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Position paper of the ESC Working Group on Cellular Biology 1 

of the Heart: 2 

 3 

 Circadian rhythms in ischaemic heart disease. Key aspects 4 

for preclinical and translational research 5 

 6 

Abstract 7 

 8 

Circadian rhythms are internal regulatory processes controlled by molecular clocks present in 9 

essentially every mammalian organ that temporally regulate major physiological functions. In 10 

the cardiovascular system, the circadian clock governs heart rate, blood pressure, cardiac 11 

metabolism, contractility and coagulation. Recent experimental and clinical studies highlight 12 

the possible importance of circadian rhythms in the pathophysiology, outcome, or treatment 13 

success of cardiovascular disease, including ischaemic heart disease. Disturbances in circadian 14 

rhythms are associated with increased cardiovascular risk and worsen outcome. Therefore, it 15 

is important to consider circadian rhythms as a key research parameter to better understand 16 

cardiac physiology/pathology, and to improve the chances of translation and efficacy of 17 

cardiac therapies, including those for ischaemic heart disease. The aim of this Position Paper 18 

by the European Society of Cardiology Working Group Cellular Biology of the Heart is to 19 

highlight key aspects of circadian rhythms to consider for improvement of preclinical and 20 

translational studies related to ischaemic heart disease and cardioprotection. Applying these 21 

considerations to future studies may increase the potential for better translation of new 22 

treatments into successful clinical outcomes.  23 

 24 

 25 

 26 

 27 
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Ischaemic heart disease, circadian rhythm, cardioprotection, translational research 29 
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Introduction 1 

 2 

Circadian rhythms are endogenous (intrinsic) biorhythms that repeat approximately every 24 3 

hours. They allow the body to continuously anticipate day-to-night environmental variations 4 

consequent to the earth’s rotation. Circadian rhythms are present in all organisms. In humans, 5 

they play a central role in physiology and disease.  6 

 7 

Many cardiovascular functions, such as blood pressure1,2, cardiac contractility, heart rate3, and 8 

vascular resistance show 24-hour, diurnal variations. These rhythms are the product of 9 

external (environmental, behavioural) factors and intrinsic (endogenous) circadian rhythms. 10 

Circadian rhythms are driven by circadian clocks. Humans possess two clock types: 1) a central 11 

biological clock in the suprachiasmatic nucleus (SCN) of the hypothalamus, that controls 12 

circadian rhythms via the autonomic nervous system and humoral mediators (e.g. cortisol, 13 

melatonin) and 2) peripheral clocks that locally enforce temporal governance in cells such as 14 

the cardiomyocytes4, vascular endothelial cells5, smooth muscle cells6, and cardiac progenitor-15 

like cells7. Both central and peripheral clocks are self-sustainable but can be altered and 16 

entrained by environmental factors (called Zeitgebers) such as light, physical activity, and food 17 

intake.  18 

 19 

The circadian clock is a molecular mechanism that consists of clock proteins such as CLOCK, 20 

BMAL1, PER1/2/3 and CRY1/28. In brief, CLOCK and BMAL form a heterodimer and induce 21 

transcription of PER and CRY proteins. The latter proteins subsequently form a complex and 22 

inhibit the transcription of CLOCK and BMAL1, thereby generating a negative feedback loop. 23 

This feedback loop is complemented by several other feedback loops, most notably REV-24 

ERB/ a member of nuclear receptor family (and thus a pharmacological target of the 25 

circadian clock), and further regulated at different levels, including the post-translational and 26 

epigenetic level. The circadian clock regulates transcription of approximately 10-15% of all 27 

genes and proteins in the heart9. Oscillation of these genes and proteins causes 24-hour 28 

fluctuation in processes like cardiac cellular growth, cell adhesion, metabolism, apoptosis, 29 

fibrosis, electrophysiology10, and contractile function.  30 

 31 
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An increasing number of studies support the idea that circadian rhythms affect almost all 1 

functions of the cardiovascular system and play central roles in cardiovascular disease and 2 

recovery. As a result, 24-hour rhythms have evolved from a niche topic to one that is 3 

important in almost all pre-clinical and clinical research. It is a factor that, like age or sex11, 4 

may significantly impact the translation potential of cardiovascular research. In the current 5 

position paper of the European Society of Cardiology Working Group Cellular Biology of the 6 

Heart, we aim to provide key aspects on how circadian rhythms can be taken into account to 7 

improve clinical and preclinical studies in cardiovascular disease, with a focus on ischaemic 8 

heart disease. 9 

 10 

1. Circadian rhythms and physiological regulation of the cardiovascular system 11 

The cardiovascular system consists of various physiological parameters that exhibit 24-hour 12 

(diurnal / time-of-day / day-night) variation. Many of these parameters are orchestrated by 13 

the circadian clock (see figure1) and named circadian rhythms, although these terms are often 14 

mixed. Blood pressure is one of the factors longest known to fluctuate throughout the day. It 15 

is lowest around 3AM, rises just before awakening and peaks mid-morning, after which it 16 

decreases again toward the night2. Blood pressure is regulated on a central level via 17 

sympathetic, parasympathetic as well as hormonal influences such as the renin-angiotensin 18 

system and the endothelin system12. On a local level, circadian clocks in cardiomyocytes and 19 

vascular cells regulate heart rate, muscular contractile function, and endothelial function13,14. 20 

The 24-hour fluctuation in blood pressure is likely the result of all these factors combined, 21 

although the role of the circadian clock is complex. Several animal models have been 22 

instrumental to explore the role of each factor, for example by genetically disrupting the genes 23 

coding for core clock proteins including CLOCK15, BMAL16, and PER17 on whole body and organ 24 

/ tissue levels. These models demonstrate that genetic whole body disruption of the molecular 25 

circadian clock leads to blunted diurnal variation of blood pressure18. Cell-specific disruption 26 

of the circadian clock through Bmal1 disruption in endothelial cells and vascular smooth 27 

muscle cells shows similar results19, but disruption of the circadian clock in cardiomyocytes 28 

does not blunt blood pressure rhythmicity20. Studies in humans suggest that the normal rise 29 

in blood pressure in the early morning is primarily driven by waking at this time, whereas the 30 

secondary evening rise in blood pressure is driven by endogenous circadian clocks21. 31 
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Heart rate1 and many electrophysiological parameters such as PR-22, QRS-23, and QTc-interval 1 

in the ECG24, as well as heart rate variability25 vary throughout the day in healthy humans. 2 

Variation in electrophysiological parameters is regulated by both the (central) autonomic 3 

nervous system and peripheral circadian clocks. Peripheral circadian clocks regulate the 4 

expression and function of sodium-26, potassium-10, and calcium-channels27. As a result, 5 

isolated cultured cardiomyocytes show 24-hour variation in spontaneous beating28 and in 6 

animal models where the molecular circadian clock is disrupted in cardiomyocytes specifically, 7 

24-hour variation in heart rate is diminished15. 8 

 9 

Cardiac contractility also varies throughout the day. Daily variation is caused by circadian 10 

rhythms in the previously described electrophysiology as well as cardiac metabolism and cell 11 

signaling4,16. These rhythms are regulated by molecular circadian clocks within the heart, since 12 

variation in contractility persists outside the body in explanted hearts15. In humans, variation 13 

in cardiac contractility can be observed in 24-hour variation of cardiac echocardiographic 14 

parameters describing cardiac relaxation / diastolic function29. 15 

 16 

Coagulation is another well-studied example that has 24-hour variation in function. Evidence 17 

for circadian rhythm in platelet function and aggregation in healthy adult males was already 18 

obtained in 198730. Platelet aggregation activity is highest in the morning and, similar to blood 19 

pressure, is regulated by both central and peripheral clocks. Central clocks regulate 20 

catecholamine levels, platelet count (via thrombopoietin) and haemoconcentration that peak 21 

upon arousal31,32. On a peripheral level, circadian clocks in platelets control platelet activation 22 

independent of these central clocks: although platelets lack a nucleus and therefore the 23 

canonical transcriptional-translational feedback loop, an alternative non-transcriptional clock 24 

has been demonstrated in anucleate cells33. In addition, circadian clocks in endothelial cells 25 

regulate expression of pro-thrombotic factors such as plasminogen activator inhibitor-134. All 26 

combined, this leads to increased coagulability in the morning, beneficial in ages when 27 

humans were most likely to injure themselves in the morning, but nowadays more infamous 28 

for increased morning incidences of thrombotic events such as cerebrovascular accidents35 29 

and acute myocardial infarction (AMI)36.  30 

 31 
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Traditionally, 24-hour variation in cardiovascular parameters has been attributed to the 1 

autonomic nervous system. Increasing evidence, however, shows that the role of this 2 

neuronal influence may be limited. Studies in animal circadian clock knock-out models for 3 

example, demonstrate that disruption of the molecular circadian clock completely abolishes 4 

24-hour variation in physiological parameters, whereas blockade of the autonomic nervous 5 

system only diminished rhythmicity37,38. In humans, this is further supported by heart 6 

transplantation studies, where 24-hour rhythmicity in heart rate and other parameters 7 

continues after autonomic denervation39. Instead of the main driving force of 24-hour 8 

variation, the autonomic nervous system is more likely one of the links between the central 9 

and peripheral circadian clocks. A similar situation might be true for hormones such as 10 

melatonin, cortisol, adrenalin, and insulin40. 11 

 12 

2. Circadian rhythms and ischaemic heart disease 13 

Circadian rhythms play a major role in cardiovascular disease at the level of incidence, 14 

pathophysiology, and outcome41–43. Reviews have been written about this topic in specific 15 

cardiovascular diseases such as stroke44 and arrhythmias38,45. Here, we focus on ischaemic 16 

heart disease in both its chronic and acute manifestations. 17 

 18 

For decades, 24-hour rhythms have been studied in the context of disease onset. Acute 19 

ischaemic heart disease (AMI) occurs more frequently in the early morning46–49. This may be 20 

explained by a combination of factors, including the previously described morning increase in 21 

hemodynamic stress (surge in heart rate and blood pressure), platelet aggregability, circadian 22 

leukocyte oscillations, and recruitment of inflammatory leukocytes from blood to plaque 23 

during this time of day30,50–53. 24 

 25 

In 2010, Durgan et al. published a break-through study investigating circadian rhythms in 26 

tolerance of the heart to ischaemic insults. When myocardial ischaemia is induced at the sleep 27 

to wake transition (subjective morning) in an animal model, infarct size, fibrosis and adverse 28 

remodelling were significantly worse compared to ischaemia at the wake-to-sleep transition 29 

(subjective evening)41. This illustrates that circadian rhythms are not only important in the 30 
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incidence and development of ischaemic heart disease, but also play a major role in outcome 1 

of disease41,42.  2 

 3 

Several clinical studies observed differences in plasma levels of creatine kinase after AMI that 4 

were similarly dependent on time-of-ischaemia onset54–56. Some clinical data further suggest 5 

that morning onset of AMI is associated with increased risk of recurrent acute coronary 6 

syndromes and coronary atherosclerosis progression57. However, other investigations failed 7 

to confirm an association between time-of-day at symptom onset and infarct size or long-term 8 

mortality in patients with ST-segment elevation myocardial infarction (STEMI) undergoing 9 

primary percutaneous coronary intervention58. The variable outcome between clinical studies 10 

has been discussed extensively59,60.  One of the limitations in humans is certainly the relatively 11 

high variability in patient characteristics (ethnic background, medication use, comorbidities 12 

(such as diabetes), chronotype, culprit artery, time of ischaemia) as well as other study 13 

parameters (statistical methodology, study size, and outcome measure),  which might render 14 

it difficult to validate an association between time of day of ischaemia onset and outcome. 15 

 16 

To better assess direct causal relationships between circadian rhythmicity and infarct size, 17 

mouse models of AMI have been instrumental61. Animal and in vitro models also help 18 

understand the processes involved in diurnal variation of AMI outcome. In support of a 19 

possible role for circadian clocks in ischaemic damage, genetic disruption of clock genes leads 20 

to an altered infarct size in mice. Disruption of positive components of the molecular 21 

clockwork such as Bmal and Clock caused an increased infarct size, whereas disruption of the 22 

negative component Per2 and Rev-Erbα reduced infarct size41,42,62. This further supported the 23 

study of Durgan et al., which used a cardiomyocyte-specific Clock mutant mouse model to 24 

demonstrate that the diurnal variation in AMI outcome is orchestrated by the cardiomyocyte 25 

clock, possibly via a diurnal rhythm in ischaemia tolerance28,41. Clock disruption in other cell 26 

types, such as the immune system and fibroblasts, may also contribute to the diurnal variation 27 

of AMI. Studies in wound healing for example, demonstrate that 24-hour variation in wound 28 

healing is caused by a rhythm in fibroblast activity, a process also important in post-AMI 29 

cardiovascular remodelling63.  30 

 31 
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Animal models also showed other important relations between outcome of ischaemic heart 1 

disease and circadian rhythms, for example the effect of circadian disruption. In an 2 

experimental mouse model of permanent left coronary ligation, disruption of light/dark cycles 3 

promotes an unfavourable healing response after AMI64. More specifically, infarcted mice 4 

were subjected to 10h light/10h dark cycles over 5 days, resulting in cardiac dysfunction and 5 

poorer AMI tolerance. Circadian disruption had significantly greater adverse remodelling with 6 

increased left ventricular internal systolic and diastolic dimensions, accompanied by 7 

decreased fractional shortening and ejection fraction. Other studies investigated time-of-day 8 

differences after myocardial infarction in depth, and found that in mice, AMI in the awake 9 

period triggers genes associated with metabolic pathways, whereas an AMI in the inactive 10 

period leads to upregulation of genes associated with inflammation65. This  time-of day effect 11 

of AMI on cardiac remodelling is regulated by the circadian clock65. Vice versa, there is 12 

evidence that AMI may lead to circadian disruption, for example in the beta-adrenergic 13 

receptor expression, thereby contributing to adverse cardiac remodelling66,67. 14 

  15 

The first studies investigating time-of-day and ischaemic heart disease focussed on melatonin, 16 

an hormone produced by the pineal gland, under the influence of light, and one of the input 17 

signals of the circadian clock68. Both animal and patient studies suggest that endogenous 18 

melatonin levels correlate with lower ischemia-reperfusion injury 69–72. Vice versa, AMI may 19 

lead to decreased melatonin levels.73,74 The relationship between melatonin and 20 

cardioprotection in ischaemic heart disease is complex and involves multiple processes 21 

including the regulation of the molecular circadian clock or direct effects of melatonin as a 22 

regulator of multiple prosurvival signaling cascades within the heart,  an antioxidant and an 23 

anti-inflammatory molecule75–77. 24 

 25 

In humans, disturbance of circadian rhythms is also associated with ischaemic heart disease78. 26 

Circadian rhythm disturbance (e.g. by sleep deprivation or shift work) induces a misalignment 27 

between physical activity and intrinsic clocks, with adverse effects on cardiovascular 28 

parameters, healing responses, and remodelling. Insufficient sleep, for example, affects the 29 

blood transcriptome and disrupts its circadian regulation79. The identified genes, pathways 30 
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and biological processes affected by insufficient sleep include circadian clock genes as well as 1 

inflammatory, immune, and stress response pathways.  2 

 3 

The immune system appears to be a major contributor to the variation in AMI outcome. 4 

Humans have diurnal fluctuations in immune cell numbers41,80. In particular, the innate 5 

immune system including the inflammasome, the first immune response following an AMI and 6 

involved in recruitment and activation of pro-inflammatory monocytes, is circadian 7 

regulated81,82. Production and retention of neutrophils in the bone marrow is time-of-day 8 

dependent83,84. Moreover, circulating neutrophils at the beginning of the active phase have 9 

higher capacity to migrate into the myocardium due to upregulated CXCR2 (C-X-C Motif 10 

Chemokine Receptor 2) expression80. Other immune cells such as classical monocytes are 11 

regulated by the circadian clock and involved in AMI outcome85,86. Disruption of the molecular 12 

clock in these monocytes worsens inflammation81,85. Recently, a study showed that the 13 

inflammatory role of the gut microbiome in AMI and heart failure is influenced by the circadian 14 

clock87. 15 

 16 

The molecular circadian clock is not only important in AMI, but also plays a major role in 17 

chronic ischaemic heart disease. Disruption of the molecular clock can dampen blood pressure 18 

rhythmicity, reduce the production of vasoactive hormones and cause endothelial 19 

dysfunction88, thereby increasing the development of atherosclerosis89. For example, the 20 

aortae of clock-mutant mice exhibit impaired cholesterol metabolism and enhanced 21 

atherosclerosis90. Interestingly, the mechanism appears to be cell intrinsic as significant 22 

atherosclerosis develops when the aortae from clock mutant mice are transplanted into wild 23 

type mice88. Pharmacological targeting of clock components decreased atherosclerosis in 24 

mouse models, likely secondary to effects on inflammation53. 25 

 26 

Finally, to illustrate some relevant links beyond our focus on ischaemic heart disease , global 27 

and cardiomyocyte-specific clock-mutant mice develop dilated cardiomyopathy16,91. 28 

Moreover, cardiomyocyte-specific downregulation of BMAL1 results in reduced heart rate, 29 

prolonged RR and QRS intervals, and increased episodes of arrhythmia. The phenotype is 30 

linked with reduced circadian expression of the sodium and potassium channels, which  may 31 
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contribute to the sudden cardiac death observed in cardiomyocyte-specific Bmal knockout 1 

mice26,92.  2 

 3 

3. Circadian rhythms and interacting factors 4 

Multiple factors are associated with circadian rhythms and cardiovascular disease. This 5 

relation is often bi-directional: disruption of circadian rhythms is associated with an 6 

increased severity of many cardiovascular risk factors and, vice versa, the presence of most 7 

cardiovascular risk factors is associated with a disturbance in circadian rhythms. The 8 

circadian rhythms may be disturbed on various levels. Often, clock input signals 9 

(Zeitgebers) are misaligned with intrinsic molecular clocks. This occurs, for example, with 10 

travel to a different time-zone (jetlag) or in case of shift-work. Intrinsic factors may also 11 

disrupt the molecular clock directly. 12 

In table 1, we summarize the relationship between circadian rhythms and various 13 

traditional and environmental interacting factors known to affect cardiovascular risk, from 14 

age, sex to environmental factors including light, temperature and noise. It is important to 15 

note that an association between an alteration of circadian rhythms and different stimuli 16 

is often observed in both preclinical and clinical settings but a causal relationship is yet to 17 

be proved with most factors. 18 

Table 1 19 

Interacting factors 

 

Relationship between interacting factor and 

circadian rhythm 

Relevant 

references 

Physiological 

factors 

Sex Sex-specific differences in the mechanisms that 

establish circadian rhythms. In healthy adults, 

circadian misalignment is associated with sex-

specific changes in energy homeostasis 

independent of behavioural/environmental factors.  

In female rodents, oestrous cycle stage has tissue-

dependent effects on the expression of clock genes. 

11,93–96 

Aging Aging has been associated with changes in the 

period and amplitude of circadian rhythms in 

97,98 
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rodents. Advanced age associated with a 

modulation to the light-dark cycle and a loss of 

responsiveness to the phase shifting. In both 

humans and rodents, melatonin levels decline with 

aging. 

Pregnancy/ 

lactation 

The central circadian clock undergoes marked 

adaptations with the onset and progression of 

pregnancy. Circadian rhythms modulate metabolic 

and hormonal adaptations necessary to initiate and 

sustain lactation, and several components of breast 

milk show circadian variations. Lactation is 

associated with improved nocturnal sleep in breast-

fed infants. 

99–102 

Co-

morbidities 

Hypertension Molecular clocks regulate the circadian regulation 

of blood pressure). Spontaneously hypertensive rats 

display alterations in the circadian genes expression 

in several organs including the heart and the aorta. 

In humans, antihypertensive treatment given at 

bedtime reduces cardiovascular risk 

Epidemiological studies suggest a correlation 

between endogenous melatonin levels and incident 

hypertension. 

18,103–105 

Metabolic 

diseases 

Genetic alterations of the molecular clock have 

pronounced effects on both peripheral and central 

metabolic regulatory signals. Disruption of the 

circadian rhythm is associated with increased risk 

in metabolic diseases. Alterations in energy balance 

are associated with disruptions of the circadian 

clock function, of the blood pressure circadian 

rhythm and changes of clock genes expression in 

the vasculature. 

106–108 

Psychological 

factors 

Depression Major depressive disorders are frequently 

associated with a disruption of the expression of the 

109,110 
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clock genes. In rodents, models of circadian 

disruption are characterized by depressive-prone 

features. 

Mental stress A variety of mental stressors are associated with 

alteration of  peripheral clocks in animals. It is 

suggested that mental stress causes the 

dysregulation of circadian rhythm by inducing 

oxidative stress which disrupts circadian clock 

proteins. 

111–113 

Behavioural 

factors 

Physical 

activity 

Physical performance is partly dependent on 

circadian clock proteins and, vice versa, physical 

inactivity or exercise can influence the circadian 

system in mammals. Exercise, if performed at the 

appropriate time of day, shifts the internal circadian 

rhythm phase and thus improves circadian 

alignment. Late chronotypes (‘evening people’), 

who experience circadian misalignment may 

benefit from phase advances induced by morning 

exercise, whereas evening exercise may exacerbate 

circadian misalignment in the early chronotypes. 

Thus, the personalized prescription of exercise 

times based on the chronotype could alleviate 

circadian misalignment in young adults. 

114–119 

Food intake Food intake is a Zeitgeber for the circadian clock. 

The timing of food intake influences the effect of 

nutrients on the cardiovascular system. Time-

restricted feeding prevents metabolic disease and 

cardiac ageing in animal models, and is currently 

investigated in clinical trials.    

120–122 

Alcohol 

consumption 

Circadian clock disruption may favour alcohol 

addiction and chronic alcohol consumption in 

rodents disrupts molecular clocks. Alcohol 

123–126 
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upregulates the expression of Clock and Per2 

circadian clock genes.  

Smoking Cigarette smoking alters gene expression of the 

central (brain) and peripheral (lung) clock genes.  

127,128 

Environmental 

factors 

Temperature Temperature oscillations as small as 1°C alter 

expression of circadian genes and thereby affects 

circadian amplitude and phase. The circadian 

period length (tau) on the other hand remains 

approximately constant through the homeostatic 

mechanism of temperature compensation. 

129–132 

Noise Auditory function is regulated by biological clocks, 

and, vice versa, sound stimuli can influence 

circadian rhythms. As an example, sleep 

deprivation induced by aircraft noise will increase 

vascular and cerebral oxidative stress, an effect 

associated with the modulation of circadian clock 

genes in murine aorta, heart and kidney. 

133–140 

Light/ season Light is the most powerful environmental signal for 

phase-shifting circadian rhythms. The time and 

amount of solar irradiation vary dynamically with 

the season, especially with increasing distance from 

the equator. Chronotype is influenced by seasonal 

change, most likely due to light differences. Inter-

individual differences in photoperiod 

responsiveness indicate that some people are more 

affected than others, possibly due to variation in 

molecular clock and/or previous light history. 

127 

Sleep 

disorders 

Shift work and sleep disorders (short duration 

and/or poor quality sleep) chronically disrupt the 

circadian clock system. In shift workers, circadian 

blood pressure rhythm changes from a “dipper” 

pattern to a “non-dipper” pattern during night shifts 

141–149 



CVR-2021-0141R1   15 
 

 

and reverses back to a dipper pattern within a few 

days after the end of the shiftwork.  

Air pollution/ 

toxins 

Chemical pollutants can have a significant impact 

on circadian rhythms, altering sleep/wake pattern 

and increasing the risk for cardiovascular disease by 

altering rhythmic cardiovascular functions.  

Air pollution alters redox regulation of the circadian 

molecular clock. Heavy metals or pesticides induce 

oxidative stress which mediates redox 

modifications of circadian clock proteins.  

139,150–154 

 1 

4. Current pitfalls in clinical and preclinical studies  2 

Circadian rhythms are currently only considered in a minority of clinical and preclinical studies. 3 

This omission leads to several potential pitfalls (figure 2) and the most common ones are 4 

discussed below:   5 

 6 

4.1 Clinical studies 7 

A. Collection of clinical (time-of-day) parameters 8 

In many studies, no data about circadian parameters are collected or reported, resulting to 9 

the risk of both type I and type II errors. To illustrate this, take a hypothetical trial in which the 10 

ability of a new drug to reduce infarct size long-term, is compared to placebo. In the accidental 11 

case that most patients (or experimental animals) in the drug arm of the study experience an 12 

AMI in the afternoon (smaller infarct), whereas the placebo subjects more often have their 13 

AMI in the morning (larger infarcts), one could falsely conclude that the new drug decreases 14 

infarct size (Type I error). Alternatively, when subjects in the drug arm of the study more often 15 

suffer from AMI in the morning compared to placebo subjects, a beneficial effect of the drug 16 

will remain unnoticed (Type II error). 17 

 18 

Furthermore, as a disrupted circadian rhythm (as explained in chapter 3) is related to disease 19 

incidence, outcome, and effect of an intervention, this pre-existing “comorbidity” may act as 20 
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a confounder in clinical studies that thus far goes unnoticed: unlike other comorbidities and 1 

demographic factors, it is hardly ever analysed or corrected for in the data analysis.  2 

 3 

Finally, an intervention may directly disrupt (or restore) the circadian rhythm of subjects, 4 

which may affect the outcome of a clinical study or cause unexplained variation if 5 

preferentially incident in a subgroup of patients or controls. Unless questionnaires or 6 

measurements are taken to establish intactness of the circadian clock, this type of 7 

confounding factor will not be registered.  8 

 9 

Thus, recording of parameters related to both collecting time and circadian rhythm, before 10 

and during the study will improve the accuracy of the study results and may reduce type I and 11 

II errors.  12 

 13 

B. Sampling 14 

Circulating factors in clinical laboratory measurements such as troponin155 and soluble ST2156, 15 

as well as functional (e.g. coagulation-related34) tests display physiological diurnal variation. 16 

In almost all nucleated cells and tissues, circadian clocks are active and will rhythmically 17 

regulate approximately 10-15% of the transcriptome and proteome. Therefore, blood and 18 

tissue sampling at random times may cause undue variation, whereas structurally different 19 

sampling times between groups may cause bias and false negative or false positive results. 20 

 21 

C. Physiological parameters 22 

Blood pressure is a well-known example of a physiological parameter that can only be 23 

compared when measured around the same time of day. In addition, its diurnal/nocturnal 24 

pattern appears more clinically relevant than a single measurement. Performance at exercise 25 

tests, vascular reactivity, and ECG parameters such as QTc time24 are other examples of 26 

measurements that are affected by diurnal variation, yet often performed at random times. 27 

 28 

Consciously choosing and reporting a specific time-of day to do a measurement may be 29 

beneficial. Measuring a cardiovascular parameter always at a specific time limits the variation 30 
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of the measurement. This reduces the number of subjects needed to find significant outcomes 1 

(increased statistical power) and increases chances of replication by other research groups. 2 

 3 

D. Drug therapy 4 

Clinical studies that investigate circadian aspects of intervention, previously showed that both 5 

the efficacy and side effects of therapy may depend on the timing of treatment 6 

administration.157 In some cases, a treatment that is not effective or has unacceptable side 7 

effect at a certain time of the day, may display a better risk-benefit ratio at a different time. 8 

When circadian parameters are not collected, optimal timing of therapy will not be 9 

determined, and a good treatment tested at the wrong time of the day may not make it into 10 

the clinic setting. This variation may be caused by pharmacokinetics and pharmacodynamics 11 

that are oscillating over 24 hours, and/or by target responsiveness – for example if the target 12 

receptor is variably available due to regulation by the circadian clock. Furthermore, drugs may 13 

disturb or enhance the circadian system as an off-target effect; melatonin and corticosteroids 14 

are classic examples, but newer drugs may also interfere with clock function.  15 

 16 

Beta blockers abolish the circadian patterns of ischaemic events, therefore the use of 17 

extended-release beta blockers in the evening might reduce vulnerability for cardiac events in 18 

the morning158. In parallel, long-acting anti-hypertensive drugs (e.g. ACE-inhibitors) might 19 

decrease the blood-pressure peak in the morning159. In a prospective, randomized trial low-20 

dose aspirin showed a time-dependent effect on the blood pressure of untreated 21 

hypertensive patients. While before-bedtime aspirin intake reduced the blood-pressure, the 22 

intake of aspirin in the morning even slightly elevated blood-pressure levels160. The MAPEC 23 

study investigated prospectively the effect of administration time of anti-hypertensive 24 

medication and randomized over 2000 patients into morning dosing all BP medications or 25 

dosing ≥1 BP medications at bedtime. After a mean follow-up of 5.6 years, the patients in the 26 

evening dosing group showed lower mean asleep blood pressures, a lower prevalence of non-27 

dipping pattern and improved ambulatory BP. In addition, bedtime intake reduced major and 28 

total cardiovascular events including deaths161. Recently, a follow-up study showed similar 29 

results in prospective study of more than 19000 patients105.  Both studies elegantly show the 30 

potential impact of chronotherapy on patient outcome. Meticulous planning of the timing of 31 
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pharmacotherapeutical administrations is necessary to achieve reliable and reproducible 1 

outcome data.  2 

 3 

E. Invasive therapeutic interventions 4 

Cardiac surgery 5 

During cardiopulmonary bypass, cardioplegia and subsequent reperfusion inevitably result in 6 

ischaemia/reperfusion injury. A small (n=88) prospective randomized single-centre study 7 

found perioperative myocardial injury in surgical aortic valve replacement to depend on the 8 

time of the day42. Patients operated in the afternoon showed decreased perioperative 9 

troponin T release and reduction of major cardiac events, which was associated with 10 

transcriptional regulation of REV-ERBα.  11 

 12 

These data could not be confirmed in a large retrospective analysis of the Society of Thoracic 13 

Surgeons (STS) Adult Cardiac Surgery Database (n=14078 patients) including 11 surgical 14 

centres in the US162. However, further randomized data including larger numbers of patients 15 

are necessary to substantiate the impact of surgical timing on outcome and thus whether 16 

timing of surgery should be taken into account in the design and analysis of clinical studies. 17 

  18 

Catheter intervention 19 

Results of percutaneous coronary intervention (PCI) have variably been related to time-of-20 

day. An observational study from a Swiss registry of 2860 patients with STEMI found that 21 

effectiveness of thrombus aspiration was dependent on time of symptom onset with greatest 22 

myocardial salvage for patients with symptom onset between 6 a.m. and 6 p.m.163. In another 23 

registry-based study a circadian STEMI pattern with a peak during morning hours without 24 

impact on the clinical outcome was found in 8608 patients 164. A retrospective analysis of 1021 25 

patients showed a decreased rate of periprocedural (Type 4A) AMI in patients undergoing 26 

elective PCI between 7 a.m. and noon, whereas treatment in the afternoon increased the risk 27 

for type 4A AMI165. Clearly, there is an urgent need for prospective data regarding the time of 28 

the day during PCI procedures in patients with ischaemic heart disease to substantiate the 29 

role of circadian mechanisms in PCI-related outcomes. In addition, time of symptom onset and 30 
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timing of intervention should be taken into account in future PCI studies to exclude a bias of 1 

circadian mechanisms.  2 

 3 

Heart transplantation 4 

Ischaemia during organ harvesting and reperfusion after termination of cross-clamping is the 5 

prime example for ischaemia/reperfusion injury. Prolonged ischaemia time is associated with 6 

rejection and impaired long-term outcome166. A retrospective cohort study including 16573 7 

patients undergoing heart transplantation found no significant association between daytime 8 

or night-time surgery and survival up to 1 year after organ transplant167, but no specification 9 

was made between time points within 12 hour blocks. A similar study in lung transplant 10 

patients on the other hand, did find time-of-day effect on outcome. Transplants performed 11 

between 4 am and 8 am, had a relatively high risk of primary graft dysfunction168.  Again, it 12 

would be desirable to include time of surgery as a parameter in prospective outcome analysis 13 

to clarify possible circadian effects. 14 

 15 

Hospital operational rhythms and shift work 16 

Hospitals provide care 24 hours a day. Observational studies show that almost all care, 17 

including diagnostics, treatments and referrals take place according to a fixed daily pattern 18 

169. These patterns are generally not motivated by medical necessity but by practical 19 

considerations, such as availability of staff, changing of shifts, or simply habits. In addition, 20 

hospital care is delivered by staff who are also under the influence of circadian rhythms. Night 21 

shifts disrupt day-night rhythms, leading to reduced alertness and a greater risk of making 22 

mistakes. Observational studies show a worse outcome of operations performed at night 23 

(although bias is hard to rule out properly in these studies)170. 24 

 25 

4.2 Preclinical studies 26 

It is clear that, like humans, animals in laboratory conditions show time-dependent behaviour 27 

in for example food intake and physical activity. Indeed, physiological and molecular 24-hour 28 

variation is demonstrable in these animals and therefore relevant in the setup of 29 

experiments65. Just as time of incidence in humans may affect the outcome of observational 30 

and interventional studies, the time of an induced event can affect the outcome in preclinical 31 
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animal models. A clear example is the timing of coronary artery ligation to induce AMI in 1 

rodents, given the ample evidence that timing affects infarct size in this model41,59,171. 2 

 3 

Besides this timing of “incidence”, sampling, physiological parameters, drug therapy and 4 

invasive interventions entail the same pitfalls in preclinical animal models as in clinical or 5 

epidemiological studies, described in section 4a. In addition, several relevant considerations 6 

are specific to preclinical experimentation.  7 

 8 

A. Choice of animal model 9 

In laboratory animal studies in vivo, the alternans of light and dark periods congruent with 10 

outside day and night is used as standard day-night conditions, named photoperiod. In diurnal 11 

species (pigs, dogs, sheep, monkeys and humans), the acrophase (physiological peak phase) 12 

of body temperature and locomotor activity occurs during daytime. The acrophase of 13 

nocturnal animals (mice, rats, hamsters) occurs at night. When noise is present or experiments 14 

are performed in nocturnal animals during human working hours, this leads to several 15 

problems. First, animals are disturbed in the inactive period, causing stress, non-physiological 16 

light exposure leading to hormonal (e.g. melatonin) disruptions and thereby non-physiological 17 

results of the experiments performed. Secondly, if the procedure is performed in the inactive 18 

period, results do not translate well to a clinical situation when a human receives a treatment 19 

during working hours. A recent study investigating cerebral ischaemia, suggests that the 20 

difference between nocturnal animals and diurnal humans contributes to the translational 21 

failure of novel, promising neuroprotective strategies172. In addition to being representative 22 

with respect to size, pigs have similar dietary habits (omnivorous) and diurnal behaviours as 23 

humans. Zebrafish and Drosophila, often used in transgenic and repair studies, are diurnal 24 

animals as well.  25 

Age and sex are other factors to consider when choosing the best animal model for an 26 

experiment, since both may affect the circadian clock as described in section 3. Overall, 27 

circadian amplitude may be expected to be lower in older than in younger animals, while the 28 

differences between sexes in experimental animals require further investigation as data in 29 

female animals are scarce173. 30 
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Further, the translational power of a preclinical study may be reduced if the animal model 1 

does not reflect the degree of circadian disruption in the patient category that it aims to 2 

represent. Atherosclerotic comorbidities affect central and peripheral circadian rhythms, a 3 

factor rarely considered in animal experiments64,174. A therapy may work well in a young 4 

healthy animal with normal clock function, but not in an older patient with disturbed clock 5 

function due to external factors or age itself. Interventions unique to the preclinical situation 6 

may disrupt the circadian rhythm in animals specifically. General anaesthesia, for example, 7 

which is known to deregulate the circadian clock175, is usually performed for echocardiography 8 

in animals but not humans. Ear-based instrumentation of pigs led to increased stress of the 9 

animals with consequent diminished circadian rhythm of temperature oscillations lasting up 10 

to 3 days176. Thus, as with other comorbidities such as diabetes or obesity, circadian clock 11 

function in this way may act as a contributor to the translational gap. 12 

B. Housing 13 

Light and darkness will obviously affect the circadian rhythm in experimental animals. Light 14 

/darkness (L:D) schedules of 12:12 L:D schedules and 14:10 schedules are standard, and 15 

occasionally seasonal variation is taken into account in the laboratory setting. Different L:D 16 

schedules between labs may account for variation in results. Importantly, lack of 17 

acclimatization after a transfer, but also unintended light disruption at night, are likely to 18 

cause profound disruption of the circadian rhythm and may thus affect study results without 19 

the researchers being aware177. 20 

Circadian disruption can also be performed intentionally to mimic a clinical situation. Patients 21 

with AMI are treated in coronary care units or intensive care units (ICUs), with interrupted 22 

endogenous circadian rhythms and sleep periods due to noise of monitors and lights. Alibhai 23 

et al. demonstrated that rats with AMI subjected to disrupted diurnal rhythm had disturbed 24 

metabolism, innate immune response, and altered scar formations and overall worse 25 

prognosis64. Similar to rodents, continuous sedation, mechanical ventilation and medical 26 

maintenance of the circulation of pigs, simulating human intensive care unit conditions led to 27 

lost or desynchronized internal biological circadian rhythm178. 28 
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Furthermore, any stress-inducing housing circumstance (e.g. limited nesting opportunities, 1 

lack of socialization) will increase cortisol levels179,180,  which in turn may cause disruption of 2 

the circadian clock since diurnal oscillations of cortisol are associated with varying numbers of 3 

circulating immune cells relevant in cardiac repair181. 4 

C. Feeding 5 

Feeding-fasting patterns are not only a direct inducer of cardiovascular changes but also a 6 

known Zeitgeber for the circadian clock182. Furthermore, hormones such as insulin, glucagon, 7 

cortisol and the microbiome regulate metabolism via circadian clocks.  8 

Feeding-fasting pattern in animal experiments have been shown to influence results. Mice 9 

that have ad libitum access to standard diet, eat mostly during their active period 10 

(‘darkness’)183. Changes in diet composition, for example to a high fat diet in ad libitum 11 

condition, lead to more food being consumed in the inactive phase (‘light’)184. When the 12 

animals are forced to eat a high fat diet (with the same amount of calories) in metabolic 13 

changes that are different and generally less severe than their ad libitum counterparts185. 14 

Effects of time-restricted feeding are not only present in high fat diet conditions, but also in 15 

high fructose or normal diets and are important186: Time-restricted feeding vs ad libitum 16 

feeding of a normal diet, leads to 40% difference in endurance after correction for body 17 

weight186. 18 

Choices in diet composition and timing influence circadian rhythms and the outcome of animal 19 

experiments. Although most studies standardize their feeding protocol, these influences are 20 

often large but overlooked. 21 

Of note, many of the points discussed for pre-clinical studies, apply to clinical studies and vice 22 

versa. Similar to pre-clinical studies, light/darkness effects may confound clinical studies. A 23 

group of ischaemic heart disease patients treated in winter for example, (when daylight hours 24 

are short) may yield different results when treated in summer (when daylight hours are 25 

longer). As a second example, meal timing influences various cardiometabolic parameters and 26 

the circadian clock187,188. When these confounders remain unnoticed, this may influence 27 

outcome and interpretation of clinical studies.   28 
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4.3 Ex vivo and in vitro studies 1 

The dependency of cell responses on the circadian clock is cell autonomous and can be 2 

considerable in cardiovascular cell types including cardiomyocytes, fibroblasts, and vascular 3 

cells. For example, beating frequency28, difference in the amplitude of calcium surges4, 4 

response to stimuli involved in contractility, and metabolism appear to be modulated in a 5 

circadian-related fashion even ex vivo and in vitro4,15,26,42,189. It follows that ex vivo and in vitro 6 

experiments are subject to confounding caused by circadian factors. 7 

 8 

A. Primary cells 9 

When cardiovascular cells are kept in primary cultures, they maintain a synchronized circadian 10 

gene expression pattern and physiological activity for a several days. Therefore, the time of 11 

isolation is an important parameter that is rarely noted.  12 

 13 

B. Long term cultures 14 

Upon prolonged culture, circadian rhythms may be desynchronized but can be restored or 15 

experimentally modified with ‘Zeitgebers’, which in the in vitro situation are exogenously 16 

administered stimuli (e.g. serum starvation followed by re-addition) that can re-synchronize 17 

the circadian clock in culture (but may have other undesired effects on the in vitro situation). 18 

Importantly, even standard procedures such as splitting cells or refreshing culture medium 19 

may act as synchronizers. On the other hand, experimental interventions may in fact disrupt 20 

the pre-existing circadian rhythm in vitro. Circadian rhythms can also develop during 21 

differentiation and maturation in prolonged culture, as has been shown for human pluripotent 22 

stem cell-derived cardiomyocytes190. 23 

 24 

Whether or not the circadian clock is active and therefore relevant to a specific in vitro system 25 

is commonly unknown and needs attention. Since about 10-15% of the entire gene expression 26 

program in e.g. cardiomyocytes is under control of core clock genes and thus susceptible to 27 

time-dependent changes, this may profoundly affect the results up to the level of cellular 28 

function - including response to drugs and resistance to mimicked ischaemia-reperfusion28, 29 

again causing type I or type II errors. Thus, careful standardization of timing in relation to 30 

culture procedures (for example, related to the time after splitting and medium change) and 31 
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interventions is essential. Assessment of a treatment effect at multiple circadian times is rarely 1 

performed, but it would increase the chance that such an effect is found.  2 

 3 

5. Considerations on inclusion of circadian rhythm aspects in clinical and preclinical 4 

studies related to ischaemic heart disease  5 

Circadian rhythms play an important role in cardiovascular disease including ischaemic heart 6 

disease191. Based on the considerations presented in this paper, the ESC WG on Cellular 7 

Biology of the Heart and invited experts provide the following suggestions on circadian 8 

rhythms in preclinical and translational research, and potentially also in clinical studies192.  9 

Before the start of the study, it is key to conduct a literature search investigating what is 10 

already known about circadian rhythms in the specific topic as presented in figure 3. Several 11 

clinical-focussed reviews can be a starting point193,194. Good summaries of current knowledge 12 

from preclinical studies are also available195 but here, evidence is rapidly accumulating so a 13 

new search before each study design is strongly advised. When studying a specific gene or 14 

protein, transcriptome9,196 and proteome197 studies that analysed the heart specifically may 15 

be of help. It is important to realize that rhythmicity may be present in all aspects of research. 16 

Many cardiac outcome measurements including troponin155, blood pressure, and 17 

repolarization duration24 for example, are known to vary throughout the day and may 18 

influence results. If no previous data is present, a pilot experiment can be helpful to determine 19 

if rhythms are present and significant. 20 

When literature or pilot experiments suggests circadian rhythms may be present in one or 21 

more of the research factors, there are several options to incorporate this in a study. If the 22 

researcher is interested in a potential circadian effect, measurements will have to be done at 23 

several time-points throughout the day and statistics including sample-size will have to be 24 

adjusted accordingly. If the researcher on the other hand, wishes to exclude circadian rhythms 25 

as a potential confounder, a different option is to do all measurements at the same time-point 26 

or equally distributed throughout the day. An additional advantage is that standardization of 27 

time-points will reduce variation and therefore allow for a reduction of sample size in some 28 

cases. 29 
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In preclinical research, the choice of the species/strain, sex, and gender will need to be 1 

carefully weighed to mimic the clinical setting. The time of feeding, the housing conditions 2 

(i.e. temperature, light exposure, noise), intervention (whether it is the type of the surgery, of 3 

the experimental procedure, or the drug delivery), and the time of sample collections will 4 

need to be chosen carefully and recorded to avoid bias of circadian rhythms into the analysis 5 

of the outcomes (see figure 3), as well as to maximize potential (therapeutic) effects for later 6 

translation. 7 

Similarly, clinical studies may need to consider possible variations of the circadian rhythm due 8 

to age, sex, ethnicity of the population, the presence of classic cardiovascular risk factors and 9 

other risk factors such as the light exposure, sleeping conditions, noise, dietary conditions, 10 

and time of the meals. Whenever possible, all these conditions should be clearly reported into 11 

the publication. In addition, time of the surgical or clinical intervention, time of the drug 12 

delivery, or sample /data collection  can be recorded if the investigator wishes to ensure that 13 

the variability of the outcomes is or is not consecutive to the circadian rhythm’s influence (see 14 

figure 3).  15 

Recently, many convincing pre-clinical concepts in cardioprotection and ischaemic heart 16 

disease, including the use of cyclosporin198 , remote ischaemic preconditioning199, and a study 17 

investigating circadian rhythms in cardiac surgery162, failed to show clinical benefit in trials. 18 

Multiple factors may contribute to this translation failure, and these include lack of 19 

standardized research protocols, randomized study designs, blinding of investigators and the 20 

use of inadequate  animal models (discussed previously200,201). Incorporation of circadian 21 

rhythms in pre-clinical and translational research may also contribute to reduce the gap 22 

between bench and bedside and thus improve translation of preclinical concepts to the clinic. 23 

6. Conclusion 24 

It must be acknowledged that clinical data showing circadian variation in cardiovascular 25 

outcome in myocardial injury are still sparse and there is a lack of randomized clinical trial 26 

demonstrating the circadian rhythm impact on a myocardial ischaemia/reperfusion injury 27 

endpoint. Nevertheless, as shown mostly in preclinical studies, circadian rhythms may play an 28 

important role in the incidence, development, outcome, and treatment of ischaemic heart 29 

disease. So far, however, many studies have not adequately incorporated circadian rhythms into 30 
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the design, methodology, and analysis of preclinical and clinical data, potentially leading to 1 

suboptimal research results. We believe that including circadian rhythms in the design and the 2 

analysis of research may benefit translation of cardioprotective studies related to ischaemic 3 

heart disease and may expand to other cardiac and non-cardiac diseases. Similar to age and 4 

gender, circadian rhythms may be an important physiological parameter that, when 5 

incorporated, may improve reliability of research, thereby helping to better understand and 6 

cure ischaemic heart disease.  7 
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Table Legend 

 

Table 1: Relationship between physiological, co-morbidities, psychological, behavioural, 

environmental factors and circadian rhythms  

 

Figure Legends 

 

 

Figure 1: The role of circadian rhythms in cardiovascular physiology. A) The circadian clock 

sustains a 24-h rhythm that regulates the cardiovascular system, including 

electrophysiological parameters, blood pressure, cardiac contractility, coagulation, vascular 

function, and the cardiovascular involvement of the immune system. B) The circadian clock is 

a molecular mechanism consisting of positive and negative feedback loops C) The circadian 

clock causes time-of-day variation of clock components as well as physiological parameters 

Figure 2: Aspects of preclinical and clinical cardioprotective research influenced by circadian 

rhythms. 

Figure 3: Practical flow chart to include circadian rhythm aspects in the design of preclinical, 

translational and potentially clinical cardioprotective studies.  

 

  



CVR-2021-0141R1   42 
 

 

 

 

Figure 1 

  



CVR-2021-0141R1   43 
 

 

 

Figure 2 

  



CVR-2021-0141R1   44 
 

 

 

Figure 3 


