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Abstract—In this paper, a hierarchical estimation scheme is
designed to track the frequency and its rate of change of non-
stationary power signals. The frequency is retrieved by a kernel-
based parameter estimator in the first step. Subsequently, the
frequency estimates are injected into a kernel-based numerical
differentiator to extract its changing rate. Thanks to the deployed
Volterra integral operator and suitably designed kernel-functions,
the proposed estimator can achieve very fast convergence speed
without compromising the robustness against noise. Therefore,
the real-time estimates are able to follow the time-varying
frequency and its rate of change with satisfactory accuracy. The
effectiveness and robustness of the proposed method are verified
by numerical experiments considering typical practical scenarios
under the disturbance of noise. The results of the proposed
method are compared with a highly-concerned quadrature phase-
locked-loop (QPLL) method.
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I. INTRODUCTION

The frequency and its rate of change (RoCoF) are both
significant criteria that characterize the qualitative behavior
of power systems. Especially in recent years, new modes
of RoCoF variation of the power network emerges with the
development of new energy resources, such as wind and solar
energy, bringing considerable challenges to grid stability main-
tenance. Therefore, fast and accurate estimation of frequency
and RoCoF is urgently demanded. As such, effective frequency
control and protection strategies, such as inertia emulation,
can be applied promptly before potential malfunction have a
chance to destabilize the power network.

Being a crucial estimation problem in both the engineering
and scientific field, a large variety of frequency estimation
algorithms have been proposed in the literature. Among them,
the zero-crossing-based techniques (see [1]) are the most com-
monly used in the power system industry but they are vulnera-
ble to disturbance and sudden frequency change. Alternatively,
the discrete Fourier transform (DFT) is commonly concerned
due to its simple structure and effectiveness while dealing
with stationary signals. On the other hand, the adaptive-
notch-filtering method (ANF) [2], [3] and frequency-adaptive
Phase-Locked-Loop (PLL) [4], [5] still represent the most
used approaches in power-electrical systems for their ease of

implementation in digital signal processing platforms and its
robustness to environmental and measurement noise.

Despite the rich literature on stationary frequency esti-
mation, the persistent tracking of a time-varying frequency
remains a challenging problem, which is the foundation for
the detection of RoCoF, being also a crucial topic for modern
power systems. In [6], the RoCoF is treated as a state variable
of a dynamic system alongside with the frequency and both
of the them are estimated in one step by a quadrature PLL
(QPLL) resorting to several filtering techniques. More recently,
in [7], it has been claimed that one-step methods tend to result
in larger estimation error, in terms of Cramer Rao bounds,
than estimating the frequency and RoCoF by separate steps.
In this regard, an IDFT-based frequency estimator is proposed
followed by a differentiator achieved by a Kalman filter. As
discussed in [7], the trade-off between accuracy and latency
of estimation is commonly seen, existing also in [6], [8].
Therefore, being a practically significant, fast, and accurate
track of typical kinds of frequency and RoCoF variation is
still an open problem that is worth exploring.

In the context of fast and accurate schemes, the finite-
time estimation methods have drawn a wide range of con-
cerns. In recent decades, multiple estimation methodologies
have been proposed with the guarantee that the estimation
error converges in finite time. Among them sliding mode
methods [9], algebraic method (see [10], [11]), modulating
function methods [12], kernel-based method [13] are the most
renowned ones. Remarkably, all the above methods have found
their applications in the frequency estimation of stationary
signals. However, such methods are seldom explored for
frequency-varying signals under the effect of noise.

In this paper, a two-step estimation scheme is designed to
track both the frequency and RoCoF of a non-stationary signal.
The estimator is based on the Volterra integral operator with
specialized kernel functions, which have been proved to be an
effective tool for fast and robust state and parameter estimation
[14], [15]. Moreover, thanks to the exponential shape of the
kernel function, it has been analyzed that the kernel-based
estimators are capable of tracking time-varying frequency
and RoCoF under certain practically reasonable assumptions.



Numerical validations are performed with comparisons to a
well-known QPLL method in the presence of both simulated
and experimental frequency variation modes to verify the
effectiveness of the proposed scheme. The main contribution
of the paper is twofold: 1) the development of the new and
fast estimation scheme for tracking time-varying frequency
and RoCoF, and 2) performance evaluation under practical
operation conditions with comparisons to QPLL. It shows that
the proposed algorithm can achieved negligible latency that
appears in most of the existing methods.

This paper is organized as follows. Section II introduces
frequency and RoCoF estimation problem in power systems.
The proposed estimation scheme is described in Section III-A.
Section IV presents numerical examples and comparisons,
followed by the concluding remarks in Section V.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider a power signal

y(t) = A sin(ω(t)t+ φ0), (1)

where φ0 is the initial phase angle, A is the amplitude of the
signal, and ω(t) is the time-varying frequency. The RoCoF,
denoted as Rf (t), is defined by: Rf (t) = ḟ(t) = ω̇(t)

2π .
In practice, it is essential to capture abnormal RoCoF

changes in order to deliver required control actions in case
of safety hazards, such as frequency instable. Considering the
unexpected RoCoF changes happen at t = td ∈ R≥0, the
objective of this paper is to design a frequency and RoCoF
estimator with fast response speed to the frequency and RoCoF
changes, so that effective control or protection efforts, such as
synthetic inertia, can be triggered and delivered to mitigate po-
tential stability problem within a short time interval t ∈ [td, t0].
Considering the short time interval and comparatively small
value of Rf (t), for a easier characterization, the variation of
the angle is approximated to be linear in time increments, i.e.
ω(t)t+ φ0. For further discussion, following assumptions are
useful for the proposed estimation scheme.

Assumption 1 Considering the practical circumstance of the
power system, it is reasonable to assume the frequency (the
angular velocity), the RoCoF and its rate of change remain
bounded [7], such that there exists positive Mi (i = 1, 2, 3),
such that

‖f(t)‖ ≤M1, ‖Rf (t)‖ ≤M2,
∥∥∥Ṙf (t)

∥∥∥ ≤M3.

Assumption 2 The value of the RoCoF is much smaller than
the operational angular frequency, i.e. ω̇(t) � ω(t),∀t ≥ 0,
and the time required to accommodate unexpected RoCoF
changes is small enough as compared to the value of the
fundamental frequency, such that t0 − td � ω(t).

As illustrated in Fig.1, the proposed estimation scheme
consists of two steps. In the first step, the frequency estimation
problem is addressed, and subsequently, based on the fre-
quency estimates, a kernel-based differentiator is designed to
provide the estimates of the RoCoF. In both steps, the Volterra
integral plays a key role, which is used to generate auxiliary
signal images for identification. Respectively designed kernel
functions are chosen respectively for each step to attain fast
convergence properties. For readers’ convenience, the foun-
dations of the Volterra operator and the kernel functions are

y(t)

LTV system (11)

VKC

[V
K

(2)
C

y](t)

[VKC
y](t)

Frequency Estimation

VKh

K0(t, t) K1(t, t) K2(t, t)

[V
K

(3)
h

f ](t)

[VKh
f ](t)

Rf

RoCoF Estimation (Differentiator)

LTV system (21)

ω̂(t) f̂(t)

h = 1, 2, 3

Fig. 1. Block diagram of the proposed estimation scheme.

provided in subsequence. More detailed introduction can be
found in [16] and the reference therein.

The Volterra integral operator VK with respect to
a processed signal y(t) is defined as [VKy] (t) ,∫ t

0
K(t, τ)y(τ)dτ, t ≥ 0, where K(t, τ) being a bivariate

kernel that modulates the signal to achieve different estimation
purpose. Moreover, in the rest of the paper, we denote the ith
derivative of signal y as y(i) and the ith derivative of K with
respect to the second argument by K(i). Furthermore, for a
general kernel K(t, τ), ∀t > 0, the Volterra image of a signal
derivative admits the expansion

[VKy
(i)](t) =

i−1∑
j=0

(−1)i−j−1y(j)(t)K(i−j−1)(t, t)

+

i−1∑
j=0

(−1)i−jy(j)(0)K(i−j−1)(t, 0) + (−1)i[VK(i)y](t),

(2)
which is instrumental to the following estimator design.

III. HIERARCHICAL ESTIMATION SCHEME

A. Frequency estimation scheme
Without loss of generality and to simplify the analysis, let

the RoCoF changes start from the beginning such that td = 0.
Taking the first derivative of the power signal (1), it holds that

y(1)(t) = A cos(ω(t)t+ φ0)ω(t) + e1(t), (3)

where e1(t) , A cos(ω(t)t+φ0)ω̇(t)t. It is worth noting that
e1(t) � A cos(ω(t)t + φ0)ω(t), for t ≤ t0 ∈ R≥0 under
Assumption 2.

Moreover, the second derivative of y(t) follows

y(2)(t) = −A sin(ω(t)t+ φ0)(ω(t) + ω̇(t)t)2

+A cos(ω(t)t+ φ0)(2ω̇(t) + ω̈(t)t),
(4)

which can be rearranged as

y(2)(t) = y2m(t) + e2(t),∀t ≤ t0. (5)

with y2m(t) = −ω(t)2y(t) and

e2(t) = −
(
ω̇(t)2t2 + 2ω̇(t)ω(t)t

)
y(t)

+A cos(ω(t)t+ φ0)(2ω̇(t) + ω̈(t)t)
(6)

and y2m(t)� e2(t) for small t ≤ t0 ∈ R≥0.



By applying the Volterra integral VKC
to both sides of (5)

with respect to the kernel function KC , we obtain

[VKC
y(2)](t) = [VKC

y2m](t) + [VKC
e2](t), (7)

where

KC(t, τ) = e−ρ(t−τ)(1− e−ρτ )N [1− e−ρ(t−τ)]N , (8)

tuned by the parameter ρ > 0 and N = 2. An advantageous
feature of this specific kernel function is that, the correspond-
ing operator of the signal derivatives

[
VKC

y(2)
]

(t) can be
computed by the signal itself

[VKC
y(2)](t) = [VKC

(2)y](t). (9)

which can be inferred from (2). Furthermore, the ith derivative
of the kernel (8) can be expressed in the following form

K
(i)
C (t, τ) = e−ρtfi,1(τ) + e−2ρtfi,2(τ) + e−3ρtfi,3(τ)

,
3∑
j=1

Ki,j(t, τ).

with Ki,j(t, τ) = e−jρtfi,j(τ), i = 0, 2. Due to the linear-
ity of the integral operator, it follows that

[
V
K

(i)
C

y
]

(t) =
3∑
q=1

[
VKi,jy

]
(t), where

[
VKi,j

y
]

(t) can be calculated as the

output of the following linear system{
ζ

(1)
i,j (t) = −jρζi,j(t) +Ki,j(t, t)y(t),[

VKi,j
y
]

(t) = ζi,j(t),
(10)

with ζi,j(0) = 0. As it can be noticed, the right-hand-side of
(7) can be rewritten as

[VKC
y2m](t) + [VKC

e2](t) = −ω(t)2 [VKC
y] (t) + ε(t) (11)

where ε(t) is a residual signal. In the following lines, we show
that ε(t) is bounded by ε̄ that depends on M1, M2, A and t.

Let us first expand the residual ε(t), yielding
ε(t) = [VKC

e2](t) + εk(t), with εk(t) = [VKC
y2m](t) −

(−ω(t)2[VKC
y](t)). In view of (6), it is easy to show that

e2(t) is bounded by

|e2(t)| ≤ |
(
ω̇(t)2t2 + 2ω̇(t)ω(t)t

)
y(t)|

+ |A cos(ω(t)t+ φ0)(2ω̇(t) + ω̈(t)t)|

≤ A
(

4π2M2
2 t

2
0 + 2π(M1M2 +M3)t0 + 4πM2

)
, ē2.

for t < t0. As [VKC
e2](t) can be recast into the linear system

(11) with e2 being the input of the system, [VKC
e2](t) is

BIBO stable, such that there exists a ε̄e > 0 depending on
M1,M2, A, ē2, such that |[VKC

e2](t)| ≤ ε̄e,∀t < t0. On
the other hand, to characterize the boundedness of εk(t), we
rearrange the kernel function (8) as

KC(t, τ) = (e−ρτ − eρτ − 2) e−ρt

+
(
4eρτ − 2e2ρτ − 2

)
e−2ρt +

(
eρτ − e2ρτ − e3ρτ

)
e−3ρt

It holds that
[VKC

y2m](t)= e−3ρt

∫ t

0

(
eρτ−e2ρτ−e3ρτ

)
y2m(τ)dτ

+e−2ρt

∫ t

0

(
4eρτ−2e2ρτ−2

)
y2m(τ)dτ+e−ρt

∫ t

0

(
e−ρτ−eρτ−2

)
y2m(τ)dτ.

Taking the first term on the right-hand-side as an example, it
can be rearranged as

e−ρt
∫ t

0

(
e−ρτ − eρτ − 2

)
y2m(τ)dτ

= e−ρt
[(∫ τ

0

(
e−ρs − eρs − 2

)
y(s)ds

)
ω2(τ)

]t
0

− ε1(t),

and it yields

|ε1(t)| = 2e−ρt
∣∣∣∫ t

0

(∫ τ

0

(
e−ρs − eρs − 2

)
y(s)ds

)
ω(τ)ω̇(τ)dτ

∣∣∣
≤8π2AM1M2e

−ρt
∣∣∣∣∫ t

0

(∫ τ

0

e−ρs − eρs − 2 ds

)
dτ

∣∣∣∣
= 8π2AM1M2

∣∣∣∣2− 2e−ρt − 2ρte−ρt − 2ρ2t2e−ρt

ρ2

∣∣∣∣ .
Following the same line of reasoning, one can conclude that

[VKC
y2m](t) = ω(t)2[VKC

y](t)− εk(t), (12)

where εk(t) = ε1(t) + ε2(t) + ε3(t)

ε2(t) ,2e−2ρt

∫ t

0

(∫ τ

0

(
4eρτ−2e2ρτ−2

)
y(s)ds

)
ω(τ)ω̇(τ)dτ

ε3(t) ,2e−3ρt

∫ t

0

(∫ τ

0

(
eρτ−e2ρτ−e3ρτ

)
y(s)ds

)
ω(τ)ω̇(τ)dτ.

Therefore, one can conclude that ∃ ε̄ > 0 depends on
A, M1, M2 and ρ that bounds |ε(t)|,

|ε(t)| , |ε1(t) + ε2(t) + ε3(t) + εe(t)| ≤ ε̄.

From (7), (9) and (11), the following identity can be attained

[VKC
(2)y](t) = −ω(t)2 [VKC

y] (t) + ε(t), (13)

where both [VKC
(2)y](t) and [VKC

y] (t) can be calculated
based on designed kernels and signal measurement y(t).
Given the residual ε(t) bounded and negligible for t < t0,
eliminating its effect in the following characterization can
significantly reduce the computational complexity with a small
compromise in the frequency estimation accuracy. However,
the accuracy of RoCoF estimates, which is the key objective
of the proposed work, can be guaranteed, as will be shown in
the simulation. In this context, it is reasonable to estimate the
angular frequency ω(t) by

ω̂(t) =
√
−[VKC

(2)y](t)/ [VKC
y] (t) (14)

where ω̂(t) represents the estimated frequency. The equation
(14) may encounter a singularity issue when [VKC

y] (t) = 0.
To avoid zero-crossing of the denominator, we apply the norm
on both sides of (13), and after some rearrangements, it holds
that

|[VKC
(2)y](t)| = ω(t)2| [VKC

y] (t)|.

By filtering both |[VKC
(2)y](t)| and | [VKC

y] (t)|

L [Sf (t)] = F (s)L
{∣∣∣[VK(2)

C

y
]

(t)
∣∣∣} ,

L [Zf (t)] = F (s)L {|[VKC
y] (t)|} ,

(15)

with Sf (0) = 0 and Zf (0) = 0, the angular frequency is



estimated by

ω̂(t) =

{ √
Sf (t)/Zf (t), Zf (t) > σ1,

ω̂(0), otherwise (16)

where ω̂(0) is the initial guess of the frequency, σ1 is a user-
defined threshold to ensure the invertibility of Zf (t). Given

ω̂(t), the frequency can be is identified by f̂(t) =
ω̂(t)

2π
.

B. RoCoF Estimation Scheme
In order to track the RoCoF Rf (t), a kernel-based differ-

entiator [17] is deployed, with the frequency estimates f̂(t)
as the input. Indeed, RoCoF estimation problem takes on the
form of the state observation of following dynamic model

ẋ(t) =

[
0 1 0
0 0 1
0 0 0

]
x(t) +

[
0
0

etrun

]
, (17)

x(t) =
[
f(t) Rf (t) Ṙf (t)

]>
and the etrun(t) is the truncation error which could be
regarded as the disturbance. The 1st derivative of Rf is
also modeled in the above system in order to enhance the
robustness of the differentiator [17].

To achieve fast-convergent state estimation of the dynamic
model (17), an array of another kind of Non-asymptotic Kernel
are deployed, with the form

Kh(t, τ) = e−ρh(t−τ)
(
1− e−ρ̄t

)N
, (18)

sharing the same ρ̄ ∈ R>0 but with different ρh ∈ R>0, h ∈
{0, . . . , N − 1}.

For the given kernel function (18), it holds that

K
(j)
h (t, 0) = 0, ∀j ∈ {0, 1, . . . , i− 1}, h ∈ {0, 1, 2},

and therefore, the Volterra image of signal derivatives induced
by (18) verifies[
VKh

f (i)
]

(t) =

i−1∑
j=0

(−1)i−j−1f (j)(t)Kh
(i−j−1)(t, t)

+(−1)i
[
VKh

(i) f
]
(t).

Taking i = 3, the above equation becomes[
VKh

f (3)
]

(t) = ω(t)K
(2)
h (t, t)−Rf (t)K

(1)
h (t, t)

+Ṙf (t)Kh(t, t)−
[
VKh

(3) f
]
(t).

Referring to (17), it holds that Γ(t)x(t) = µ(t), with

Γ(t) =

 K0
(2)(t, t) −K0

(1)(t, t) K0(t, t)

K1
(2)(t, t) −K1

(1)(t, t) K1(t, t)

K2
(2)(t, t) −K2

(1)(t, t) K2(t, t)

 ,
µ(t)=

[
−
[
VK0

(3) ω
]
(t), −

[
VK1

(3) ω
]
(t), −

[
VK2

(3) ω
]
(t)
]>

The transformed signal vector µ(t), for t ≥ 0, can be
obtained as the output of the following LTV dynamic system:

µ(1)(t) = Gµ(t) + E(t)y(t), (19)
with µ(0) = 0 ,

G = diag
(
− ρ0,−ρ1,−ρ2

)
,

E(t) =
[
K

(3)
0 (t, t),K

(3)
1 (t, t),K

(3)
2 (t, t)

]>
.

By deploying the kernel (18), the invertibility of Γ(t) is
inherently guaranteed for all t > 0 [18]. In this connection,
the state vector x(t) can be immediately obtained as

x̂(t)=

 ˆ̂
f(t)

R̂f (t)
ˆ̇Rf (t)

=

{
0, det

(
Γ(t)

)
> σ2,

Γ−1(t)µ(t), det
(
Γ(t)

)
≥ σ2,

(20)
in which σ2 is a user-defined invertibility threshold to avoid
large overshoot at the beginning. From (20), the real-time
estimates of the RoCoF, R̂f (t), is obtained. Moreover, it is

worth noting that, ˆ̂
f(t) is the estimation of f̂(t), both can be

used interchangeably.

IV. NUMERICAL VALIDATION

This section provides the numerical validation of the pro-
posed approach. Three case studies are carried out, with two
simulated power signals and an experimental signal generated
by the testbench. In order to verify the robustness of the
proposed algorithm, a random noise is added to power signal
measurements in both cases with SNR = 40 dB.

For benchmarking purposes, the proposed algorithm is com-
pared with a typical QPLL method in [6]. Both algorithms are
implement in Matlab/Simulink environment with the sampling
interval Ts = 100 µs. The kernel parameters are chosen as
ρ = 270, ρ̄ = 2.5 and [ρ0, ρ1, ρ2] = [10, 20, 30], while the
tuning parameters for QPLL are chosen as suggested by [6].

A. Simulation results

In this subsection, the performance of the proposed fre-
quency and RoCoF estimators is evaluated, dealing with a
power signal in the form of (1) with A = 3, φ0 = π/3.
Moreover, the frequency ω(t) is subject to two typical modes
of RoCoF variations, step changes and oscillatory changes
[19].

1) Step change of RoCoF: In this scenario, we assume the
RoCoF Rf (t) follows the sequence [0, 1,−1] Hz/s with each
value holding for 2 seconds in order to emulate the inertia
in reality. The performance of both estimation schemes are
reported in Fig. 2 and Table I.

0 1 2 3 4 5 6

50

51

52

0 1 2 3 4 5 6

-1

0

1

Fig. 2. Comparison between the kernel-based method and the QPLL method
in the step-changing RoCoF scenario.



TABLE I
STEADY STATE RMSE COMPARISON OVER EACH ROCOF STEP OF THE

PROPOSED AND THE QPLL METHOD.

Time RMSE Kernel-based QPLL
1st step RMSEf 1 p.u. 16.5241 p.u.
[1, 2]s RMSERf

1 p.u. 3.8540 p.u.
2nd step RMSEf 1 p.u. 2.5727 p.u.
[3, 4]s RMSERf

1 p.u. 5.2416 p.u.
3rd step RMSEf 1 p.u. 7.5885 p.u.
[5, 6]s RMSERf

1 p.u. 36.2099 p.u.

It has been shown that the proposed scheme is able to esti-
mate the frequency of signal subjected to RoCoF step changes.
Although frequency changes are not perfectly tracked, the
RoCoF estimation accuracy is not compromised. As shown
by the RoCoF estimation results, overshoots occur at the
beginning of each RoCoF step. However, they decay rapidly
before the next RoCoF switching instant. In comparison with
the QPLL, the proposed method shows improved tracking
accuracy and converging speed.

Moreover, to provide further insight into the accuracy of
both methods, the Root Mean Square Error (RMSE) over a
specific time interval [ta, tb] is evaluated by

RMSEf ,

√√√√∑N
i=ka

(
f̂(i)− f(i)

)2

N
,

RMSERf
,

√√√√∑N
i=ka

(
R̂f (i)−Rf (i)

)2

N
,

where N represents the total number of data points taken for
the calculation. ka corresponds to the index of the time instant
ta. In Table I, the estimation RMSEs of both methods are
compared concerning the steady state of each RoCoF steps
(t ∈ (1, 2) s, t ∈ (3, 4) s and t ∈ (5, 6) s). The results show the
significant performance improvement of the proposed method
as compared to the QPLL method.

2) Oscillatory RoCoF: In this section, we consider an oscil-
latory RoCoF, and it profile follows the following expression

Rf (t) = 0.8e−0.2t sin (πt− π

2
) + 0.4e−0.1t sin (0.6π +

π

6
).

The estimation results of the proposed RoCoF estimation
scheme is presented in Fig. 3.

The estimation error ef (t) , | ˆ̂f(t)−f(t)| tends to increase
with time at beginning and tends to remain within a con-
stant bound verifying the discussion of (11). Moreover, the
estimation of RoCoF R̂f (t) is fairly accurate with negligible
latency. Remarkably, the RoCoF estimates track the true value
with high convergence speed and no obvious latency can be
observed.

The estimation results are compared with that of the QPLL
as depicted in Fig. 4. The results are shown for the first 6
seconds for illustrative purposes. It is shown that the proposed
estimation method is able to track the variation of the fre-
quency with negligible convergence time and the frequency
estimation error is kept within a tight bound, whereas the

0 5 10 15 20
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50.2

50.4

50.6

0 5 10 15 20

-0.5

0
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1

Fig. 3. Estimates of f(t) and Rf (t) in the continuous RoCoF scenario.
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Fig. 4. Comparison between the kernel-based method and the QPLL method
in the continuous RoCoF scenario.

QPLL is unable to provide reliable tracking for a time-
varying frequency. Similar results can be found for the RoCoF
estimation, the estimates generated by the kernel-based method
show much more accurate tracking performance than the
QPLL albeit oscillatory at the beginning due to the noise, and
the influence of the noise vanishes at steady state.

The RMSEs of both methods are compared over both
starting transient [0.04, 0.5] s and the steady state [10, 20] s, in
order to quantify the estimation speed and accuracy. The listed
estimation error shows that the proposed kernel-based method
is able to achieve fast convergence without compromising
steady state accuracy.

B. Results based on experimental data
In this section, a practical operating condition is established

to emulate low inertia power system that usually arouses
stability issues. A sudden frequency deviation is assumed to
occur after the loss of generation, modeled as a step distur-
bance. To mitigate the potential instability, typical approaches,
such as inertia emulation, rely significantly on prompt and
accurate capture of the frequency and RoCoF. In this context,
the effectiveness of the proposed scheme is evaluated under



TABLE II
COMPARISON OF RMSE OF THE KERNEL-BASED METHOD AND THE

QPLL METHOD UNDER OSCILLATORY ROCOF VARIATION

Time RMSE Kernel-based QPLL
Transient RMSEf 1 p.u. 16.7131 p.u.

[0.04, 0.5]s RMSERf
1 p.u. 6.1177 p.u.

Steady State RMSEf 1 p.u. 40.8055 p.u.
[10, 20]s RMSERf

1 p.u. 24.2624 p.u.
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Fig. 5. Comparison between the kernel-based method and the QPLL method
in the low inertia power system.

such conditions. The frequency evaluations, subject to the
large disturbance, are generated based on the GB 2030 system
with the total demand of 32 GW, after the loss of the largest
generation (1.8 GW) [20].

TABLE III
RMSE COMPARISON OF THE PROPOSED AND THE QPLL METHOD IN LOW

POWER ELECTRONICS PENETRATION SCENARIO.

Time RMSE Kernel-based QPLL
Transient RMSEf 1 p.u. 35.8004 p.u.

[1, 2]s RMSERf
1 p.u. 2.9528 p.u.

Steady State RMSEf 1 p.u. 13.8517 p.u.
[40, 50]s RMSERf

1 p.u. 28.9568 p.u.

The estimation results are reported in Fig. 5 and Table III. It
has been shown that the proposed estimation scheme can track
the sudden frequency variation and retrieve its RoCoF under
such a practical condition. Remarkably, no visible latency has
been shown in the results of the proposed method which is
obvious in the results of the QPLL method. Moreover, as being
confirmed by the RMSE in Table III, the proposed method
possesses advantageous accuracy during the initial transient
when strategies like emulated inertia are vitally valuable for
stability control.

V. CONCLUSION

In this paper, a novel estimation scheme is proposed to
track the frequency and the RoCoF of frequency-varying
signals in the power systems. The scheme is composed of

two fast-convergent estimators in series. The key element
of the estimators is the Volterra integral operator, which
ensures enhanced convergence rate and accuracy as compared
to the QPLL. Moreover, the well-known trade-off between
the estimation accuracy and latency, commonly existing in
several recent works, can be mitigated. Typical scenarios in
power systems are simulated validating the performance of
the proposed method.
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