows amyloid-PET 

status. The dotted line is the cut-off value for tau-PET positivity of 1.27 SUVR. B. The correlation between plasma 

P-tau181 and temporal tau-PET SUVR, shapes show clinical diagnosis and color shows amyloid-PET status. The 

dotted line is the cut-off value for tau-PET positivity of 1.27 SUVR. C. Differentiation between amyloid PET-

positive and -negative, by boxplot and ROC AUC. D. Differentiation between tau-PET-positive and -negative, by 

boxplot and ROC AUC. *Significant difference in AUC, adjusted for sex, age. 

Voxelwise correlation between P-tau217, P-tau181, tau-PET binding, and MRI. 

In the whole tau-PET sample, plasma P-tau concentrations were associated with tau-PET throughout the cortex, 

with strongest correlations in the temporoparietal areas, and lateral frontal regions (Figure 4). The correlation was 

most pronounced for P-tau217, with coefficients of up to 0.81 compared to 0.70 for P-tau181, both peaking in the 

right middle temporal lobe. There was no significant association between P-tau concentration and tau-PET in 
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amyloid-PET negative cases, after excluding one amyloid-PET negative outlier with high plasma values and high 

tau-PET SUVR. In contrast, tau-PET-plasma associations were significant in the amyloid-PET-positive group, 

with correlations up to 0.74 for P-tau217 and 0.59 for P-tau181. The pattern of voxelwise correlations was very 

similar in patients with a clinical diagnosis of MCI, and even stronger in CBS, with correlations exceeding r=0.9 

in frontal, parietal, and temporal areas. 

Higher plasma P-tau concentration was associated with lower GM volume in a pattern that resembled but was 

more restricted than the pattern seen with tau-PET (Figure 5). In the whole cohort, the association was maximal 

in temporoparietal areas, with correlations reaching -0.36 for P-tau217 and -0.33 for P-tau181. Strong associations 

between plasma P-tau markers and temporo-parietal volume were seen in amyloid-PET-positive cases and patients 

with clinical diagnoses of MCI or CBS, but not in the amyloid-PET-negative subgroup. 

 

Figure 4. Voxelwise correlation between plasma P-tau217, P-tau181, and Tau-PET tracer binding. The 

density plots on top of the color bars show the distribution of R values across all voxels included in the GM cortex 

mask. The pink lines in the color bar indicate p<0.001 at the voxel level and correspond to various R values 

depending on each subsample size. The voxelwise correlation brain maps are available on Neurovault: 

https://neurovault.org/collections/SDXLLPNR/ 
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Figure 5. Voxelwise correlation between plasma P-tau217, P-tau181, and grey matter volume. The density 

plots on top of the color bars show the distribution of R values across all voxels included in the GM cortex mask. 

The green lines in the color bar indicate p<0.001 at the voxel level and correspond to various R values depending 

on each subsample size. The voxelwise correlation brain maps are available on Neurovault: 

https://neurovault.org/collections/SDXLLPNR/ 
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Discussion  

We compared the diagnostic performance of plasma P-tau217 or P-tau181 in a large cohort of patients with various 

neurodegenerative diseases using assays matched for technical conditions. Both plasma biomarkers could 

distinguish AD from non-AD disorders defined either clinically or neuropathologically (AUCs>0.90), and both 

were associated with in vivo presence of amyloid and tau pathology as measured with PET. Higher P-tau 

concentrations were also associated with greater brain atrophy measured on MRI scans in brain regions typically 

affected by AD pathology, and with cognitive impairment. Across multiple contrasts of interest, plasma P-tau217 

tended to perform better than P-tau181: the diagnostic accuracy of P-tau217 as measured with the AUC curve was 

higher for differentiation of clinical AD vs clinical FTLD, amyloid-PET-positive vs -negative cases, and tau-PET-

positive vs -negative cases, although the differences in performance were modest (∆AUC<0.02).  

The data collected from this cohort including both primary (FTLD-tau) and secondary tauopathies (AD) support 

the use of either plasma P-tau217 or P-tau181 as screening tools to help target therapies to individuals with 

underlying AD tau pathology.34 These biomarkers may be particularly valuable in clinical syndromes that are 

poorly predictive of an underlying pathology but where AD is a possibility. For example, only 50% of MCI patients 

have AD pathology at autopsy29,30 or an CSF or PET biomarker profile.31 Likewise, 25%-35% of patients with 

CBS, classically associated with FTLD-tau pathology (CBD or PSP),24,32 have underlying AD.29,32,33 AD co-

pathology is also common in clinically diagnosed DLB patients who come to autopsy.35 In our study, both P-

tau217 and P-tau181 were associated with visual reads of amyloid and tau-PET biomarkers of AD in patients with 

clinical MCI or CBS diagnoses (AUCs for both ≥0.90); and in the small number of DLB patients studied, the 

highest plasma P-tau concentrations were in an amyloid-PET-positive individual. Further, voxelwise analyses 

showed strong associations between the concentrations of both plasma P-tau species and tau-PET binding in 

regions affected by AD pathology in MCI and CBS due to AD. This study and studies by us and others showed 

that plasma P-tau has better diagnostic accuracy for AD than plasma NfL3,4,6 and similar to CSF P-tau181.4,6 Our 

data suggest that plasma P-tau may be a particularly useful biomarker to screen MCI or CBS patients for underlying 

AD pathology to allow them to participate in clinical trials of AD-tau-targeted therapies.  

Although CSF studies have suggested that P-tau217 might be an earlier marker of AD pathology than P-tau181,37 

we found no significant difference between P-tau217 and P-tau181 in predicting amyloid- or tau-PET positivity in 

MCI patients, or in predicting amyloid-PET positivity in controls. P-tau217 was more strongly correlated with 

cognitive performance, a later occurring feature of AD. The difference with the CSF studies may be due to reduced 

sensitivity of plasma biomarkers to brain pathology, methodological differences related to the use of immuno-
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based as opposed to MS based assays or to a difference in the composition of the cohort we studied. Similar to our 

results, a recent study of plasma P-tau217 and P-tau181 measured using MS in a smaller cohort that did not include 

FTLD-tau patients suggested small numerical advantages in favor of P-tau217.38 Another study has shown that 

plasma P-tau217 concentration increases before tau-PET tracer binding in preclinical AD.39  

In this study, we did not replicate the relative increase in plasma P-tau181 concentrations in 3R/4R tau-producing 

compared to 4R tau-producing MAPT mutation carriers that we found in our previous study.3 This likely reflected 

the use of a different P-tau181 assay with a different detector antibody and different sample buffer. Although 

plasma P-tau181 concentrations measured using the new assay were moderately correlated with concentrations 

measured with the old assay across all participants, there was no correlation between the results of the two P-

tau181 assays in MAPT carriers alone. One potential explanation for this difference is that the physicochemical 

properties of MAPT 3R/4R soluble tau species might differ from AD 3R/4R soluble tau species in sensitivity to 

the assay conditions. This difference could expose a binding region with more affinity for the capture antibody 

from the older assay. If true, this phenomenon suggests that careful examination of AD 3R/4R tau protein antibody 

interactions might reveal therapeutically relevant differences in MAPT mutation carrier 3R/4R tau structure that 

could affect the binding of anti-tau monoclonal antibodies designed to treat AD-tau. 

To widely implement P-tau as a biomarker for AD, diagnostic cut-off values should be established. Arguably, for 

clinical diagnosis, the cut-off value that can help to estimate whether dementia syndromes are due to AD or FTLD 

might be most useful. For example, our pathology-confirmed cohort included three patients who had a clinical 

diagnosis of CBS but had AD pathology at autopsy. These cases had plasma P-tau217 and P-tau181 concentrations 

above the cut-off value for AD compared to FTLD. Assay validation in a larger, more diverse community, as 

opposed to highly selected research populations will be critical to determine widely applicable cut-off 

concentrations. 

A strength of this study was its robust approach to comparing both plasma P-tau217 and P-tau181 markers in an 

optimized way, using matched immunochemical assays. This is most likely the reason why the difference in 

diagnostic accuracy was not as large as previously reported, since the previous study could be confounded by 

differences in the types of assays used in some of the analyses that were unrelated to the targeted epitope.6  

This study also had several limitations. Only three out of 13 DLB patients had amyloid-PET data and therefore we 

were unable to address the question of whether P-tau217 or 181 could successfully identify amyloid co-pathology 
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in DLB. Plasma NfL and CSF P-tau181 measurements were only available for subsets of the whole cohort. Another 

limitation of this study was the lack of ethnic and socioeconomic diversity in our research cohort.  

In conclusion, in this direct one-to-one comparison of plasma P-tau217 and P-tau181 we demonstrate that both 

markers have good diagnostic performance for AD. Although the fold change in concentration between diagnostic 

groups are higher with P-tau217 than P-tau181, this does not translate to a large difference in diagnostic utility. 

Both plasma P-tau species can aid in evaluation of subjects by testing for underlying AD related tau pathology. 
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