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A major challenge in flow through porous media is to better understand the link between
microstructure and macroscale flow and transport. For idealised microstructures, the mathe-
matical framework of homogenisation theory can be used for this purpose. Here, we consider
a two-dimensional microstructure comprising an array of obstacles of smooth but arbitrary
shape, the size and spacing of which can vary along the length of the porous medium. We use
homogenisation via the method of multiple scales to systematically upscale a novel problem
involving cells of varying area to obtain effective continuum equations for macroscale flow
and transport. The equations are characterized by the local porosity, a local anisotropic flow
permeability, an effective local anisotropic solute diffusivity, and an effective local adsorption
rate. These macroscale properties depend nontrivially on the two degrees of microstructural
geometric freedom in our problem: obstacle size, and obstacle spacing. We exploit this depen-
dence to construct and compare scenarios where the same porosity profile results from different
combinations of obstacle size and spacing. We focus on a simple example geometry comprising
circular obstacles on a rectangular lattice, for which we numerically determine the macroscale
permeability and effective diffusivity. We investigate scenarios where the porosity is spatially
uniform but the permeability and diffusivity are not. Our results may be useful in the design of
filters, or for studying the impact of deformation on transport in soft porous media.
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1. Introduction
Fluid flow and solute transport in porous media occur in a wide variety of situations, including

contaminant transport (Quintard & Whitaker 1994; Brusseau 1994), lithium-ion batteries (Li
et al. 2018), hydrogeological systems (Domenico & Schwartz 1990), biofilms (Davit et al.
2013b), bones (Fritton & Weinbaum 2009), and soils (Daly & Roose 2015). Many of these
porous media, including soils, rocks and biological tissues, are intrinsically heterogeneous and/or
anisotropic at the pore scale, and macroscopic flow and transport in these systems are known to
depend critically on pore structure and pore-scale fluid–solid interactions. For example, complex
flow patterns and the resulting solute transport are believed to be crucial to the ecohydrology
of peatlands, and have been attributed to the pore-scale heterogeneity and anisotropy of peat
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soil (Beckwith et al. 2003; Wang et al. 2020). Clavaud et al. (2008) used imaging to study the
relationship between pore geometry and permeability anisotropy in sandstone, limestone, and
volcanic rocks, finding that macroscopic flow properties depend on the details of the pore struc-
ture across these different rock types. O’Dea et al. (2015) use modelling in the context of tissue
engineering to show that the microstructure induces anisotropy in flow properties, highlighting
the role of microstructure in determining flow patterns and nutrient delivery. Changes in pore
structure can also lead to large deviations from macroscopic models derived for homogeneous
microstructures; for example, Rosti et al. (2020) find that microstructural changes due to defor-
mation of the solid skeleton can lead to a breakdown of Darcy’s law. Ultimately, many aspects
of the impacts of pore structure on macroscale flow and transport behaviour remain poorly
understood. We focus here on the specific roles of pore-scale heterogeneity and anisotropy in
the context of a simple, two-dimensional model problem.

Porous media are characterised by at least two distinct length scales: the characteristic length
of each pore/solid grain (pore-scale) and the characteristic length of the porous medium itself
(macroscale) (Tomin & Lunati 2016). Studying the impact of the pore structure on flow, transport
and sorption via direct numerical simulation (DNS) in a complex geometry is computationally
expensive, and can be prohibitively so when the pore-scale and macroscale lengths differ by
orders of magnitude. For example, Olivieri et al. (2020) used DNS to study turbulent flow
through a cube containing randomly distributed solid fibres, considering up to 1000 fibers of
length 1/2 in a cube of side length 2π. Similarly, Kuwata & Suga (2017) used DNS to study
turbulent flow through a channel with a porous bed; the bed was four pores thick, with a square-
frame structure. When there is a large number of obstacles or pores as would be relevant to
practical applications, one way to deal with these disparate length scales is to systematically
derive an upscaled macroscale model that is uniformly valid on the entire porous medium,
and contains pertinent pore-scale information via the permeability, effective diffusivity, and an
effective source/sink term.

There are many common methods for upscaling equations, including the method of moments,
renormalisation group theory, and homogenisation via volume averaging or the method of mul-
tiple scales (MMS) (Bensoussan et al. 2011; Mei & Vernescu 2010; Hornung 1996; Wood et al.
2003; Salles et al. 1993). These different methods have been compared both with each other
and with other DNS (e.g., Salles et al. 1993; Davit et al. 2013a; Kuwata & Suga 2017). The
two homogenisation methods yield the same macroscale equations, but via different routes. In
essence, both methods identify the governing equations on the pore-scale, which are subject to
closure conditions, and use this pore-scale problem to derive a system of equations over the
macroscale. The formal nature of the MMS enables higher-order corrections to the leading-order
macroscale equations to be determined. Conversely, the volume-averaging method can be more
physically intuitive (see, for example, Wood et al. 2003; Whitaker 2013, 1986; Davit et al. 2013a)
but it is more difficult to determine higher-order corrections and precise quantification of errors.

Classic homogenisation requires the microstructure to be strictly periodic at some scale. This
requires a ‘periodic cell’ for the MMS (Mauri 1991; Salles et al. 1993; Chapman et al. 2008;
Shipley & Chapman 2010) and a ‘representative elementary volume’ for the volume-averaging
method (Auriault 1991; Davit et al. 2013a). However, recent work has extended this technique
to allow for slowly varying microstructure (i.e., microstructure that is only locally periodic)
(e.g. van Noorden 2009; van Noorden & Muntean 2011; Valdés-Parada & Alvarez-Ramı́rez
2011; Ray et al. 2012; Muntean & Nikolopoulos 2020; Richardson & Chapman 2011; Bruna
& Chapman 2015; Dalwadi et al. 2015, 2016). Dalwadi et al. (2015), in particular, considered
diffusive and advective transport through an array of impermeable obstacles to which solute can
adhere, allowing for slow variation of obstacle size while requiring uniform cell size.

Here, we study the impact of slowly varying pore structure on macroscopic flow, transport, and
sorption within a porous medium. Specifically, we consider steady flow through a heterogeneous,
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two-dimensional porous material comprising an array of solid obstacles. We allow for slow
but arbitrary longitudinal variations in the size of obstacles, as in Dalwadi et al. (2015, 2016),
and also in their spacing. We begin by developing a general model for homogenised flow and
transport for arbitrary obstacle shape, size, and spacing. We then develop detailed results for
the simple case of circular obstacles. A key novelty of this approach is that allowing for two
degrees of microstructural freedom affords a rich parameter space for exploration, including, for
example, the ability to have a heterogeneous microstructure while maintaining uniform porosity,
and allowing for a specific study of anisotropy. Mathematically, varying the longitudinal spacing
requires dealing with a varying cell size in the homogenisation procedure. This is nontrivial,
and adds a frequency modulation to the problem, as well as the typical amplitude modulation
associated with homogenisation via the MMS (Chapman & McBurnie 2011).

For the flow, we assume steady Stokes flow with no-slip and no-penetration conditions on the
solid surfaces. For solute transport, we consider transient advection and diffusion with removal
via adsorption on the solid surfaces (§2). Following Chapman & McBurnie (2011); Richardson
& Chapman (2011); Bruna & Chapman (2015); Dalwadi et al. (2015, 2016), we exploit the
local periodicity of the pore geometry to homogenise the pore-scale problem via the MMS
(§3). Since we consider a microstructure in which both the size and the spacing of the solid
obstacles vary slowly along the length of the porous material, the total area of each cell also
varies slowly. The homogenisation method provides effective macroscopic equations for fluid
flow, solute transport and sorption that are uniformly valid throughout the heterogeneous porous
medium. For any chosen geometry, the permeability and diffusivity tensors we derive for any
particular porous medium microstructure may be determined numerically. In this manuscript, to
demonstrate the general approach we further calculate these tensors for a specific filter geometry
comprising an array of circular obstacles arranged on a rectangular lattice. These tensors are
strongly anisotropic, highlighting the fact that porosity alone is an insufficient measure of the
pore-structure (§4). We use the homogenised model to investigate the effects of heterogeneous
pore structure in a simple one-dimensional steady-state filtration problem (§4.2). Finally, we
discuss the merits and limitations of the model (§5).

2. Model problem
We consider the steady flow of fluid carrying a passive solute through a rigid porous medium in

two dimensions. The solute advects, diffuses and is removed via adsorption to the solid structure.
The spatial coordinate is x̃ := x̃1e1 + x̃2e2, with x̃1 and x̃2 the dimensional longitudinal and
transverse coordinates, respectively, and e1 and e2 the longitudinal and transverse unit vectors,
respectively. The fluid enters the porous medium uniformly through the inlet at the left (x̃1 = 0)
and exits the porous medium through the outlet at the right (x̃1 = L̃) (Figure 1). We denote
dimensional quantities with a tilde.

The entire domain of the porous medium, denoted Ω̃, comprises both the fluid and the solid
structure of the domain. The latter constitutes an array of solid obstacles, as discussed in more
detail below. We assume that the solute particles are small relative to the solid obstacles, and we
measure the local density of solute (amount of solute per volume of fluid) via the concentration
field c̃(x̃, t̃), where t̃ is dimensional time. This concentration field is defined within the fluid
phase of the porous medium, denoted Ω̃f .

Note that we do not track solute once it has adsorbed to the solid surface, and we neglect
any impact of this adsorption on the size of the obstacles. The latter point is justified by our
assumption that the solute particles are negligible in size relative to the obstacles, and also
because we are interested in macroscopic advective timescales, which are typically far shorter
than those of solute accumulation and blocking.

The porous medium can be partitioned into an array of rectangular cells of fixed height h̃
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FIGURE 1. We consider the flow of fluid carrying solute through a heterogeneous porous material in two
dimensions. The porous medium has length L̃ and is formed of an array of obstacles whose size depends
only on a scale factor Λ(x̃1), located within each rectangular cell of transverse height h̃ and longitudinal
width A(x̃1)h̃. The porous medium is thus uniform in the transverse (x̃2) direction but heterogeneous in
the longitudinal (x̃1) direction. We assume that the spacing between obstacles is small relative to the length
of the porous medium: ε := h̃/L̃ � 1. We isolate one cell in orange; this cell is shown in detail in Figure
2.

and varying width A(x̃1)h̃, where A is the dimensionless aspect ratio. Each cell contains fixed
and rigid obstacles of smooth but arbitrary shape. The shape of each obstacle is fixed and each
obstacle can only grow or shrink isotropically about each obstacle’s respective centre of mass
according to a scale factor Λ(x̃1) — that is, the obstacle size depends only on Λ(x̃1). The solid
domain is the union of these obstacles, and is denoted Ω̃s := Ω̃ \ Ω̃f . This construction leads
to a porous medium whose properties vary in the longitudinal direction but not in the transverse
direction (see Figure 1). We further assume that the porous medium is composed of a large
number of obstacles in the longitudinal direction, which requires ε := h̃/L̃� 1 withA = O(1).

We assume that the fluid is incompressible and Newtonian, and that the flow is steady and
dominated by viscosity. As such, the fluid velocity ṽ(x̃) and pressure p̃(x̃) satisfy the Stokes
equations, subject to no-slip and no-penetration boundary conditions on the solid obstacles,

−∇̃p̃+ µ̃∇̃2ṽ = 0, x̃ ∈ Ω̃f , (2.1a)

∇̃ · ṽ = 0, x̃ ∈ Ω̃f , (2.1b)

ṽ = 0, x̃ ∈ ∂Ω̃s, (2.1c)

where µ̃ is the dynamic viscosity of the fluid, ∂Ω̃s denotes the fluid–solid interface and ∇̃ is the
gradient operator with respect to x̃.

We model solute transport and adsorption via the standard advection–diffusion equation with
a linear, partially adsorbing condition at the fluid–solid interface:

∂c̃

∂t̃
= ∇̃ ·

(
D̃∇̃c̃− ṽc̃

)
, x̃ ∈ Ω̃f , (2.2a)

−γ̃c̃ = ñs ·
(
D̃∇̃c̃− ṽc̃

)
, x̃ ∈ ∂Ω̃s, (2.2b)
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where D̃ is the coefficient of molecular diffusion, ñs is the outward-facing unit normal to ∂Ω̃s,
and γ̃ > 0 is the constant adsorption coefficient. Note that the second term on the right-hand side
of Equation (2.2b) vanishes due to Equation (2.1c). Further, note that γ̃ = 0 corresponds to no
adsorption and γ̃ →∞ corresponds to instantaneous adsorption, where the latter is equivalent to
imposing c̃ = 0 on ∂Ω̃s.

We define a function f̃s(x̃) such that on the fluid–solid interface ∂Ω̃s

f̃s(x̃) = 0. (2.3)

We also define f̃s(x̃) > 0 inside the solid phase. Then,

ñs(x̃) :=
∇̃f̃s∣∣∣∇̃f̃s

∣∣∣ , (2.4)

is the outward-facing normal to the fluid domain.
We make Equations (2.1)–(2.2) dimensionless via the scalings

x̃ = L̃x̂, ṽ = Ṽv̂, p̃ =

(
µ̃Ṽ
ε2L̃

)
p̂, c̃ = C̃ĉ, and t̃ =

(
L̃2

D̃

)
t, (2.5)

where Ṽ and C̃ are the average inlet velocity and the average inlet concentration, respectively;
x̂ and t denote the dimensionless spatial and temporal coordinates, respectively; and v̂ = v̂(x̂),
p̂ = p̂(x̂) and ĉ = ĉ(x̂, t) denote the dimensionless velocity, pressure and concentrations fields,
respectively. This pressure scale balances the macroscopic pressure gradient against viscous
dissipation at the pore-scale, as is standard in lubrication problems. Employing the scalings in
Equation (2.5), the flow problem (Eqs. 2.1) becomes

−∇̂p̂+ ε2∇̂2v̂ = 0, x̂ ∈ Ω̂f , (2.6a)

∇̂ · v̂ = 0, x̂ ∈ Ω̂f , (2.6b)

v̂ = 0, x̂ ∈ ∂Ω̂s, (2.6c)

where ∇̂ is the gradient operator with respect to x̂. Similarly, the transport problem (Eqs. 2.2)
becomes

∂ĉ

∂t
= ∇̂ ·

(
∇̂ĉ− Pe v̂ĉ

)
, x̂ ∈ Ω̂f , (2.7a)

−εγĉ = n̂s ·
(
∇̂ĉ− Pe v̂ĉ

)
, x̂ ∈ ∂Ω̂s, (2.7b)

where n̂s(x̂), a function of x̂, is the outward-facing normal to Ω̂f and the Péclet number Pe :=

L̃Ṽ/D̃ measures the rate of advective transport relative to that of diffusive transport and the
dimensionless adsorption rate γ := γ̃L̃/(εD̃) measures the rate of adsorption relative to that of
diffusive transport. Note that γ ≡ Da/ε, where Da = γ̃/Ṽ is the Damköhler number of the
second kind. As discussed in more detail below, the subsequent analysis requires that Pe, γ =
O(1) are constants independent of ε; this represents a distinguished limit as highlighted below.

Finally, the dimensionless fluid–solid interface becomes f̂s(x̂) = 0 and Equation (2.4) be-
comes

n̂s(x̂) :=
∇̂f̂s∣∣∣∇̂f̂s

∣∣∣ . (2.8)
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3. Homogenisation
Here, we approach the problem with homogenisation by the method of multiple scales (MMS).

Classically, homogenisation via the MMS is an asymptotic technique for domains that can be
represented as the union of a large number of strictly periodic cells (Chapman et al. 2008);
however, here we use an extension of the method to deal with materials with a locally periodic
microstructure that can vary over the macroscale (Chapman & McBurnie 2011; Bruna & Chap-
man 2015; Richardson & Chapman 2011; Dalwadi et al. 2015). The specific problem of circular
obstacles slowly varying in size across the length of a filter has been considered in Dalwadi
et al. (2015, 2016), but this is a one-parameter variation in microstructure with the periodic cell
size constant. In this paper, we generalise this approach to allow for arbitrary obstacle shape
and include an additional degree of microstructural freedom in the spacing between obstacles.
The latter extension allows us to explore porous media with novel properties such as a spatially
varying microstructure but a spatially uniform porosity. In order to consider varying cell sizes,
we must choose our microscale variable carefully to ensure microscale periodicity, in a similar
manner to Chapman & McBurnie (2011); Richardson & Chapman (2011).

Following the MMS, we isolate and solve the problem of flow and solute transport in an
individual cell which is uniquely characterised by its aspect ratio

a(x̂1) = A(x̃1) (3.1)

and scale factor
λ(x̂1) = Λ(x̃1). (3.2)

We then construct a model for macroscopic flow and transport through the entire porous medium
from the solution to these individual cell problems via local averaging. The result is a system of
equations that are uniformly valid for all x̂ ∈ Ω̂.

3.1. Two spatial scales

Applying the MMS as in Chapman & McBurnie (2011); Richardson & Chapman (2011), we
consider the spatial domain on two distinct length scales: the macroscale x := x̂, relative to
which the the porous medium is of unit length, and a microscale coordinate y in which we are
able to impose strict periodicity. This can be achieved via a mapping that transforms each cell
(comprising the porous material) to a tessellating periodic cell. Here, we choose to transform
to a square cell of unit area (see Figure 2(a)). As such, our mapping will stretch the obstacles
comprising the macroscale filter by a factor of 1/(εa(x1)) in the longitudinal direction and by
1/ε in the transverse direction, i.e.,

dy1
dx1

=
1

εa(x1)
and

dy2
dx2

=
1

ε
, (3.3)

which motivates the transformed microscale, defined by

y1 :=
1

ε

∫ x1 ds

a(s)
and y2 :=

x2
ε
. (3.4)

Note that any arbitrary distribution of obstacles in the longitudinal directions (i.e., arbitrary
longitudinal heterogeneity) can be imposed by fixing the functions a(x1) and λ(x1), while in the
transverse direction the porous medium is exactly periodic. We note that additional heterogeneity
in the transverse direction can be considered through a more general mapping (Richardson &
Chapman 2011).

To understand the implications of the mapping (Eq. 3.4) on a single cell, we note that (on
the macroscale) the domain of the porous medium, x ∈ Ω, comprises a fluid domain Ωf and
a complementary solid domain Ωs. A single cell can be obtained by discretising the porous
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medium into rectangular cells of height ε and width εa(x1). For any single rectangular cell in
the domain, the transformation (Eq. 3.4) yields a transformed microscale, y. On the transformed
microscale, each cell ω comprises a fluid phase ωf (x1) and solid obstacles, the union of which is
denoted ωs(x1) := ω\ωf (x1). The fluid–solid interface ∂ωs(x1) is the union of the boundary of
the obstacles. Each cell has four additional boundaries that separate it from neighbouring cells.
We denote the top and bottom boundaries ∂ω= and the left and right boundaries ∂ω|| with the
union of these being the unit cell boundary ∂ω.

Following Chapman & McBurnie (2011); Richardson & Chapman (2011), we choose the
microscale mapping such that the the cell size is the same throughout the domain. Hence, for
example, circles will approximately map to ellipses. Since the untransformed cell size varies
spatially through the domain, this microscale mapping will lead to obstacles that vary by an
O(ε) amount between neighbouring cells, but by an O(1) amount over the macroscale. We
systematically account for these variations using the methodology presented in e.g. Bruna &
Chapman (2015); Dalwadi et al. (2015).

Finally, we note that the transformed microscale variable can be difficult to interpret physically.
As such, it will be helpful to define a ‘naive’ microscale coordinate

Y := x/ε, (3.5)

in which each cell is of unit transverse height but of longitudinal width a(x1) (Figure 2(b)).
After completing the homogenisation procedure in the transformed microscale (Eq. 3.4), we will
transform the relevant cell problems to the naive microscale (Eq. 3.5), in order to present them
more intuitively and subsequently solve them numerically. Note that the domains and boundaries
in the (naive) rectangular Y -cell will be denoted as in the square y-cell, but with the addition of
a superscript ?. Further, we emphasise that the microscale (cell) problems we derive and solve
are not physical flow or transport problems, but rather mathematical constructs that enable us to
invoke the MMS.

We now perform the homogenisation. Following the MMS, we take x and y to be independent
spatial parameters. We therefore rewrite all functions of x̂ as functions of x and y: v̂(x̂) :=
v(x,y), p̂(x̂) := p(x,y), and ĉ(x̂, t) := c(x,y, t). Note that for functions that are dependant
of Y in lieu of y we adorn the respective function with a superscript ?. Spatial derivatives then
become

∂

∂x̂i
=

∂

∂xi
+
σij
ε

∂

∂yj
, (3.6a)

for i, j = 1, 2, and where σij = (σ)ij and

σ =

 1

a(x1)
0

0 1

 . (3.6b)

Alternatively, in vector form, the spatial derivatives become

∇̂ := ∇x +
1

ε
∇a
y (3.6c)

where ∇x is the gradient operator with respect to the coordinate x and where

∇a
y :=

(
1

a

∂

∂y1
,
∂

∂y2

)ᵀ
, (3.6d)

is the gradient operator associated with the y-coordinate transform. For a given quantity
Z(x,y, t) = Z?(x,Y , t) , there are two different averages of interest: the intrinsic (fluid)
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FIGURE 2. An arbitrary cell within the porous medium (orange rectangle in Figure 1) represented in
(a) transformed microscale coordinates and (b) naive microscale coordinates. The transformed microscale
coordinates y1 and y2 and the naive microscale coordinates Y1 and Y2 are related via Equations (3.4) and
(3.5). The transformed microscale coordinates allow the slow variation in cell width a to be scaled out of
the cell problem, such that each naive rectangular cell is transformed into a square.

average

〈Z〉(x, t) :=
1

|ωf (x1)|

∫
ωf (x1)

Z(x,y, t) dSy ≡
1

|ω?f (x1)|

∫
ω?

f (x1)

Z?(x,Y , t) dSY , (3.7)

where the total fluid area in the transformed cell |ωf | (or naive cell |ω?f |) is a function of a(x1)
and λ(x1); and the volumetric average

1

|ω(x1)|

∫
ω(x1)

Z(x,y, t) dSy ≡
1

|ω?(x1)|

∫
ω?(x1)

Z?(x,Y , t) dSY , (3.8)

where |ω| = 1 and |ω?| = a. Here, dSy := dy1dy2 is an area element of the transformed
microscale fluid region, dSY := dY1dY2 is an area element of the naive microscale fluid region
and the porosity φ is

φ(x1) =
|ωf (x1)|
|ω(x1)|

≡ |ωf (x1)|
(

=
|ω?f (x1)|
|ω?(x1)|

)
. (3.9)

Thus, 〈c〉 is the amount of solute per unit fluid area within the porous medium, while φ〈c〉, the
volumetric average of the concentration, is the amount of solute per unit total area.

We define the average velocity, pressure, and concentration as

V (x̂) ≡ V (x) := 〈v〉, P (x̂) ≡ P (x) := 〈p〉, and C(x̂, t) ≡ C(x, t) := 〈c〉, (3.10)

respectively. Note that φV is the standard Darcy flux.

3.2. Flow problem

For a passive tracer as described in this paper, the flow problem (Eqs. 2.6a) does not depend
on c. Using Equation (3.6), Equations (2.6) in an arbitrary cell become

−
(
∇x +

1

ε
∇a
y

)
p+

(
ε2∇2

x + ε∇x ·∇a
y + ε∇a

y ·∇x + (∇ay)2
)
v = 0, y ∈ ωf (x1),

(3.11a)
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ε∇x + ∇a

y

)
· v = 0, y ∈ ωf (x1) (3.11b)

v = 0, y ∈ ∂ωs(x1). (3.11c)

For clarity of presentation in what follows, we have multiplied by ε during the derivation of
Equation (3.11b).

To proceed using the MMS, we must also impose periodicity of v, p and c over a single
microscale cell (i.e., local periodicity). Enforcing periodicity of all quantities at both the top and
bottom, ∂ω=, and left and right, ∂ω||, cell boundaries leads to

v and p periodic on y ∈ ∂ω= and ∂ω||. (3.11d)

We now seek an asymptotic solution to Equations (3.11) by expanding v and p in powers of ε:

v(x,y) = v(0)(x,y) + εv(1)(x,y) + · · · as ε→ 0, (3.12a)

p(x,y) = p(0)(x,y) + εp(1)(x,y) + · · · as ε→ 0. (3.12b)

Considering terms of O (1/ε) in Equations (3.11a) gives

∇a
yp

(0) = 0, (3.13)

from which we conclude the standard result that, at leading order, the pressure is uniform on the
microscale: p(0) = p(0)(x).

Considering terms of O (1) in Equation (3.11) gives

−∇xp
(0) −∇a

yp
(1) + (∇ay)2v(0) = 0, y ∈ ωf (x1), (3.14a)

∇a
y · v(0) = 0, y ∈ ωf (x1), (3.14b)

v(0) = 0, y ∈ ∂ωs(x1), (3.14c)

with

v(0) and p(1) periodic on y ∈ ∂ω= and ∂ω||. (3.14d)

The form of Equations (3.14) suggest that we can scale ∇xp
(0) out of the problem via the

substitutions

v(0) = −K(x,y) ·∇xp
(0), (3.15a)

p(1) = −Π(x,y) ·∇xp
(0) + p̆(x), (3.15b)

where p̆(x) is a scalar function, K(x,y) is a tensor function, and Π(x,y) is a vector function.
Using Equations (3.15) and the fact that p(0) is independent of y, Equations (3.14) become(

I −∇a
y ⊗Π + (∇ay)2K

)
·∇xp

(0) = 0, y ∈ ωf (x1), (3.16a)(
∇a
y ·K

)
·∇xp

(0) = 0, y ∈ ωf (x1), (3.16b)

K ·∇xp
(0) = 0, y ∈ ∂ωs(x1), (3.16c)

with

Kij := (K)ij and Πi := (Π)i periodic on y ∈ ∂ω= and ∂ω||, (3.16d)

where I is the identity tensor and where(
∇a
y ⊗Π

)
ij

= σik
∂Πj

∂yk
and (∇a

y ·K)i = σjk
∂Kji
∂yk

. (3.16e)

Note that in the above we have adopted the summation convention; we will adopt the summation
convention throughout this manuscript. Equations (3.16) must hold for arbitrary ∇xp

(0), hence
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K(x,y) andΠ(x,y) must satisfy the system

I −∇a
y ⊗Π + (∇ay)2K = 0, y ∈ ωf (x1), (3.17a)

∇a
y ·K = 0, y ∈ ωf (x1), (3.17b)

K = 0, y ∈ ∂ωs(x1), (3.17c)

with

Kij and Πi periodic on y ∈ ∂ω= and ∂ω||. (3.17d)

In general, Equations (3.17) must be solved numerically for each desired cell geometry (i.e.,
pairs of a and λ). Note that Equations (3.17) are independent of ∇xp

(0), justifying our scalings
in Equation (3.15).

To derive a macroscale relationship between velocity and pressure from Equation (3.15a), we
expand the averaged quantities defined in Equation (3.10) in powers of ε:

V (x̂) = V (0)(x̂) + εV (1)(x̂) + · · · as ε→ 0, (3.18a)

P (x̂) = P (0)(x̂) + εP (1)(x̂) + · · · as ε→ 0. (3.18b)

Note that

P (0)(x̂) = 〈p(0)(x)〉 ≡ p(0)(x), (3.19)

since p(0) is independent of y. We then take the intrinsic average of Equation (3.15a) to determine
that the leading-order macroscale velocity depends on gradients in the leading-order macroscale
pressure according to Darcy’s law:

φV (0) = −K(φ, a) · ∇̂P (0), (3.20a)

where we have introduced the macroscale permeability tensor

K(φ, a) := φ〈K〉, (3.20b)

and where φ and a are known functions of x̂1. Prescribing both φ and a determines λ via a simple
geometric relation, specific to the chosen geometry of the porous material.

Being averaged in y, Equation (3.20a) depends on x̂ = x only and we have therefore replaced
∇x with ∇̂. If the cell geometry has symmetric reflectional symmetry along both the y1 and y2
axes, the symmetry of the boundary conditions imply that K is diagonal and further, if a = 1
also, thenK reduces to a scalar multiple of I .

Equation (3.20a) provides two equations for three unknowns. To develop another constraint in
terms of V (0) and P (0), consider the O(ε) terms from Equations (3.11b) and (3.11c):

∇x · v(0) = −∇a
y · v(1), y ∈ ωf (3.21a)

v(1) = 0, y ∈ ∂ωs. (3.21b)

We take the intrinsic average of Equation (3.21a) and apply the divergence theorem to the right-
hand side which vanishes by Equation (3.21b). Then, applying the transport theorem (Eq. A 12),
derived in Appendix A, to the left-hand side of the intrinsic average of Equation (3.21a) yields

∇x ·
∫
ωf

v(0)dSy = 0, (3.22)

where we have used Equation (3.14c). Expressing Equation (3.22) in terms of the averaged
quantity V (0) gives

∇̂ · (φV (0)) = 0, (3.23)
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which closes the system defined in Equations (3.20a). Similarly to Equation (3.20a), there is no
y-dependence in Equation (3.23), so we have replaced ∇x with ∇̂.

To evaluate K, we find it convenient to map the system (Eq.3.17) to the naive microscale
coordinate Y , defined in Equation (3.5). In the naive microscale coordinate, different values of
a manifest as physical changes to the domain rather than as changes to the governing equations,
yielding more intuitive cell problems. This mapping gives

I −∇Y ⊗Π? +∇2
YK

? = 0, Y ∈ ω?f (x1), (3.24a)

∇Y ·K? = 0, Y ∈ ω?f (x1), (3.24b)

K? = 0, Y ∈ ∂ω?s (x1), (3.24c)

with

K?ij := (K?)ij and Π?
i := (Π?)i periodic on Y ∈ ∂ω?= and ∂ω?||, (3.24d)

where ∇Y is the gradient operator with respect to the coordinate Y . Note that

(∇Y ⊗Π?)ij =
∂Π?

j

∂Yi
and (∇Y ·K?)i =

∂K?ji
∂Yj

. (3.24e)

In §4 we consider a porous medium with a simple, prescribed microstructure. In that section, we
solve Equations (3.24) using COMSOL Multiphysics®, graphically presentK(φ, a), and discuss
its implications.

3.3. Transport problem

We now perform a similar homogenisation procedure for the solute-transport problem (Eqs.
2.7). The main difference between the classic homogenisation procedure and the homogenisation
we carry out here is that we use the transformed microscale y to convert a locally periodic
tessellating cell structure into a strictly periodic tessellating cell structure. As such, we proceed
following the framework of Chapman & McBurnie (2011) and Richardson & Chapman (2011).
A key step is to consider the unit normal n̂s that appears in Equation (2.7b). In general, under the
microscale transformation (Eq. 3.4), n̂s will not be transformed to the geometric normal of the
transformed cell. Hence, we must take care when transforming the normal into multiple scales
form.

Under the multiple scales framework, the unit normal to the solid interface is written as a
function of both the macro- and microscales: n̂s(x̂) = ns(x,y), and similarly for the function
f̂s(x̂) = fs(x,y), which vanishes on the solid interface. The consistent transformation of ns ≡
nisei requires the consistent application of the MMS derivative transformation (Eq. 3.6) to the
definition of ns in terms of fs given by Equation (2.8), to obtain the transformed unit normal

ns =

(
∇a
y + ε∇x

)
fs∣∣(∇a

y + ε∇x

)
fs
∣∣ =

(
σij

∂fs
∂yj

+ ε
∂fs
∂xi

)
ei[

σklσkm
∂fs
∂yl

∂fs
∂ym

]1/2
+ O(ε)

. (3.25a)

It will also be helpful to define the leading-order transformed unit normal nY = nYi ei as follows

nY =

σij
∂fs
∂yj

ei[
σklσkm

∂fs
∂yl

∂fs
∂ym

]1/2 , (3.25b)
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such that ns ∼ nY as ε→ 0. However, we also note that the geometric unit normal ny = nyi ei
is defined as

ny :=
∇yfs
|∇yfs|

=

∂fs
∂yi

ei[
∂fs
∂yj

∂fs
∂yj

]1/2 , (3.25c)

where ∇y is the gradient operator with respect to the coordinate y. Importantly, the transformed
normal (Eq. 3.25a) and geometric normal (Eq. 3.25c) are not equal. Moreover, comparing
Equation (3.25b) and Equation (3.25c) reveals that they are not even equal to leading order in ε
(unless a ≡ 1).

To facilitate our subsequent manipulation of the transformed problem, it will be helpful to
write the transformed normal ns in terms of the geometric normal ny . Since Equation (3.25c)
can be rearranged to obtain ∂fs/∂yi = |∇yfs|nyi , we can re-write the transformed normal
(Eq. 3.25a) as

ns =

(
σijn

y
j + εNi

)
ei

[σklσkmn
y
l n

y
m]

1/2
+ O(ε)

, (3.25d)

where the macroscale perturbation to the normalN = Niei is defined as

N :=
∇xfs
|∇yfs|

. (3.25e)

The macroscale perturbation to the normal N formally quantifies the effect of the transformed
microscale structure varying over the macroscale within the MMS framework.

Having defined the transformed normal in terms of the geometric normal, we are now in
a position to proceed with the homogenisation. Under the spatial transformations (Eq. 3.6),
Equations (2.7) become

ε
∂c

∂t
=

(
ε
∂

∂xi
+ σij

∂

∂yj

)[
∂c

∂xi
+
σik
ε

∂c

∂yk
− Pe vic

]
, y ∈ ωf (x1), (3.26a)

−εγc [σklσkmn
y
l n

y
m]

1/2
+O(ε2) =

(
σijn

y
j + εNi

) [ ∂c
∂xi

+
σik
ε

∂c

∂yk
− Pe vic

]
, y ∈ ∂ωs(x1),

(3.26b)
with

vi, c, periodic on y ∈ ∂ω= and ∂ω||, (3.26c)

where v = viei. Note that, for clarity of presentation in what follows, we have multiplied by
ε when deriving Equation (3.26a) from Equation (2.7a). We now consider an expansion of the
concentration field of the form

c(x,y, t) = c(0)(x,y, t) + εc(1)(x,y, t) + ε2c(2)(x,y, t) + · · · as ε→ 0. (3.27)

Note that we take Pe, γ = O(1) to be constants independent of ε; this corresponds to a
distinguished limit where all the transport mechanisms balance over the macroscale (cf., Equa-
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tion (3.45c)). Considering Equation (3.26) at leading order — that is, O(1/ε) — we obtain

σijσik
∂2c(0)

∂yj∂yk
= 0, y ∈ ωf (x1), (3.28a)

σijσikn
y
j

∂c(0)

∂yk
= 0, y ∈ ∂ωs(x1), (3.28b)

v
(0)
i , c(0) periodic on y ∈ ∂ω= and ∂ω||. (3.28c)

By inspection, we find that c(0) = c(0)(x, t) is a nontrivial solution to this system. By linearity,
this solution is unique and therefore the leading-order concentration is independent of y.

Considering Equations (3.26) at O(1), we obtain

σijσik
∂2c(1)

∂yj∂yk
= 0, y ∈ ωf (x1), (3.29a)

σijσikn
y
j

∂c(1)

∂yk
= −σinyi

∂c(0)

∂xi
, y ∈ ∂ωs(x1), (3.29b)

v
(1)
i , c(1) periodic on y ∈ ∂ω= and ∂ω||, (3.29c)

where we have used c(0) = c(0)(x, t), microscale incompressibility (Eq. 3.14b), and the no-slip
and no-penetration conditions (Eq. 3.14c) on the solid surface. The form of Equations (3.29)
suggest that we can scale ∇xc

(0) out of the problem via the substitution

c(1)(x,y, t) = −∂c
(0)

∂xl
Γn(x,y) + c̆(x, t), (3.30)

where c̆ is a scalar function and the functions Γn satisfy the following cell problems

σijσik
∂2Γn
∂yj∂yk

= 0, y ∈ ωf (x1), (3.31a)

σijσikn
y
j

∂Γn
∂yk

= σkn
y
k, y ∈ ∂ωs(x1), (3.31b)

Γn periodic on y ∈ ∂ω= and ∂ω||. (3.31c)

Note that we enforce

〈Γn〉 = 0, (3.31d)

which uniquely defines Γn. Equations (3.31) are obtained by substituting Equation (3.30) into
Equation (3.29). Equations (3.31) must then be solved numerically for n ∈ {1, 2} and each
desired cell geometry (i.e., pairs of a and λ). Note that Equations (3.31) are independent of
∇xc

(0), justifying our scalings in Equation (3.30).
The goal of this analysis remains to determine a macroscale equation for the concentration.

Since there are no macroscopic transport mechanisms present at this order, there is not enough
information to determine a macroscale governing equation for the concentration. Hence, we must
proceed to the next order in Equations (3.26), which yield

∂c(0)

∂t
= σij

∂Ai
∂yj

+
∂Bi
∂xi

, y ∈ ωf (x1), (3.32a)

−γc(0) [σklσkmn
y
l n

y
m]

1/2
= σijn

y
jAi +NiBi y ∈ ∂ωs(x1), (3.32b)

v
(2)
i , c(2) periodic on y ∈ ∂ω= and ∂ω||, (3.32c)
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where

Ai := σij
∂c(2)

∂yj
+
∂c(1)

∂xi
− Pe

(
v
(0)
i c(1) + v

(1)
i c(0)

)
, (3.32d)

Bi := σij
∂c(1)

∂yj
+
∂c(0)

∂xi
− Pe v(0)i c(0). (3.32e)

Integrating Equation (3.32a) over the transformed microscale fluid domain ωf gives

|ωf |
∂c(0)

∂t
=

∫
ωf

σij
∂Ai
∂yj

dSy +

∫
ωf

∂Bi
∂xi

dSy. (3.33)

Applying the divergence theorem to the first integral on the right-hand side of Equation (3.33)
yields ∫

ωf

σij
∂Ai
∂yj

dSy =

∫
∂ωs

σijn
y
jAi dsy +

∫
∂ω

σijn
�
j Ai dsy, (3.34)

where dsy signifies an element of a scalar line integral, and n� = n�j ej is the outward-facing
unit normal to the external square boundary ∂ω. Since Ai is periodic on ∂ω, the last term on
the right-hand side of Equation (3.34) vanishes. Then, using Equation (3.32b), we may re-write
Equation (3.34) as∫

ωf

σij
∂Ai
∂yj

dSy = −
∫
∂ωs

NiBi dsy −
∫
∂ωs

γc(0) [σklσkmn
y
l n

y
m]

1/2
dsy. (3.35)

To manipulate the final integral on the right-hand side of Equation (3.33), we apply the
transport theorem (Eq. A 12):∫

ωf

∂Bi
∂xi

dSy =
∂

∂xi

∫
ωf

Bi dSy +

∫
∂ωs

NiBi dsy. (3.36)

Thus, combining Equations (3.33), (3.35) and (3.36) we obtain

|ωf |
∂c(0)

∂t
=

∂

∂xi

∫
ωf

[
σij

∂c(1)

∂yj
+
∂c(0)

∂xi
− Pe v(0)i c(0)

]
dSy−γc(0)

∫
∂ωs

[σklσkmn
y
l n

y
m]

1/2
dsy.

(3.37)
Using the definitions of c(1) (Eq. 3.30) andV (0) (Eq. 3.18a) and dividing through by |ωf | = φ,

we can re-write Equation (3.37) as

∂C(0)

∂t
=

1

|ωf |
∂

∂x̂i

[
|ωf |Dij(φ, a)

∂C(0)

∂x̂j
− Pe |ωf |V (0)

i C(0)

]
− γF (φ, a)C(0), (3.38a)

where we have expanded the intrinsic concentration C in powers of ε

C(x, t) = C(0)(x, t) + εC(1)(x, t) + ε2C(2)(x, t) + · · · as ε→ 0. (3.38b)

and have noted that C(0) = c(0). Note also that we have replaced xi with x̂i in Equation (3.38a)
since has been averaged over the microscale and is thus independent of y. In Equation (3.38a),
the components of the effective diffusivity tensor Dij(φ, a) are defined as

Dij(φ, a) := δij −
1

|ωf |

∫
ωf

σij
∂Γj
∂yj

dSy = δij −
1

φ

∫
ωf

σij
∂Γj
∂yj

dSy, (3.38c)

where δij is the Kronecker delta, and the effective adsorption strength F (φ, a) is defined as

F (φ, a) :=
1

|ωf |

∫
∂ωs

[σklσkmn
y
l n

y
m]

1/2
dsy. (3.38d)
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Hence, our homogenized transport equation is given by Equations (3.38a), (3.38c) and (3.38d).
In order to interpret the coefficients in this equation physically and evaluate them numerically,
we now transform our coefficients into the naive microscale.

3.3.1. Transforming into the naive microscale coordindate

To interpret the rate F (φ, a) physically, it is helpful to map its definition Equation (3.38d) to
the naive microscale coordinate Y , defined in Equation (3.5), in a similar way to Richardson &
Chapman (2011). Firstly, consider an arbitrary vector function z(x,y, t) = z?(x,Y , t), such
that z = ziei and z? = z?i ei then Equation (3.8), with Z = ∇a

y · z ≡∇Y · z? = Z? gives

1

|ω(x1)|

∫
ω(x1)

σij
∂zi
∂yj

,dSy ≡
1

|ω?(x1)|

∫
ω?(x1)

∂z?i
∂Yi

dSY , (3.39)

Thus taking the Divergence theorem of both sides of Equation (3.39) leads to the relation

1

|ω|

∫
∂ωs

σijzjn
y
i dsy =

1

|ω?|

∫
∂ω?

s

nYi
?
z?i dsY , (3.40)

where nYi (y) = nYi
?
(Y ). Note that as σ is diagonal σijzjn

y
i = σijn

y
j zi. Additionally, Equa-

tions (3.25) lead to the relation

σijn
y
j = nYi [σklσkmn

y
l n

y
m]

1/2
. (3.41)

Thus, setting zi = nYi gives∫
∂ωs

[σklσkmn
y
l n

y
m]

1/2
dsy =

∫
∂ωs

σijn
y
jn

Y
i dsy =

|ω|
|ω?|

∫
∂ω?

s

dsY =
|∂ω?s |
|ω?|

, (3.42)

since nY · nY = nY
? · nY ?

= 1 and |ω| = 1. Hence,

F (φ, a) =
|∂ω?s |
|ωf ||ω?|

≡ |∂ω
?
s |

|ω?f |
, (3.43)

and we deduce that F represents the obstacle perimeter within a cell, normalised by the fluid area
within a cell.

Additionally, in order to evaluate Dij we find it convenient to map the system (Eq. 3.31) to
the naive microscale coordinate Y , defined in Equation (3.5). This mapping transforms the cell
problems (Eq. 3.31) to

∇2
Y Γ

?
n = 0, Y ∈ ω?f (x1), (3.44a)

nY
? · ∇Y Γ ?n = nYk

?
, Y ∈ ∂ω?s (x1), (3.44b)

Γ ?n periodic on Y ∈ ∂ω?= and ∂ω?||, (3.44c)

with

〈Γ ?n〉 = 0. (3.44d)

The components of the effective diffusivity tensor (Eq. 3.38c) become

Dij(φ, a) = δij −
1

|ω?f |

∫
ω?

f

∂Γ ?j
∂Yi

dSY = δij −
1

aφ

∫
ω?

f

∂Γ ?j
∂Yi

dSY . (3.45a)

We can also write Equation (3.45a) in tensor formD as

D(φ, a) = I − 1

|ω?f |

∫
ω?

f

∇Y ⊗ Γ ? dSY . (3.45b)
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FIGURE 3. We consider the flow of fluid carrying solute through a heterogeneous porous material in two
dimensions for a specific illustrative example. Here, the porous medium is of unit length and is formed of
an array of circular obstacles of dimensionless radiusR(x1), each located in the centre of a rectangular cell
of unit transverse height and longitudinal width a(x1).

To evaluate D, we solve the transformed cell problems (Eq. 3.44) numerically in COMSOL
Multiphysics®.

Using the results from this subsection, we may re-write Equation (3.38a) in vector/tensor form
as

∂C(0)

∂t
=

1

φ
∇̂ ·
(
φD∇̂C(0) − Pe φV (0)C(0)

)
− γ |∂ω

?
s |

|ω?f |
C(0). (3.45c)

Again, since there is no y-dependence in Equation (3.45c), we have replaced ∇x with ∇̂.
Equation (3.45c) describes macroscopic transport by advection and diffusion in a porous medium
with chemical sorption, where φD · ∇̂C(0) is the diffusive flux per unit area of porous medium
and D · ∇̂C(0) is the diffusive flux per unit area of fluid. The form of the effective macroscale
transport equation (Eq. 3.45c) is similar to that obtained in Dalwadi et al. (2015), where a simpler
problem with a constant cell size is considered, resulting in a more straightforward upscaling
procedure.

In §4, we calculate the permeability and effective diffusivity for a porous medium with a
simple, prescribed microstructure, we graphically present the resulting D(φ, a), and we discuss
its implications for this case. Note that although our model problem of a one-dimensional filter
in §4.2 features flow in the longitudinal direction, the macroscopic flow and transport equations
(Eqs. 3.20), (Eqs. 3.23) and (Eqs. 3.45c) and the results in §4.1 are valid for any arbitrary flow
direction.

4. Illustrative example
In this section, we examine a specific pore structure where the solid domain constitutes an

array of solid circular obstacles centred on a rectangular lattice. Specifically, each cell contains a
fixed, rigid circular obstacle of dimensionless radius R(x1) at its centre. Since R(x1) uniquely
controls the obstacle size over the length of the medium, we take the scale factor λ(x1) = R(x1).
To prevent the obstacles from overlapping, we require that 2R 6 min(a, 1). This construction
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FIGURE 4. The porosity φ of a rectangular cell increases with aspect ratio a and
decreases with obstacle radius R according to Equation (4.1). (a) a versus φ for
R ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5} (dark to light). The attainable region of the
φ-a plane (shaded grey) is bounded below by φmin given by Equation (3.9) with a = 2R (dot-dashed
line). The cell geometry for two distinct points with R = 0.25 is shown pictorially. (b) a versus R for
φ ∈ {0.35, 0.45, 0.55, 0.65, 0.75, 0.85, 0.925, 0.975, 0.995, 0.999} (dark to light). The attainable region
of the R–a plane (shaded grey) is also bounded below by amin := 2R (dot-dashed line). Note that the
smallest attainable φ for any R, a combination is φmin(R = 1/2) = 1− π/4.

leads to a porous medium whose properties vary in the longitudinal direction but not in the
transverse direction (see Figure 3). For this geometry the porosity φ is

φ(x1) =
|ωf (x1)|
|ω(x1)|

=
|ω?f (x1)|
|ω?(x1)|

≡ 1− πR(x1)2

a(x1)
, (4.1)

since |ω?| = a and |ω?f | = a−πR2. Further, in this case we may explicitly evaluate the effective
adsorption rate F (φ, a) in Equation (3.38d) using the formulation from Equation (3.43), giving

F (φ, a) =
|∂ω?s |
|ω?f |

=
2πR

aφ
=

2 (1− φ)

Rφ
. (4.2)

Note that with this geometry and in the limit a = 1, Equations (3.38) become the same system
as Equation (3.22) in Dalwadi et al. (2015) in two dimensions (i.e., d = 2), but written in terms
of the intrinsic average rather than the volumetric average.

4.1. Macroscale flow and transport properties

For this specific geometry we explore the impact of microstructure on macroscopic flow
and transport by analysing the permeability and effective net diffusivity tensors, K and φD,
respectively. To determine K we solve Equations (3.24) in COMSOL Multiphysics® using
the ‘Laminar Flow (spf)’ interface (‘Fluid Flow’ → ‘Single Phase Flow’ → ‘Laminar flow
(spf)’). The domain is discretised using the ‘Physics-controlled mesh’ with the element size
set to ‘Extremely fine’. Similarly, to evaluate D, we solve Equations (3.44), in COMSOL
Multiphysics® using the ‘Laplace Equation (lpeq)’ interface (‘Classical PDEs’→ ‘Mathematics
branch’→ ‘Laplace Equation (lpeq)’). For the flow problem, the domain is discretised using the
‘Physics-controlled mesh’ with the element size set to ‘Extremely fine’.

The tensors K and D depend on microstructure via a, φ and R, any two of which are
independent and the third prescribed by Equation (4.1) (Figure 4). We therefore have one
additional degree of microstructural freedom relative to Dalwadi et al. (2015) and this allows
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us to explore the anisotropy in the system. We explore the effect of the a, R and φ parameter
space on K and φD in Figures 5 and 6, respectively. The effective diffusivity D is shown for
reference in Figure 10 (top and middle row; Appendix B).

We have validated our analysis for this geometry in a number of ways. Firstly, we have
compared our results with those in Dalwadi et al. (2015) for the special case of a ≡ 1,
confirming both the final homogenised equations (Eqs. 3.20, 3.45a, 3.45c, and 4.2) and the
detailed numerical results (black lines; Figures 5–7). Secondly, we have confirmed our results
in the Hele-Shaw limit of parallel, disconnected channels where the longitudinal permeability
is 1/12 (black diamond; Figure 5) and the transverse permeability vanishes. Finally, we have
confirmed that both the transverse permeability and the transverse effective diffusivity vanish
when the transverse connectivity vanishes (a → 2R or 2R → a; red lines in Figures 5 and 6),
and that the permeability diverges and the effective diffusivity tends to unity as the obstacles
vanish (φ→ 1).

Increasing φ at fixedR is achieved by increasing a (Figure 4 (a)), such that the obstacles move
further apart in the longitudinal direction only; as a result,K11,K22, φD11 and φD22 all increase
(Figure 5 (a) and (c) and Figure 6 (a) and (c)). As φ → 1 (a → ∞), both K11 and K22 diverge
as the resistance to flow vanishes (Figure 5 (a) and (c)), and both φD11 and φD22 tend to 1 as
molecular diffusion becomes unobstructed (Figure 6 (a) and (c)). As φ → φmin(R) (a → 2R)
at fixed R, the obstacles move closer together in the longitudinal direction and the pore space
becomes disconnected in the transverse direction, so that K22 and φD22 vanish; K11 and φD11

are minimised but do not vanish. Further taking R → 0, the longitudinal problem reduces to a
set of disconnected parallel channels of unit transverse width, for which K11 = 1/12 (Figure 5
top row, black diamond).

Increasing R at fixed φ is similarly achieved by increasing a (Figure 4 (b)), in which case
the transverse channels between obstacles grow wider while the longitudinal channels between
obstacles grow narrower. As a result, K11 and φD11 decrease while K22 and φD22 increase. As
R→ 1/2 at fixed φ, the longitudinal channels close andK11 and φD11 vanish, but the transverse
channels become wider and K22 and φD22 are maximised. The longitudinal permeability, K11,
is weakly non-monotonic in R for larger values of φ (Figure 5 (b)), which means that the
longitudinal permeability of a high porosity porous material can be maximised for a given φ
by appropriately varying R and a.

When a ≡ 1, equivalent to the case considered in Dalwadi et al. (2015), K and φD become
isotropic. Increasing φ corresponds to decreasing R, in which case both the longitudinal and
transverse spacing between obstacles decreases (Figure 4) which decreases K11 = K22 and
φD11 = φD22 (Figures 5 and 6, solid black lines). For a 6= 1, our microstructure is inherently
anistropic (K11 6= K22, φD11 6= φD22). For a < 1, the longitudinal channels are wider than
the transverse channels, such that K22/K11 < 1 and D22/D11 < 1 and both ratios vanish as
a → 2R (φ → φmin where φmin is given by Equation (4.1); Figure 5 (e) and (f) and Figure 6 (e)
and (f), respectively). For a > 1, the longitudinal channels are narrower than the transverse
channels, such that K22/K11 > 1 and D22/D11 > 1. The permeability–anisotropy ratio,
K22/K11, increases monotonically with both φ and R, and diverges as φ → 1 at fixed R (K22

diverges faster than K11 because the obstacles never get further apart in the transverse direction)
and as R→ 1/2 at fixed φ (K11 vanishes; Figure 5 (e) and (f)). The diffusivity–anisotropy ratio,
D22/D11, increases monotonically with R for all φ ∈ (φmin, 1), diverging as R → 1/2 (Figure
6 (f)). For fixedR, this ratio increases monotonically with φ for a 6 1, is equal to unity for a = 1
(isotropic geometry), and must approach unity as φ → 1 (a → ∞; unobstructed molecular
diffusion; Figure 6(e)). These bounds require that D22/D11 has an intermediate maximum in
φ (or in a) at fixed R, the amplitude of which diverges as R → 1/2. Specifically, the non-
monotonicity in the ratio D22/D11 occurs due to the relative rates of increase of φD11 and
φD22. For φ = φmin (a = 2R) there is no transverse connectivity thus separating the obstacles
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FIGURE 5. The longitudinal permeability K11 (top row), transverse permeability K22 (middle row)
and the permeability–anisotropy ratio K22/K11 (bottom row) depend strongly on microstructure. Left
column: K11, K22 and K22/K11 against φ for fixed values of R ∈ {0.1, 0.2, 0.3, 0.4, 0.49}, with a
varying according to Equation (4.1). Right column: the same quantities against R for fixed values of
φ ∈ {0.65, 0.7, 0.8, 0.9, 0.95}, with a varying according to Equation (4.1). For a given value of R, the
minimum porosity φmin(R) is given by Equation (4.1) with a = 2R. Note thatK11 is non-zero at φmin(R)
for all values of φ (dot-dashed curve, top row), whereas K22 vanishes at φmin ((c) and (e) red vertical
asymptotes). There exists a smallest possible R for any given φ ((d) and (f) red vertical asymptotes). In
all cases, K11 and K22 are as defined in Equation (3.20b) and calculated using COMSOL Multiphysics®.
The permeability is isotropic when a ≡ 1 (solid black curves; Dalwadi et al. (2015)). The limit R → 0
and a→ 0 corresponds to a set of parallel but disconnected channels with unit transverse width, for which
φ→ 1, K22 → 0, and K11 → 1/12 (black diamonds in top row).

slightly (a small increase in a) leads to a sharp increase in φD22 but only a slight increase
in φD11 since the longitudinal connectivity is unchanged and most longitudinal mixing occurs
in the longitudinal channels. Conversely, as φ → 1 (a → ∞) the longitudinal spacing between
obstacles diverges which means that φD11 is very sensitive to changes in a as longitudinal mixing
occurs predominantly between longitudinally adjacent obstacles (in the transverse channels),
thus φD11 approaches unity rapidly. However, significant transverse connectivity is preserved
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FIGURE 6. The net longitudinal diffusivity φD11 (top row), net transverse diffusivity φD22 (middle
row) and the diffusivity–anisotropy ratio D22/D11 (bottom row) depend strongly on microstructure. Left
column: φD11, φD22 and D22/D11 against φ for fixed values of R ∈ {0.1, 0.2, 0.3, 0.4, 0.49}, with
a varying according to Equation (4.1). Right column: the same quantities against R for fixed values of
φ ∈ {0.65, 0.7, 0.8, 0.9, 0.95}, with a varying according to Equation (4.1). For a given value of R, the
minimum porosity φmin(R) is given by Equation (4.1) with a = 2R. Note that φD11 is non-zero at φmin(R)
for all values of φ (dot-dashed curve, top row), whereas φD22 vanishes at φmin. In all cases, D11 and D22

are as defined in Equation (3.45a) and calculated using COMSOL Multiphysics®. Both D11 and D22 tend
to 1 as φ → 1, which corresponds to the limit of free-space diffusion. The net effective diffusivity, φD, is
isotropic when a = 1 (solid black curves), in agreement with the results presented in Dalwadi et al. (2015).

for large a so increasing a further has minimal effect on φD22 since most transverse mixing
occurs in the transverse channels in this limit. Note that the longitudinal diffusivity D11 is non-
monotonic in φ for each R as a varies (Appendix B, Figure 10).

The partially absorbing boundary condition on the microscale, whose strength is measured by
the parameter γ in Equation (2.7b), leads to an effective sink term in the macroscale transport
problem, whose strength is measured by γF , where F is given in Equation (4.2). F is the ratio of
the perimeter of an obstacle to the fluid area within a cell, which are 2πR and aφ, respectively, for
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FIGURE 7. The effective adsorption rate F depends strongly on microstructure. Left column: F against φ
for fixed values ofR ∈ {0.1, 0.2, 0.3, 0.4, 0.49}, with a varying according to Equation (4.1). Right column:
F against R for fixed values of φ ∈ {0.65, 0.7, 0.8, 0.9, 0.95}, with a varying according to Equation (4.1).
In all cases, F is as defined in Equation (4.2). For a given value of R, the minimum porosity φmin(R) is
given by Equation (4.1) with a = 2R. The results of Dalwadi et al. (2015) are again reproduced when
a = 1 (solid black).

a rectangular array of circular obstacles. We consider the impact of microstructure on the removal
of solute in more detail in §4.2. Note that F decreases as φ increases at fixed R, as should be
expected, but also as R increases at fixed φ; the latter occurs because an increase in obstacle size
requires a correspondingly larger increase in cell size to keep φ constant. We consider the impact
of microstructure on the removal of solute in more detail in §4.2.

4.2. Simple one-dimensional filter

We now use the homogenised model to understand the effect of microstructure and Péclet
number on filter efficiency in the context of a simple one-dimensional steady-state filtration
problem. We identify the performance of the filter with the rate at which it removes solute,
and thus use the leading-order outlet concentration C(0)

out as a measure of filtration efficiency.
Specifically, we consider Equations (3.20) and (3.38) at steady state, with imposed flux and
concentration at the inlet,

φV (0) = e1 at x̂1 = 0, (4.3a)

C(0) = 1 at x̂1 = 0, (4.3b)

and passive outflow at the outlet,

∂C(0)

∂x̂1
= 0 at x̂1 = 1. (4.3c)

Since these boundary conditions (Eq. 4.3a) are compatible with unidirectional flow, we take
V (0)(x̂) = V

(0)
1 (x̂1)e1 and C(0)(x̂, t) = C(0)(x̂1). Thus, Equation (3.23) leads to

d

dx̂1

(
φV

(0)
1

)
= 0, (4.4)

which, on application of the inlet condition (Eqs. 4.3a), gives the macroscale flux φV (0)
1 ≡ 1

for all x̂1. The associated pressure drop across the entire filter, ∆P (0), is obtained by integrating
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Equation (3.20) and using the fact that φV (0)
1 ≡ 1, which gives

∆P (0) =

∫ 1

0

1

K11(x)
dx. (4.5)

Note that the right-hand side of Equation (4.5) is a measure of the total flow resistance of the
entire filter; the inverse of this quantity can be thought of as an effective permeability for the
entire filter.

Hence, the homogenised governing equation for the steady concentration distributionC(0)(x̂1)
(Eq. 3.45c) becomes

1

φ

d

dx̂1

[
φD11(φ,R)

dC(0)

dx̂1
− Pe C(0)

]
= γF (φ,R)C(0) for x̂1 ∈ (0, 1), (4.5)

where F (φ,R) is defined in Equation (3.43). We solve Equation (4.5) subject to Equations (4.3b)
and (4.3c) numerically using a finite-difference scheme. We discretise the interval [0, 1] using a
uniform mesh of size ∆x = 1/N and we approximate derivatives using a second-order accurate
central-difference formula. The results presented below were obtained using N = 500. Below,
we consider filters with varying porosity and filters with uniform porosity, but with heterogeneous
microstructure in both cases.

4.2.1. Porosity gradients

We first consider filters with varying porosity. Recall that a given porosity φ may be achieved
in two different ways: by fixing a(x̂1) and varying R(x̂1), as considered in Dalwadi et al. (2015)
for a ≡ 1; or by fixing R(x̂1) and varying a(x̂1). We consider these options in Figure 8, for the
same three porosity fields in both cases: linearly increasing with x̂1, uniform in x̂1, or linearly
decreasing with x̂1. Specifically, we take φ(x̂1) = φ0 +mφ(x̂1 − 0.5), where φ0 is the average
porosity (also the mid-point porosity) and mφ is the porosity gradient. We take φ0 = 0.8 and
mφ = 0.3 (increasing in x̂1), mφ = 0 (uniform in x̂1), or mφ = −0.3 (decreasing in x̂1). Note
that, |mφ| defines the filter microstructure and sgn(mφ) is simply the orientation of the filter.

When varying φ by varying R at fixed a ≡ 1, as considered by Dalwadi et al. (2015), the
sign of the porosity gradient has a modest impact on the concentration distribution within the
filter: mφ > 0 leads to a steeper gradient in C(0) near the inlet and a shallower gradient in C(0)

near the outlet, whereas mφ < 0 leads to a more uniform gradient in C(0) throughout the filter
(Figure 8(a)). However, the outlet concentration C(0)

out := C(0)(1) is remarkably insensitive to
mφ. The outlet concentration is slightly lower for mφ < 0, and this slight difference decreases
as Pe increases (Figure 8(b)). As Pe increases, advection becomes stronger causing more solute
to be swept through the filter; as a result, C(0)(x̂1) increases with Pe for all x̂1, and C(0)

out more
than doubles as Pe increases from 0 to 10. The case when a ≡ 1 is considered in more detail in
Dalwadi et al. (2015). Varying φ by varying a at fixed R ≡ 0.4 leads to qualitatively similar
results, but C(0)(x) and C

(0)
out are more sensitive to mφ (Figure 8, bottom row). For all Pe,

attaining a desired porosity gradient via varying R leads to a more efficient filter than varying a,
in the sense that C(0)

out is lower for the same φ(x1).

4.2.2. Microstructural gradients with uniform porosity

We now consider filters with uniform porosity but gradients in microstructure. We therefore
fix φ and simultaneously varyR and a with x̂1, recalling that a is related toR via Equation (4.1).
We consider two types of variation: an imposed gradient inR with a varying to maintain constant
φ (via Equation (4.1)) or an imposed gradient in a with R varying to maintain constant φ (via
Equation (4.1)). We consider these options in Figure 9.

We first consider R(x̂1) = R0 + mR(x̂1 − 0.5), where R0 is the average obstacle radius



A homogenised model for flow, transport and sorption in a heterogeneous porous medium 23

FIGURE 8. Steady-state concentration field C(0)(x̂1) for Pe ∈ {0, 1, 5} (left column) and outlet
concentration C

(0)
out := C(0)(1) as a function of Pe (right column). Top row: a ≡ 1 and

φ(x̂1) = 0.8 + mφ(x̂1 − 0.5). Bottom row: R ≡ 0.4 and φ(x̂1) = 0.8 + mφ(x̂1 − 0.5). In both
cases, mφ = 0.3 (solid), mφ = 0 (dotted), and mφ = −0.3 (dashed).

(also the mid-point) radius and mR is the gradient (Figure 9, top row). We take R0 = 0.36 and
mR = 0.14 (increasing in x̂1), mR = 0 (uniform in x̂1) or mR = −0.14 (decreasing in x̂1).

When varying R linearly, the sign of mR has a modest impact on the concentration distri-
bution: for any uniform porosity, mR > 0 leads to a shallower gradient in C(0) and a higher
concentration at every point within the filter, including the outlet. Thus, for any uniform porosity,
mR < 0 is always a more efficient filter than mR > 0.

We next consider a(x̂1) = a0 + ma(x̂1 − 0.5), where a0 is the average cell width (also the
cell width at the mid-point) and ma is the gradient of a over x̂1 (Figure 9 bottom row). We take
a0 = 1.34 andma = 1.8 (increasing in x̂1),ma = 0 (constant in x̂1), orma = −1.8 (decreasing
in x̂1). From Equation (4.1) for fixed φ, it can be seen that a ∝ R2, thus, a decrease in a must
be mirrored by a decrease in R to maintain a uniform φ. Thus, we expect the same qualitative
behaviour for a linear gradient in R (Figure 9, top row) as for a linear gradient in a (Figure 9,
bottom row). We find that ma < 0 leads to a more efficient filter for all φ.

Note that, for any φ ∈ (1− 0.11π, 1) — that is, the range of porosities attainable for imposed
linear gradients in both R and a (see Figure 9 caption) — prescribing a and taking ma < 0
predicts most efficient filter considered here (comparing Figure 9 (b) and Figure 9 (d)). Similarly,
for large φ & 0.725 prescribing a and taking ma > 0 predicts the least efficient filter, whereas,
for small φ . 0.725 prescribing R and taking mR > 0 predicts the least efficient filter.
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FIGURE 9. Steady-state concentration field C(0)(x̂1) for φ ∈ {0.7, 0.8, 0.9} (left column), and
outlet concentration C

(0)
out := C(0)(1) as a function of φ (right column). Top row: Pe = 1 and

R(x̂1) = 0.36 +mR(x̂1 − 0.5) for mR = 0.14 (solid), mR = 0 (dotted), mR = −0.14 (dashed). The
aspect ratio a varies following Equation (4.1). For R0 = 0.36 and mR = ±0.14 the minimum attainable
porosity is 1− 0.145π ≈ 0.54 ((b); black dots). Bottom row: Pe = 1 and a(x̂1) = 1.34 +ma(x̂1 − 0.5)
for ma = 1.8 (solid), ma = 0 (dotted), and ma = −1.8 (dashed). The radius R varies following
Equation (4.1). For a0 = 1.34 and ma = ±1.8 the minimum attainable porosity is 1 − 0.11π ≈ 0.66
((d); black dots).

5. Conclusions
We have systematically derived a macroscopic model for flow, transport and sorption during

steady flow in a two-dimensional heterogeneous and anisotropic porous medium using generali-
sations of standard homogenisation theory for slow variations in the size of periodic cells (Chap-
man & McBurnie 2011; Richardson & Chapman 2011) and locally periodic microstructures
(Bruna & Chapman 2015; Dalwadi et al. 2015). We derived a model valid for a heterogeneous
porous medium comprising cells of varying size each containing multiple arbitrarily shaped
obstacles. The heterogeneity originates from slowly varying obstacle size and/or obstacle spacing
along the length of the porous medium, the latter also induces strong anisotropy within the
problem. For the flow problem, we obtain Darcy’s law with an anisotropic permeability tensor,
and for the solute concentration problem we obtain an advection–diffusion–reaction equation
with an anisotropic effective diffusivity tensor. The permeability, effective diffusivity and the
removal term are functions of the porosity, obstacle spacing and a scale factor controlling the
variation in obstacle size across the medium; any two of these are free choices which prescribe the
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third. In §4 we consider a simple geometry comprising a circular obstacle centred in a rectangular
cell. We determine the corresponding permeability and effective diffusivity numerically and show
how this depends on the obstacle radius and aspect ratio of the rectangle. This work illustrates
and quantifies how the permeability and diffusivity of a porous medium not only depend on the
porosity of the medium, but also depend strongly on the microstructure of the medium.

The homogenisation procedure we used allows for slowly varying changes to the cell surround-
ing each circle that comprises the filter. This means that the total area of each individual cell may
differ between cells. This is a new aspect to homogenisation and we have carefully derived a
transport theorem to account for how these microstructural changes affect the macroscale trans-
port. Using this transport theorem we have shown that macroscale incompressibility is preserved
(the divergence of the Darcy flux vanishes) and that this is independent of the individual cell
size. The two degrees of microstructural freedom (varying obstacle size and spacing) enable
us to consider a wide range of heterogeneities on the microscale, for example, to maintain a
uniform porosity while systematically varying the microstructure. These macroscale equations
are computationally inexpensive to solve, allowing for optimisation of parameters through large
sweeps, which would not be possible with direct numerical simulations.

We have focused on a regime in which diffusion balances advection and removal at the
macroscale and dominates advection and removal at the microscale (i.e., Pe = O(1), εPe� 1).
Sub-limits involving weaker advection and/or removal may be taken directly in the final result
without repeating the interim analysis. For scenarios with stronger advection (i.e., εPe = O(1)),
as might be the case in many industrial filtration scenarios, hydrodynamic dispersion becomes
important and new terms that are proportional to the product of velocity and concentration
gradient will arise in the homogenised equations. Our analysis here lays the foundation for future
work to incorporate dispersive effects.

The example geometry considered in §4 is two-dimensional; a direct physical analogue would
be a quasi-two-dimensional filter comprising solid circular pillars that are centered on a rectan-
gular grid and sufficiently tall that boundary effects at the top and bottom walls can be neglected.
This is a simple but appropriate model for non-woven fibrous filters, which form a major part of
the filtration industry (e.g., those in air purifiers and vacuum cleaners) (Spychała & Starzyk 2015;
Printsypar et al. 2019), magnetic separation filters composed of wire wool (Mariani et al. 2010),
and microfluidic devices containing tall micropillars (Benı́tez et al. 2012; Wang et al. 2013). The
strong anisotropy in the problem could be useful for filter design; it is achieved while maintaining
the circular shape of the obstacles and the principal directions of the permeability and diffusivity
tensors are fixed as the longitudinal and transverse directions. Furthering our understanding of
the impacts of microstructural heterogeneity and anisotropy in general, is of use to many other
areas of research including hydrology and biology (e.g.,Wang et al. 2020; O’Dea et al. 2015).

We considered a simple model problem for a one-dimensional filter with chemical adsorption
at steady state. Measuring efficiency as the amount of solute removed by the filter per unit time,
we found that negative porosity gradients lead to a more efficient filter than positive porosity
gradients or filters of uniform porosity. Further, for a fixed porosity, decreasing obstacle size
or decreasing obstacle spacing lead to more efficient filters than their respective constant or
increasing counterparts. For a given porosity decreasing the obstacle spacing linearly leads to a
more efficient filter than linearly decreasing the obstacle radius.

While we have defined efficiency to mean instantaneous performance, there are further consid-
erations to a filter’s efficiency. Factors such as manufacturing costs, filter lifetime and fluid flux
output may also need to be considered. For example, if the coating on the solid obstacles was
very expensive then we may wish to minimise the amount of surface area of the solid obstacles
while maximising performance. Further, we assumed that the solid surface never saturates with
solute. However, in practice, the number of active sites where the solute can attach to the solid
will decrease as solute adsorbs, which may reduce the efficiency. In this case, this effect may
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be mitigated by ensuring that there are active sites throughout the full length of the filter so that
the chance a solute particle comes into contact with an active site is maximised. The simple
one-dimensional filter model we considered only predicts initial or instantaneous filter efficiency
and will therefore not predict the total amount of contaminant filtered out over the life span of
a filter if properties were to change with time. However, the equations derived in this paper can
readily be generalised to describe such a case. All of these additional considerations to filter
design lead to multiple optimisation problems, requiring large parameter sweeps, for which a
computationally inexpensive model, such as this, is vital.

In our analysis we have assumed that the solute particles are negligibly small; for particles
that are not negligible in size relative to the smallest distances between adjacent obstacles (choke
points), we would also need to consider the effects of choking of the filter due to particle build-up.
Avoidance of such filter blockages requires sufficiently wide longitudinal connectivity. Hence,
a filter comprising obstacles whose radii increase with depth is desirable, since such a gradient
allows for more build-up of solute on the solid obstacles near the inlet without choking the filter.
This scenario was considered in Dalwadi et al. (2016). However, in our case, we also have the
possibility of varying the spacing between obstacles. This additional degree of freedom allows
us to respect a positive gradient in the obstacle radii to mitigate the risks of blockages, while
also having either a negative gradient in the porosity or obstacle spacing to enable more efficient
filters.

We have validated our results against limiting cases and previous homogenisation results (cf.
§4.1); DNS for flow and transport in a broader range of relevant geometries would provide further
validation and may lead to additional insight, and should be the subject of future work.

While it has been shown that the effective diffusivity for a porous medium with obstacles
on a uniform square grid was qualitatively similar to a porous medium with obstacles on a
uniform hexagonal grid for all porosities (Bruna & Chapman 2015), we expect that the addition of
anisotropy to the hexagonal problem, obtained by varying the longitudinal obstacle spacing, will
cause the permeabilities and effective diffusivites to diverge from those determined here. For ex-
ample, in certain limits, the hexagonal problem reduces to a series of longitudinal channels while
in other limits, the hexagonal problem reduces to a series of transverse channels. Consequently
in the latter limit, for the hexagonal structure, the longitudinal permeability and diffusivity
must vanish, while for the rectangular structure the longitudinal permeability and diffusivity
remain non-zero for the all parameter combinations. In general, the hexagonal structure of
obstacles will mean that the longitudinal permeability will be more sensitive to longitudinal
obstacle spacing than it is for obstacles in a rectangular structure. This is because with a
hexagonal grid, altering the longitudinal spacing alters both the longitudinal and transverse
distances between neighbouring obstacles, while for a rectangular grid, altering the longitudinal
spacing does not alter the transverse distance between obstacles. This illustrates that, when
anisotropy is introduced into a problem, the microstructure becomes more significant than for
isotropic problems.

It would be straightforward to generalise our approach to a three-dimensional porous medium
comprising spherical obstacles centred on a cuboid grid that is homogeneous in two directions,
but again allowing for arbitrary variation of both obstacle radius and obstacle spacing in the
longitudinal direction. We would expect that the results would be qualitatively similar to the
two-dimensional problem considered here, however connectivity does not vanish when obstacles
touch. This would then mean that we have non-zero permeability and diffusivity in all directions
throughout the entire parameter space.

A final point to note is that the spacing between obstacles may change when a filter is subject
to an effective stress. By coupling the model presented here to a law that relates the spacing of
the obstacles to the strain of the porous medium, we can derive homogenised equations for a
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filter undergoing longitudinal deformation. Modelling the filter as a series of circles on a varying
hexagonal grid will better describe granular materials and this is the focus of future work.

In summary, the results presented in this manuscript form a comprehensive framework for
describing the transport and adsorption properties through heterogeneous porous media. The
model can be used to answer questions on the filtration performance of such porous media as
well as being well-equipped for the generalisation to more complicated scenarios.
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Appendix A. Transport theorem
A.1. Generalised transport theorem

Firstly, we present a generalised form of the transport theorem which allows us to interchange
∇x with integration over a cell of arbitrary geometry. Consider the region α bounded by the
surface ∂α, and suppose that this region moves and/or deforms with time t. Denote the position
of points on ∂α(t) by yb(t). The Reynolds Transport Theorem states that

d

dt

∫
α(t)

ζ dV =

∫
α(t)

∂ζ

∂t
dV +

∫
∂α(t)

(
∂yb

∂t
· n
)
ζ dS, (A 1)

for an arbitrary vector field ζ(x̂, t), where dV signifies a volume integral, dS signifies a surface
integral, n is the outward normal to ∂α and the time derivative ∂yb/∂t can be identified as the
local velocity of ∂α(t).

In Equation (A 1), t plays the role of an arbitrary scalar parameter. In other words, Equa-
tion (A 1) remains valid if we suppose that the region moves and/or deforms according to some
other scalar parameter ξ, in which case we have that

d

dξ

∫
β(ξ)

z dV =

∫
β(ξ)

∂z

∂ξ
dV +

∫
∂β(ξ)

(
∂yb

∂ξ
· n
)
z dS, (A 2)

for an arbitrary vector field z(x̂, ξ), and where the domain β is a function of ξ. Note that the
derivative ∂yb/∂ξ can no longer be identified as a velocity in the traditional sense.

Now, consider several independent parameters as a vector ξ = ξiei, where we use the sum-
mation convention and ei is the unit normal in the ith direction. The corresponding divergence
with respect to this vector is then

∇ξ ·
∫
β(ξ)

z dV =

(
ei

∂

∂ξi

)
·
∫
β(ξ)

(zjej) dV =
∂

∂ξi

∫
β(ξ)

zi dV. (A 3)

Equation (A 2) provides the following expression for the right-hand side of Equation (A 3)

∂

∂ξi

∫
β(ξ)

zi dV =

∫
β(ξ)

∂zi
∂ξi

dV +

∫
∂β(ξ)

(
∂yb

∂ξi
· n
)
zi dA. (A 4)
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Returning to vector notation, we can rewrite this result as

∇ξ ·
∫
β(ξ)

z dV =

∫
β(ξ)

∇ξ · z dV +

∫
∂β(ξ)

n ·G · z dA, (A 5a)

where

G =
∂ybi
∂ξj

eiej =

(
∂yb

∂ξ

)ᵀ
= (∇ξ ⊗ yb)ᵀ, (A 5b)

is the Jacobian of the dependence of ∂β on ξ. Thus, Equation (A 5) defines the generalised
transport theorem.

A.2. Relationship to the macroscale perturbation to the normal

Applying the generalised Reynolds transport theorem (Eq. A 5) to a vector field z(x,y), over
the periodic cell ωf , yields the following expression

∇x ·
∫
ωf (x1)

z dSy =

∫
ωf (x1)

∇x ·z dSy+

∫
∂ωs(x1)

ny ·G·z dsy+

∫
∂ω(x1)

n� ·G·z dsy, (A 6)

where n� is defined in relation to Equation (3.34).
From periodicity, the final term on the right-hand side of Equation (A 6) vanishes, i.e.∫

∂ω(x1)

n� ·G · z dsy = 0. (A 7)

Using the definition of ny from Equation (3.25c) and the definition of G from Equation (A 5b),
we obtain

ny ·G =

∂fs
∂yi

∂ybi
∂xj

|∇yfs|
ej , (A 8)

using the summation convention and evaluated on y = yb(x), which is defined implicitly
through

fs(x,y
b(x)) = 0. (A 9)

Since x = xjej is a parameter in each unit cell, differentiating Equation (A 9) with respect to
xj yields the relationship

∂fs
∂xj

+
∂fs
∂yi

∂ybi
∂xj

= 0, (A 10)

evaluated on y = yb(x). Substituting the relationship (Eq. A 10) into Equation (A 8) implies that

ny ·G = − ∇xfs
|∇yfs|

≡ −N , (A 11)

using the definition ofN in Equation (3.25e). Thus, the transport theorem (Eq. A 6) becomes∫
ωf

∇x · z dSy = ∇x ·
∫
ωf

z dSy +

∫
∂ωs

N · z dsy. (A 12)

Appendix B. Non-monotonicity of D11

In this Appendix, we show the diffusivity tensor D (Figure 10 (a)–(d)) and examine the
non-monotonicity of the longitudinal diffusivity D11 for fixed R as φ varies. We consider the
minimum longitudinal diffusivityD?

11 and the unique value of φ? to which it corresponds (Figure
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FIGURE 10. (a) and (c) D11 and D22, respectively, against φ for fixed values of
R ∈ {0.1, 0.2, 0.3, 0.4, 0.49}, with a varying according to Equation (4.1). (b) and (d) D11 and
D22, respectively, against R for fixed values of φ ∈ {0.65, 0.7, 0.8, 0.9, 0.95}, with a varying according
to Equation (4.1). For a given value of R, the minimum porosity φmin(R) is given by Equation (4.1)
with a = 2R. Note that D11 is non-zero at φmin(R) for all values of φ (dot-dashed curve, top row),
whereas D22 vanishes at the corresponding φmin. Both D11 and D22 are as defined in Equation (3.45a) and
calculated using COMSOL Multiphysics®. Both D11 and D22 tend to 1 as φ → 1, which corresponds to
the limit of free-space diffusion. The effective diffusivity is isotropic when a = 1 (solid black curves, top
2 rows), in agreement with the results presented in Dalwadi et al. (2015). (e) The minimum longitudinal
diffusivity D11 = D?

11 for each value of R in Figure 6(a) against the corresponding porosity φ = φ? and
(f) the corresponding value of a = a? against R?. The latter is well predicted by the line a? = 2R?

√
π

(blue dot-dashed line) for small R?, becoming non-monotonic near R? = 0.5.

10 (e)). Each value φ? corresponds to a particular pair a? and R? (Figure 10 (f)). Note that a? is
approximately related to R? via a? = 2R?

√
π (Figure 10 (f), blue dot-dashed line). This linear

relationship is a good fit for small R?, but slightly overestimates the true value of a? for larger
values of R?.
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