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Abstract

Studies supporting a strong association between tau deposition and neuronal loss,

neurodegeneration, and cognitive decline have heightened the allure of tau and tau-

relatedmechanisms as therapeutic targets. In February 2020, leading tau experts from

around the world convened for the first-ever Tau2020 Global Conference inWashing-

ton, DC, co-organized and cosponsored by the Rainwater Charitable Foundation, the

Alzheimer’s Association, and CurePSP. Representing academia, industry, government,

and the philanthropic sector, presenters and attendees discussed recent advances and

current directions in tau research. Themeeting provided a unique opportunity tomove

tau research forward by fostering global partnerships among academia, industry, and

other stakeholders andbyproviding support for newdrugdiscoveryprograms, ground-

breaking research, and emerging tau researchers. Themeeting also provided an oppor-

tunity for experts topresent critical research-advancing tools and insights that arenow

rapidly accelerating the pace of tau research.
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1 TAU STRUCTURE AND BIOLOGY

The earliest discoveries regarding the structure and biology of assem-

bled tau protein occurred in the context of Alzheimer’s disease (AD)

research and accumulated slowly over many decades. Nearly 60 years

passed between the detection, by Alois Alzheimer, of intracellular neu-

rofibrillary tangles (NFTs) in the brains of AD patients1 and the subse-

quent discovery that NFTs contain paired helical filaments (PHFs).2,3

Another two decades passed before researchers determined that

the microtubule-associated protein tau4 is an integral component of

PHFs.5–8 This series of discoveries became a foundation for further

explorationof tau’s structural diversity andwide rangeof functions and

behavior in both physiologic and pathologic states. It is now clear that

the highly flexible structure of this natively disordered protein allows it

to participate in numerous signaling pathways and engage in a surpris-

ing number of physiological functions.9,10 Yet, under pathologic condi-

tions, tau monomers undergo conformational changes that lead to the

development of abnormal filamentous inclusions, which in turn cause

the degeneration of neurons and glial cells and result in a range of neu-

rodegenerative diseases now collectively known as tauopathies.11–14

Tauprotein is in the central andperipheral nervous systems in a vari-

ety of intracellular compartments as well as in extracellular locations,

including the interstitial fluid and cerebrospinal fluid (CSF). It is most

abundant in neuronal axons,where it plays a role in promoting thepoly-

merization, assembly, and stability ofmicrotubules, which are essential

for axonal transport aswell as formaintaining the structural integrityof

neurons.4,11,15–17 Tau is a member of the microtubule-associated pro-

tein (MAP) family, and it is encoded by a single gene, MAPT, which is

located on human chromosome17q21.31. Alternativemessenger RNA

(mRNA) splicing of exons fromMAPT results in the expression of six dif-

ferent isoforms of tau protein in the human brain.18 Each isoform com-

prises four parts: an N-terminal domain, which may play a role in regu-

lating distance betweenmicrotubules; a proline-rich domain that plays

a role in cell signaling and interactions with protein kinases and WW

domain-containing proteins, with growing evidence that WW domain-

containing proteins bind at the proline-rich domain; a microtubule-

binding domain; and aC-terminal domain, whichmay be involved in the

regulation of microtubule polymerization.9,14,19 The isoforms differ at

their N-terminals, coded by exons 2 and 3, and in their microtubule-

binding regions, coded by exon 10. Alternative splicing of N-terminal

exons 2 and 3 results in the addition of a 29-amino-acid sequence (1N),

a less commonly expressed replication with a total of 58 amino acids

(2N), or an absence of additional amino acids (0N). In the microtubule-

binding compartment, the inclusion or exclusion of exon 10 results in

mailto:csexton@alz.org
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isoforms with four repeatedmicrotubule-binding domains (4R) or with

three microtubule-binding domains (3R), respectively. In the healthy

adult human brain, 3R and 4R isoforms tend to be equally expressed,

with few exceptions.18,20 Tauopathies can be divided into three groups

based on the isoforms present in their filamentous inclusions: 3R+4R

tauopathies, 3R tauopathies, and 4R tauopathies (see Table 1).

1.1 Diversity of tau filament conformers

The first structural analyses of PHF domains,5,7,23 which established

a foundation for discovering relationships between tau structure

and function, revealed that when full-length tau assembles into fila-

ments, the repeats form the filament core, and the N-terminal and C-

terminal domains form the “fuzzy coat.” The discovery that the core

repeats of tau filaments also bind to microtubules led to an early

hypothesis that an important physiologic function of tau (microtubule

assembly) and tau’s assembly into pathologic filaments may be mutu-

ally exclusive events.21 Newer research involving the use of cryo-

electron microscopy (cryo-EM) is revealing an astonishing diversity

of tau filament structures among individuals with AD, Pick’s disease,

chronic traumatic encephalopathy (CTE), and corticobasal degenera-

tion (CBD).24–28 Thesedifferences exist betweendiseases; tau filament

structures are the same for different individualswith the same disease.

Such findings support the hypothesis that distinct conformers of fil-

amentous tau may ultimately help explain not only the specific neu-

ropathological lesions or types of tau inclusions associated with each

tauopathy, but also distinct patterns of tau accumulation, progression

of disease, and variations in clinical presentations among individuals

with tauopathies.

Structural analyses of other proteinopathies will likely provide sim-

ilar insights. Indeed, at Tau 2020, while accepting the $250,000 Rain-

water Prize for outstanding innovation in neurodegenerative research,

Michel Goedert described for the first time high-resolution cryo-EM

structures of α-synuclein filaments from the human brain, which may

ultimately provide important information about multiple-system atro-

phy (MSA). These filaments were from putamen of five individuals with

MSA, a synucleinopathy that affects both nerve cells and glial cells,

chiefly oligodendrocytes. The structures obtained by his team and that

of Sjors Scheres differ from those determined by researchers using α-
synuclein filaments assembled from recombinant proteins.29 Because

Goedert and Scheres previously had shown that the structures of tau

filaments from the human brain differ from those of filaments assem-

bled from full-length recombinant tau upon induction of aggregation

with heparin,27,30 it follows that filaments formed from recombinant

proteins may not be ideal for structure-based drug design and related

experiments. Findings from research by Goedert and Schweighauser

et al.29 may contribute to the development of specific imaging ligands

for synucleinopathies, a major unmet clinical need.

An increasingly important area of tau research involves a deeper

examination of how and why the morphologies of tau inclusions

that characterize various tauopathies vary dramatically, even when

their constituent tau fibrils contain the same isoforms. For example,

although 4R tau is found in the tau inclusions of progressive supranu-

HIGHLIGHTS

∙ In February 2020, leading tau experts convened for the

Tau2020Global Conference.

∙ Recent advances span tau biology, propagation, biomark-

ers, and therapeutics.

∙ Cryo-electronmicroscopy studieshave revealed thediver-

sity of tau filament structures.

∙ Tau positron emission tomography tracers allow in vivo

visualization of tau deposition in the human brain.

∙ Therapeutic approaches aim to prevent the production,

aggregation, spread, or deposition of pathologic tau.

RESEARCH INCONTEXT

1. Systematic review: The authors report the updates and

advances in tau research presented at the Tau2020

Global Conference.

2. Interpretation: Significant advances spanning tau biol-

ogy, propagation, biomarkers, and therapeutics are con-

tributing to our understanding of tauopathies.

3. Future directions: At Tau 2020, the tau research com-

munity demonstrated an enthusiastic commitment to

advancing the development of anti-tau therapeutics, nec-

essary new imaging agents and biomarkers, and the crit-

ical tools that will be needed to facilitate anti-tau drug

development. Tau2022 will provide a further update on

progress, including on the potential of tau and tau-related

mechanisms as therapeutic targets.

clear palsy (PSP), CBD, and argyrophilic grain disease (AGD),31 CBD is

characterized by the formation of “astrocytic plaques” (tau filaments in

a corona-like arrangement in astrocytes), PSP by “tufted astrocytes”

(long, thin radial processes in astrocytes), and AGD by argyrophilic

granular inclusions in neuronal dendrites.9,31–33 A better understand-

ing of disease-specific tau structureswill be instrumental for the devel-

opment of tau imaging ligands that recognize disease-specific tau fil-

aments for diagnostic and clinical testing in primary tauopathies. Fur-

ther scrutiny of posttranslational modifications and other processes

that result in a wide range of inclusions unique to specific tauopathies

will likely have important implications for the development of new

treatments.

1.2 Posttranslational modifications and
noncanonical functions of tau

The classification of tau as a microtubule binding protein and the

nearly exclusive focus on its role in promoting the assembly of axonal

microtubules during early decades of research likely delayed the



4 SEXTON ET AL.

TABLE 1 3R+4R, 3R, and 4R tauopathies

3R+4R tauopathies 3R tauopathies 4R tauopathies

Alzheimer’s disease Pick’s disease Argyrophilic grain disease

Amyotrophic lateral

sclerosis/Parkinsonism–dementia

complex

Familial frontotemporal dementia and

Parkinsonism (someMAPTmutations,

such as G272V andQ336R)

Corticobasal degeneration

Anti-IgLON5-related tauopathy Guadeloupean Parkinsonism

Caribbean Parkinsonism Globular glial tauopathy

Chronic traumatic encephalopathy Huntington’s disease

Diffuse neurofibrillary tangles with

calcification

Progressive supranuclear palsy

Down syndrome SLC9a-related Parkinsonism

Familial British dementia Tau astrogliopathy

Familial Danish dementia Familial frontotemporal dementia and Parkinsonism

(someMAPTmutations, such as P301L and

P301S, all known intronic mutations, andmany

coding regionmutations in exon 10)

Niemann-Pick disease, type C

Non-Guamanianmotor neuron disease

with neurofibrillary tangles

Postencephalitic Parkinsonism

Primary age-related tauopathy

Progressive ataxia and palatal tremor

Tangle-only dementia

Familial frontotemporal dementia and

Parkinsonism (someMAPTmutations,

such as V337M and R406W)

Notes: In some 3R+4R tauopathies, including Alzheimer’s disease and chronic traumatic encephalopathy, all six isoforms can be found in disease filaments. In

other tauopathies, only some isoforms are present in tau filaments.21,22.

investigation of other potential biologic functions that may be

attributed to tau.34 A deeper exploration of not only the structure

and distribution of tau, but also its subcellular locations, post-

translational modifications, and tauopathy-specific clusters of tau

isoforms has begun to improve our understanding of atypical or

noncanonical functions of tau protein, as well as the role of tau in

neurodegeneration.10,14,34

Tau undergoes many posttranslational modifications in both phys-

iologic and pathologic states, including phosphorylation, acetylation,

methylation, ubiquitination, and truncation.13,14,35 In research to date,

the greatest focus has been on the role of abnormal hyperphosphoryla-

tion of tau in tau-mediated disease.10 Tau phosphorylation has mainly

been explored through the use of phosphorylation-dependent anti-tau

antibodies (AD2, AT180, AT8, CP13, PHF1), some of them (AT100, Alz-

50, MC1) recognizing specifically pathologic tau species.36–41 A wide

variety of stressors, including ischemia and trauma, can lead to tau

phosphorylation in the brain.42,43 More recently, a high-sodium diet

has been found to trigger specific immune activation that results in tau

phosphorylation in the brain and subsequent cognitive impairment.44

Other posttranslational modifications, such as acetylation and ubiqui-

tination, have also been shown to contribute either directly or indi-

rectly to events that lead to neurodegeneration.45 Recent research

examining the role of ubiquitination in CBD, for example, suggests that

posttranslational modifications of tau may play a role in the structural

diversity of various tau strains.24 Other posttranslational modifica-

tions appear to influence the stability of intracellular and extracellular

tau under physiologic conditions, and a closer examination of these is

leading to new insights regarding the impact of tau pathology.

We have recently gained greater insight into the effects of tau on

and in the nucleus.46,47 Physiologic tau is present in the nucleus, where

it binds AT-rich satellite DNA and protects DNA from peroxidation-

inducedDNAdamage.48 Consistent with a role inmaintaining genomic

architecture, physiologic forms of tau co-localize with nucleoli49

and pericentromeric heterochromatin, and tau knockout mice have

reduced levels of proteins and histone modifications that maintain

constitutive heterochromatin.50 Pathologic forms of tau in the cyto-

plasm also negatively affect nuclear function through their effects

on the actin cytoskeleton and microtubule dynamics. In Drosophila

and induced pluripotent stem cell (iPSC)-derived neuron models of

tauopathy, the effects of tau on actin and microtubules cause the

nuclear envelope to involute and the nucleoskeleton to weaken.51,52

In neuronal nuclei from post mortem human brain tissue of patients

with AD, invaginations of the nuclear envelope contain filamentous

actin and disease-associated phosphorylated tau.51 Pathogenic forms

of cytoplasmic tau are reported to affect nuclear pore localization,

function, and nucleocytoplasmic trafficking;52,53 induce widespread
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decondensation of constitutive heterochromatin;54 promote DNA

damage;55,56 alter RNA stability and RNA export;57–59 promote

ribosome instability;60 and activate transposable elements.61,62

A wide range of additional novel physiologic roles for tau

are currently under investigation, including its roles in enabling

long labile domains;63 modulating insulin signaling;64 regulating

myelination;10,65,66 and regulating learning, memory, and synaptic

plasticity.67 Further examination of these roles will likely have impor-

tant implications for drug development and will likely improve our

ability to discriminate between physiologic and pathologic tau. An

important goal moving forward will be to determine which posttrans-

lational modifications play a direct role in triggering tau aggregation

in neurodegenerative disease. For example, although hyperphospho-

rylation of tau can interfere with its role in microtubule assembly,68

whether hyperphosphorylation of tau triggers human aggregation

of tau has yet to be proven.21 Meanwhile, evidence is emerging that

even within a single entity such as AD, different posttranslational

modifications lead to different patterns of tau uptake, which in turn

affect the rate of progression of clinical disease.69 Given the “druga-

bility” of enzymes that affect posttranslational modifications and the

structural and functional cross-talk between these, deciphering the

posttranslational modification code of tauwill create opportunities for

drug development.68,70

2 PHENOTYPIC AND GENETIC DIVERSITY OF
TAUOPATHIES

Without genetic information, imaging, or other biomarkers, the abil-

ity to diagnose a specific tauopathy and predict disease course can

be exceedingly difficult, because tauopathies frequently have overlap-

ping signs and symptoms.9,71 Indeed, many tauopathies still can be

confirmed only at autopsy. Comprehensive neurologic and neuropsy-

chologic evaluations aid in the recognition of clinical syndromes, and

based on these evaluations alone, clinicians often can establish cogni-

tive profiles that enable them to select from among competing clini-

cal syndromes.46,71 Increasingly, imaging studies and other biomarkers

are being used to confirm clinical findings.72 Imaging studies, together

with post mortem studies, also have contributed enormously to under-

standing the underlying causes of specific symptoms by strengthening

the link between unique clusters of symptoms associated with distinct

tauopathies and corresponding anatomic regions of the brain vulner-

able to a given disease.72,73 In AD, for example, the early symptoms

of impaired episodic memory correspond to tau burden in the medial

lobe,72 visual agnosia corresponds to tauburden in regionsof the visual

cortex (Brodmann areas 18 and 37),74,75 and ideomotor and dressing

apraxia correspond to the accumulation of tau aggregates in the ante-

rior cingulate cortex.76

Some of the phenotypic variability among tauopathies, as well as an

increased risk for someof them, canbe traced togeneticmutations that

promote specific tauopathies, to modifier genes, or to other anomalies

in genomic architecture. Efforts to sort tauopathies genetically began

with the discovery that dominantly inherited mutations inMAPTwere

associated with a form of frontotemporal dementia and Parkinsonism

linked to chromosome17 (FTDP-17).77–79 BecauseFTDP-17, nowcon-

sidered a familial subtype of frontotemporal lobar degeneration with

tau pathology (FTLD-tau),80 is associated with tau inclusions in neu-

rons and glial cells but not with amyloidopathy, this discovery provided

the earliest evidence that tau aggregates alone could lead to neurode-

generation and dementia.

During the same decade, evidence emerged that pathologic tau

associatedwithADwasmore strongly correlatedwithdiseaseprogres-

sion, cognitive decline, and neuropathologic severity than amyloidopa-

thy, and in turn that amyloidopathy was necessary but not sufficient

to explain AD.81 Subsequent PSP studies helped to confirm not only

links between specific MAPT mutations and various tauopathies, but

also that pathologic tau can be a direct cause of neurodegeneration.78

Neurodegenerative diseases in which tau is known to play a pri-

mary role, or primary tauopathies, include FTLD-tau, Pick’s disease,

PSP, CBD, AGD, and CTE. In contrast, so-called secondary tauopathies

are those in which pathogenic tau formation develops in response to

other pathogenic proteins or pathologic events.9 Amyloidbeta (Aβ) and
α-synuclein, both of which have been reviewed extensively, are two

examples of pathogenic proteins that have been regarded as stimu-

lators of tau, resulting in the secondary tauopathies of AD and Lewy

body dementia, respectively. It is important to note that no known

pathogenic mutations in MAPT cause neuropathologically defined AD

or other secondary tauopathies. Other secondary tauopathies include

Niemann-Pick disease type C, Down syndrome, subacute sclerosing

panencephalitis, and myotonic dystrophy. Although these differ sig-

nificantly with regard to clinical manifestations, several secondary

tauopathies have some common underlying causes, such as impaired

endosomal–lysosomal trafficking, and also have in common that they

may be preventable.

To date, more than 50 MAPT mutations have been associated with

neurodegenerative disease. Thesemutations are believed to play a role

in enhancing tau aggregation, disrupting tau protein structure, and/or

interfering with the mRNA splicing of MAPT exons. MAPT mutations

concentrated in exons 9 to 12 are believed to account for approx-

imately 5% of cases of FTLD-tau.21 Currently, there are no known

correlations betweenMAPTmutations and posttranslational modifica-

tions of tau.21

In addition to direct mutations in the MAPT gene, different hap-

lotypes of MAPT also have been implicated in the development of

primary tauopathies. Two major haplotypes, H1 and H2, can be traced

to an ancestral inversion of a large DNA fragment at 17q21.31, which

encompasses MAPT and a number of other genes.82,83 Inheritance of

the H1 haplotype is associated with an increased risk for PSP, CBD,

Parkinson’s disease (PD), AGD, and amyotrophic lateral sclerosis

(ALS),21 but is not associated with Pick’s disease.84–86 In contrast,

inheritance of the H2 haplotype is believed to confer protection

against PSP, CBD, PD, and ALS.87 The mechanism by which the

H2 haplotype confers protection remains unclear; however, some

evidence suggests that this haplotype is associated with increased

inclusion of exon 3.88 Newer research is examining the complexities of

subhaplotypes and their contribution to risks for specific phenotypes.
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Some evidence suggests that subhaplotypes of H1 result in differential

risks for some disorders.85,88,89

Subhaplotypes of the 17q locus have distinctly different associa-

tions for PD and PSP. Subhaplotype H1c specifically seems to asso-

ciate with PSP but not with PD. Early evidence suggests that in iPSC-

derived neurons andmicroglia fromH1c haplotype families, chromatin

is in an open state near single nucleotide polymorphisms that associate

with PSP; however, this is not the case in iPSC-derived astrocytes. Con-

versely, three other subhaplotypes (H1.1–H1.3) appear to associate

with PD through expression of the astrocytic marker LRRC37A, with

some variants being protective, and others increasing risk for PD.90

2.1 Role of genetics in research-advancing tools
and insights

Amajor goal in tau research is to determine the intricate steps bywhich

mutations lead to tau aggregation and accumulation, and in turn to

neurodegeneration and neuronal and glial cell death. Mouse and other

animal models have proven inadequate for the study of tauopathies,

largely because counterparts of human tauopathies do not exist in

these models and because human tauopathies are difficult to mimic in

these models. For example, although 3R and 4R isoforms are equally

expressed in normal adult human brains, the expression of isoforms as

well as the range of isoforms in animal brains differ dramatically.91–93

Because the inability to adequately capture the complexity of

humanMAPTmutations in animal models represents a significant bar-

rier to the study of human tauopathies, researchers in the field are

turning to the use of iPSCs. A recent project co-led by Celeste Karch,

Alison Goate, and Sally Temple, involving the collection of fibrob-

lasts, iPSCs, and neural precursor cells from individuals with a range

of primary tauopathies, already has become an important tool for

tau researchers. This team of researchers generated their collection

from 140 individuals withMAPT mutations or risk variants, PSP, CBD,

and normal cognition. They successfully generated 31 iPSC lines from

MAPT mutation carriers, noncarrier family members, and autopsy-

confirmed PSP patients and 33 genome-engineered iPSCs that were

corrected or mutagenized. Together, the team developed a unique

resource comprising fibroblasts, iPSCs, andneural progenitor cells cou-

pled with comprehensive clinical histories that can be accessed by

the scientific community for disease modeling and the development of

novel therapeutics for tauopathies.94

One goal of current research is to identify gene variants that may

play a role in the progression of various tauopathies. Recent research

conducted by Edwin Jabbari and Huw Morris led to the discovery

that a gene variant close to LRRK2, which is also associated with

PD, likely plays a significant role in PSP progression.95 The team

conducted a genome-wide association study (GWAS) of 1001 peo-

ple comprising one clinical cohort (individuals from the Progressive

Supranuclear Palsy-Cortico-Basal Syndrome-Multiple System Atro-

phy, or PROSPECT, study in the United Kingdom) and one post mortem

cohort (samples from brain banks in the United States, United King-

dom, and Germany) with the goal of discovering genetic variants that

might influence progression of PSP and also might represent drug tar-

gets. They demonstrated that variation at the LRRK2 locus determines

the length of survival in individuals with PSP, from the onset of motor

symptoms until death, likely through the regulation of gene expression.

Their work suggests that modulation of proteostasis and neuroinflam-

mation by LRRK2 inhibitors might possibly have a therapeutic role in

both PSP and PD.

Findings from recent studies that aim to identify potentially pro-

tective mutations in AD and other tauopathies also may eventually

become a valuable tool for other researchers in the field. Families

with autosomal dominant mutations, for example, provide a unique

opportunity to study disease progression from preclinical to clinical

stages, because carriers of thesemutations are genetically determined

to develop dementia. These families also may help develop new and

more sensitive measures for early detection and help test the imple-

mentation of early interventions in clinical trials. Recent research

led by Yakeel T. Quiroz at Harvard Medical School reported associa-

tions among amyloid and tau deposits using positron emission tomog-

raphy (PET) imaging and episodic memory measures in cognitively

unimpaired carriers of presenilin 1 (PSEN1) E280A mutation, several

decades before clinical onset.96,97 They also reported on the first case

from the PSEN1 E280A kindred who developed mild cognitive impair-

ment (MCI) in her 70s, three decades after the estimated age of clinical

onset for this kindred. When the patient was examined in the study by

Quiroz et al.,96 she had earlyMCI and very high brain amyloid, but lim-

ited tau tangle and neurodegenerative measurements. Genetic analy-

sis revealed that she had two copies of the apolipoprotein E (APOE)

ε3 Christchurch (R136S) mutation, suggesting that this genetic vari-

ant is protective by reducing tau pathology and neurodegeneration in

the presence of high amyloid pathology.98 Future longitudinal stud-

ies of these populations will be needed to further characterize the

biomarker trajectory of specific genetic mutations. Much likely will be

learned from “escapees” of autosomal dominantmutations—thosewho

remain unimpaired at older ages. Quiroz et al.96 are also characteriz-

ing newly identified Colombian families with MAPT mutations leading

to frontotemporal dementia (FTD). They plan to extend their studies to

includemore families with early-onset dementia.

CRISPR-Cas9, a technology that enables researchers to edit parts

of the genome by altering its DNA sequence, may prove to be

another remarkably useful tool in tau research. At Tau 2020, Patrick

Hsu received the Rainwater Charitable Foundation’s innovative early

career scientist award for his work involving the correction of MAPT

mutations using CRISPR editing to repair defective tau splicing in neu-

rons.Using anovelRNA-targetingCRISPRsystem thatwouldno longer

inducepermanent, andat timesunwanted, changes to the genetic code,

he successfully targetedMAPT RNA to correct splicing imbalances and

reduced pathologic tau isoforms in neuronal models of FTD.99

3 TAU PROPAGATION AND HYPOTHETICAL
MECHANISMS OF CELL DEATH

The sequential emergence of tau pathology in different areas of the

brain, which has been shown to occur in disease-specific, stereotypical

patterns in several tauopathies, has beenattributed to thevulnerability
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or susceptibility of various regions of the brain to a particular disease

process.100 Alongside theories of regional vulnerability, more recent

experimental evidence has suggested that propagation might occur in

a prion-like manner, whereby abnormal tau seeds are templated and

transferred from donor cells to recipient cells.31,101–103 Although a

growing number of newer studies have supported the latter hypothe-

sis, several steps in this hypothesizedprocess remainunclear.31 Indeed,

as yet, tau pathology has not beenproven to have several prion-specific

characteristics,which includenot only cell-to-cell transmissionbut also

infectious transmission from one tissue to another and transmission

between organisms.22,31,104 A better understanding of the events that

lead to the formation of tau filaments and insoluble tau aggregates, as

well as the detailed events that trigger tau seeding, templated aggre-

gation, and release and uptake in neuronal cells, will be necessary to

solve the problems posed by various theoretical mechanisms of tau

propagation.22,31

Numerous studies have demonstrated evidence of tau-induced

seeding, or the induction of aggregation by abnormal tau,105–108

and some of these also have shown evidence of templated

aggregation.105,109,110 Yet, these studies have so far involved only

experimental models, in most cases involving the injection of human

brain homogenates into transgenic mice, or the treatment of cultured

cells with similar brain extracts. To date, there is limited evidence of

templated seeding activity in tau aggregates obtained from individuals

with tauopathies, although some researchers have used sophisticated

biosensor assays to detect tau seeds in brain homogenates and CSF

of individuals with AD and Pick’s disease that appear to be capable of

inducing aggregation.111–114

3.1 Tau secretion and uptake

Substantial evidence suggests that tau is secreted under normal phys-

iologic conditions,115 and that tau exists outside cells in the absence

of tau pathology or cell death.116–118 However, whether this physio-

logic secretion of tau plays any role in the propagation of tau pathol-

ogy is unknown. Under normal conditions, most tau is secreted in a

free, monomeric form, and its release may be mediated by vesicles

such as exosomes and ectosomes. This process is known to be regu-

lated by neuronal activity and sleep–wake cycles and may suggest an

as yet poorly understood physiologic function of tau.31,119–121 Tran-

scellular transfer of tau has been demonstrated in cultured cells and

in mice,108,118,122 but the degree to which processes observed in these

studies reflect the transfer of pathologic tau in the human brain is

yet to be determined. Research examining the mechanisms that might

regulate the uptake of tau into cells, and the mechanisms by which

tau release and subsequent uptake of tau leads to neuronal damage,

has been limited. The role of extracellular vesicles in tau transfer has

been recently highlighted.123 A few studies have demonstrated that

tau can bind to receptors on cells, such as heparan sulfate proteo-

glycans (HSPGs), amyloid precursor protein,124–126 and low-density

lipoprotein receptor-related protein (LRP),127 and subsequently may

gain entry into the cells by means of receptor-mediated endocytosis.

Some studies also have shown that taumay trigger damage in receiving

neuronal cells by activating signal transduction pathways that lead to

Ca2+ release.128

Recent research elucidated how tau proteins can be taken up in

cultured human neurons by binding to the LRP1 on the surface of

these cells anddemonstrated that LRP1controls the endocytosis of tau

as well as its subsequent spread.127 After knocking out various cell-

surface receptors, these researchers discovered that H4 neuroglioma

cells and iPSC-derived neurons without LRP1 receptors were unable

to endocytose tau in the form of oligomers or monomers and partially

prevented fibril uptake. In contrast, knocking out othermembers of the

low-density lipoprotein receptor family, including LRP1 homologs, did

not interferewith tau uptake. Previous research indicating that HSPGs

played a role in mediating tau uptake showed that some tau still can

gain access to neuronal cells even after HSPGs are knocked out.126

HSPGs are a common low-affinity, high-capacity binding site for LRP

ligands, and it will be important to investigate how they may interact,

which may indicate that they bind tau in a cooperative manner. The

finding that LRP1 is a key regulator of tau spread in the brain suggests

that it is a potential target for the treatment of diseases involving tau

spread and aggregation.127 More research will be required to deter-

mine the detailedmechanisms bywhich LRP1 binds to tau.

3.2 Potential mechanisms of toxicity and cell
death

It is generally assumed that the propagation of tau leads directly to

neuronal toxicity, the dysfunction of neuronal networks, and the death

of neuronal and glial cells.31 However, the specific events and mecha-

nisms underlying such toxicity and cell death, and the degree to which

distinct pathologic tau species may use different mechanisms, remain

unclear. Potential modes of toxicity explored to date have included the

disruption of axonal transport and various synaptic defects.31 How-

ever, some studies have shown a lack of neurodegeneration despite

demonstrated propagation of tau aggregates.129 Thus, how exactly

propagation of pathologic tau is related to cell death has remained an

unanswered question.

Brelstaff et al. recently reported that neurons containing tau inclu-

sions, when under stress, signal nearby phagocytes to engulf and dis-

pose of these neurons while they are still alive.130 The authors exam-

ined living neurons with tau inclusions from P301S-tau mice, which

released phosphatidylserine that in turn signaled cocultured phago-

cytes (BV2 cells and microglia) to identify them and begin the process

of phagocytosis. The neurons induced activated microglia to secrete

the opsonin milk-fat-globule EGF-factor-8 (MFGE8) and nitric oxide

(NO) to facilitate engulfment. The authors noted that neurons with tau

inclusions can be rescued when secretion of MFGE8 and NO is pre-

vented. Brelstaff et al. also noted that these neurons, with tau inclu-

sions, are among a long list of cells that undergo phagocytosis while

still alive as part of a homeostatic mechanism aimed at regulating cell

populations.130 The finding that phagocytosis of live neurons contain-

ing tau inclusions occurs may have implications for the development of
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anti-tau therapeutics. For example, a method for preventing phagocy-

tosis may preserve neurons for treatments that inhibit tau aggregation

and toxicity.

3.3 Reconciling propagation theories

There is a growing consensus that the spread of tau pathology in the

brain can be attributed to both the selective vulnerability of various

neuronal populations to pathologic processes131–134 and to the spread

of tau pathology by means of a prion-like mechanism.31,100,135–141

Although these were initially regarded as competing theories, recent

findings suggest that these theories are not incompatible. Structural

and functional connectivity studies assessing brain connectivity and

networks have been used to predict how tau will spread, and some

studies have shown that tau spreads throughout brain networks,

in areas where functionally strong and spatially short connections

increase the likelihood of tau seeding and spread.138,142 Recent mul-

timodal neuroimaging studies have shown that future tau accumula-

tion and neurodegeneration in AD could be predicted by taking into

account the specific connectivity of the epicenter (i.e., the regionwhere

the pathology starts)143 and that the best prediction is achieved with

a combination of baseline tau levels, functional connectivity, and dis-

tance between brain regions.140 Tau spreading is assumed to be an

active process along connected brain regions rather than the result of

passive diffusion.

4 TAU IMAGING

During the past decade, the in vivo visualization of tau deposition in the

human brain has been made possible by the development of a number

of selective tau PET tracers, which are currently in different stages of

development.144–148 Although tau PET imaging is beginning to be used

in clinical trials, most tracers are still simultaneously undergoing val-

idation. Because tau PET imaging has the potential to facilitate accu-

rate diagnoses of tauopathies, assess disease severity and progression,

evaluate the efficacy of potential anti-tau treatments, and improve the

selection of clinical trial participants, it has become an area of particu-

larly intensive investigation during the past 5 years.

4.1 Imaging AD pathology

In AD research, PET imaging of Aβ plaques has significantly improved

our understanding of spatial and temporal evolution of amyloid pathol-

ogy, and also played an integral role in the discovery that Aβ is a nec-
essary but not sufficient cause of AD-related cognitive decline.149,150

The validation of currently available amyloid PET radiopharmaceuti-

cals, which are highly sensitive and specific for the detection of Aβ,
involved a rigorous process involving in vitro studies to ascertain bind-

ing affinity, selectivity, and pharmacokinetics. A critical final stage of

amyloid PET validation involved a comparison of in vivo binding with

post mortem neuropathology. In the field of tau research, a significant

milestone was reached very recently when the results of the first such

tau imaging study, which compared [18F]flortaucipir (FTP) PET images

to post mortem immunohistochemical tau pathology were published in

April 2020.151 Shortly after, onMay28, 2020, anothermajormilestone

was reachedwhen the Food andDrug Administration approved Tauvid

(FTP) as a radioactive diagnostic for PET imaging to estimate the aggre-

gate density and distribution of NFTs—the first tau tracer approved for

use in patients who are being evaluated for AD.

Fleisher et al. usedFTP (previously referred to asAV1451andT807)

to obtain PET scans of 64 patients diagnosed with AD or non-AD

dementia as well as individuals with normal cognition. Among individ-

uals with dementia, only patients over the age of 50 who had a life

expectancy of less than 6 months were enrolled, which resulted in a

mean time between scan and autopsy of only 2.6 months.151 Visual

interpretation of FTP PET scans as consistent with an AD pattern pre-

dicted a Braak stage V or VI pathology with a high degree of sensitiv-

ity (ranging from 92.3% to 100.0%) and specificity (ranging from 52.0%

to 92.0%) and strongly suggested that PET imaging with FTP could be

used to determine the density and distribution of AD tau pathology

and thepresenceofADneuropathologic changenecessary to support a

neuropathologic diagnosis of AD. This study, whose results agree with

those of several similar studies152,153 has a number of important impli-

cations for clinical research. Most importantly, the study’s results sug-

gest that FTP may be a valuable tool for measuring the outcomes of

anti-tau therapies for AD, determining whether anti-amyloid therapies

can effectively reduce pathologic tau, andmeasuring disease stage and

progression for the selection of clinical trial participants.154

Although tau PET may be useful for accurately assessing advanced

stages of tau pathology, it has not yet been proven sensitive enough

to accurately detect early pathology. For example, current tau PET

tracers cannot accurately distinguish between Braak stage 0 (absence

of tauopathy) and Braak stage 1 (early tauopathy in the entorhinal

cortex in the medial temporal lobe).152,153,155,156 Until very recently,

researchers also have been unable to pinpoint the precise area in the

brain where tau accumulation in AD first begins using tau PET imag-

ing. However, Sanchez et al. recently reported findings that suggest

that cortical tau pathology may begin in a region of the brain they

call the “rhinal cortex”—a region defined anatomically using brain sur-

face anatomy that is sampled during PET imaging.157 The area com-

prises the anterior section of the collateral sulcus (rhinal sulcus) and

separates the parahippocampal gyrus from the fusiform gyrus. Examin-

ing a cross-sectional and longitudinal tau PET of older individuals and

healthy controls from the Harvard Aging Brain Study, the researchers

found that tangles can begin to accumulate in this region prior to

spread to neocortical areas in clinically normal adults. These detailed

observations of subsequent spread of pathology, beginning with inva-

sion of the temporal neocortex and precuneus, were used to develop

new tau PET staging thresholds.157

Asnewer tau tracers forADcontinue toundergodevelopment, a key

goal will be to continue to refine our understanding of the relationship

between amyloid and tau during disease progression, using both amy-

loid PET and tau PET technology. A recent analysis of data from the
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Harvard Aging Brain Study examined correlations among longitudinal

changes in amyloid plaques, NFTs, and changes in cognition.158 Find-

ings from this analysis supported a hypothesizedmodel of disease pro-

gression in which significant amyloid load leads to the accumulation of

both amyloid plaques and NFTs, with the latter in turn driving cogni-

tive decline. Based on their review,158 concluded that clinically normal

older individuals must reach a critical threshold of baseline amyloido-

sis prior to the acceleration of neocortical tau accumulation. They also

concluded that amyloid and tau likely have a synergistic relationship,

and found that in nearly all cases, clinical progression was associated

with high levels of both amyloid and tau. One important goal in follow-

up research involving larger populationswill be to identify factors asso-

ciated with relative resistance to tau accumulation, particularly among

individuals with significant amyloid accumulation.

4.2 Imaging non-AD tau pathology

The development of tau-specific PET ligands has made it possible to

investigate the measurement of tau deposition not only in AD but

also in a wide range of non-AD tauopathies, including PSP,155,159–162

CBD,155,163–166 and Pick’s disease.155 However, FTP and other cur-

rently available tau tracers, when used to image non-AD pathology,

havegenerally demonstrated low-affinitybinding, significantoff-target

binding, and other characteristics that have resulted in limited sen-

sitivity and specificity.165,167–169 These in vivo results converge with

autoradiography studies that have shown absent-to-low binding of

FTP to non-AD tauopathies.170–172 Furthermore, FTP binding is also

found in patients harboring tau-negative FTLDwith TDP-43 inclusions

(FTLD-TDP), limiting its utility for differentiating FTLD-tau fromFTLD-

TDP.153 The utility of second-generation tau tracers in imaging non-

AD has been variable. The radiotracers [18F]R0948 and [18F]MK6240

appear to be even more AD-specific than FTP.173,174 Conversely, early

in vitro and in vivo studies applying the ligands [18F]PI-2620175 and

[18F]PM-PBB3 (also known as [18F]APN-1607)176 have shown encour-

aging early results in a variety of non-AD tauopathies.174,177–179 A

new first-in-class 4R-tau radiotracer, [3H]CBD-2115, was recently

disclosed that has an attractive in vitro profile in human brain tis-

sue homogenate binding assays, showing higher affinity (4.9 nM)

for progressive supranuclear palsy specific 4R-tau deposits than

[3H]flortaucipir (45 nM) or [3H]MK-6240 (> 50 nM). Although this

tracer does not show sufficient blood–brain barrier (BBB) penetration

for in vivo utility, its selectivity profile makes it an attractive depar-

ture point for optimization of brain penetration.180 Nevertheless, the

search continues for a better tracer for non-AD tauopathies, which

must demonstrate ample BBB penetration, low toxicity, low nonspe-

cific binding, and rapid uptake and clearance from the brain, without

leaving radiolabeledmetabolites in the brain.150,181

Although FTP has proven to be less useful for imaging non-AD

tauopathies, because it is exceedingly selective forAD, it canbeauseful

for tool for differential diagnosis or accurate discrimination between

AD and non-AD tauopathies.182 As research geared toward the devel-

opment of non-AD tau tracers continues, a key aim will be to achieve

excellent PET imaging-to-autopsy correlations. A recently published

study that illustrates this process was undertaken with the aim of

developing an imaging biomarker for CTE. [18F]flortaucipir was used to

assess the correlation between in vivo FTP PET imaging of tau and post

mortem brain tissue in an individual with CTE. In this patient, a White

male former professional American football player with pathologically

confirmedCTE, FTPPET findings during life showed only amodest cor-

respondence with post mortem pathology and suggested that FTP may

have limited utility as a tau biomarker in CTE.183

Because tau is a complex molecular imaging target, with hetero-

geneity in biochemistry and in the microstructure of tau aggregates, it

is unlikely that a single tau PET tracer will be useful for capturing pat-

terns of spread associated with different non-AD tauopathies. How-

ever, important collaborative efforts are currently under way to opti-

mize the imaging of non-AD tauopathies, in part by taking advantage

of the subtle differences in tau folding revealed by cryo-EM technol-

ogy. The Tau Centers Without Walls, funded by a National Institute of

NeurologicalDisorders and Stroke grant, is bringing together tau imag-

ing experts who are dedicated to developing successful new tracers

for non-AD tauopathies. In addition, the Rainwater Charitable Foun-

dation has undertaken a two-pronged approach to the development of

non-AD tauopathies tracers. First, it created the PIPETTE Consortium

(Philanthropic Investments in Pet Tracers) in 2017 as a cofunding part-

nership with the Michael J. Fox Foundation to leverage efforts toward

creation and optimization of specific ɑ-synuclein and tau ligands. The

partners hope to fund promising ligand tracer development at both

for-profit and academic institutions that use best-practice structure-

based and ligand-based medicinal chemistry optimization using avail-

able high-resolution cryo-EM structures of tau and ɑ-synuclein. Sec-
ond, through the Tau Consortium, it has convened a multidisciplinary

team comprising experts in structural biology, computational chem-

istry, medicinal chemistry, and biophysics to tackle 4R-tau specific lig-

ands. These efforts are expected to improve the efficiency of develop-

ing optimal ligands in part by using new computationmethods that will

likely reduce time to development.

5 THE IMPORTANCE OF NEW BIOMARKERS
FOR TAU

Optimizing the efficiency with which therapies for the treatment of

tauopathies are developed will require new tau imaging agents and

other novel biomarkers to more accurately assess target engagement,

improve the selection of clinical trial participants, and precisely gauge

the effects of treatment. Advances in our understanding of tau biol-

ogy are being incorporated into the development of blood and CSF

biomarkers that have the potential to improve measurements of tau,

phosphorylated tau, and other markers of neurodegeneration.

Plasma tau phosphorylated at residue 181 (p-tau181) is a useful

biomarker for AD and also has proven to be useful in distinguishing

individuals with AD from healthy controls and from individuals with

other tauopathies.184,185 In two recent studies, p-tau181 was mea-

sured in 993 plasma samples. Plasma p-tau217 also was proven able
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to discriminate between neurodegenerative diseases in 1402 persons

from multiple cohorts, with performance close to that of CSF and PET

markers.186,187

As anti-tau drug development continues, some novel biomarkers

may well be developed in conjunction with treatments. At Tau 2020,

Kristin Wildsmith discussed the simultaneous development of a tau

PET tracer ([18F]GTP1) and an anti-tau antibody drug (semorinemab;

Genentech).188 [18F]GTP1 was studied in an AD natural history study

to guide use of tau PET in ongoing therapeutic trials (i.e., trials under-

way by Genentech and Roche). Wildsmith is optimistic that [18F]GTP1

will show that drugs are slowing the spread of tau. It is hoped that

[18F]GTP1 will provide proof of activity in the brain, by tracking the

accumulation of tau pathology, and determine whether baseline tau

burden predicts treatment response. In a cross-sectional population,

the degree of [18F]GTP1-specific binding increased with AD severity

and could differentiate diagnostic cohorts.

[18F]GTP1 may be a better staging tool than CSF p-tau181, and

there are other novel CSF tau biomarkers, such as tau368189 and

CSF p-tau217 that may also outperform p-tau181.186,190 Recent data

published in July 2020 suggest that CSF results extend to plasma p-

tau217.187,191

6 APPROACHES TO TAU THERAPEUTICS

Current approaches to disease-modifying treatments for tauopathies

involve the targeting of various forms of intracellular and/or extracel-

lular tau to prevent the production, aggregation, spread, or deposi-

tion of pathologic tau. Although numerous strategies, including those

involving the inhibition of various protein kinases, the inhibition of tau

aggregation, the knockdownof theMAPT geneusing antisense oligonu-

cleotides (ASOs), and active and passive immunotherapies, have shown

promise in animal models and other preclinical studies, anti-tau ther-

apeutics have yet to progress beyond the early phases of clinical tri-

als. During the past few years, important overarching goals of anti-tau

drug development have included the aim to increase both the number

and the efficiency of tau clinical trials, with an emphasis on novel trial

design, and to accelerate the development of new biomarkers that can

confirm target engagement, ensure appropriate selection and strati-

fication of clinical trial participants, and provide accurate information

regarding the reduction of tau burden or spread.192

To date, passive immunotherapy has been the dominant strategy for

reducing pathologic forms of tau, mirroring the initial focus in anti-

amyloid therapies in AD, with multiple compounds in phase 1 and 2

trials. Therapeutic antibodies aim to neutralize or eliminate extracel-

lular tau to slow the progression of tau-mediated neuronal dysfunc-

tion and degeneration. Multiple targets are under investigation, rang-

ing from pan-tau antibodies (targeting all six isoforms), to antibodies

against specific conformations or unique species of tau. Anti-tau anti-

bodies also differ with regard to their binding site on tau, whether to

theN-terminus, the C-terminus, themicrotubule binding region, or the

proline-rich region.193–196 Given the large size of the tau protein,many

different epitopes could be targeted. How to identify the “best” epi-

tope to target may become a critical issue, and the answer is not obvi-

ous. Different selection criteria can be proposed; for example, it might

make sense to prioritize epitopes or conformations that clearly distin-

guish between pathologic and physiologic forms of tau.69 An alterna-

tive approach has focused on identifying the antibody most capable of

blocking tau spread by unbiased screening of tau antibodies in a quan-

titative in vitro assay attempting to model the uptake and seeding of

human pathological tau. In this approach, N-terminally directed anti-

bodies demonstrated surprisingly poor efficacy, whereas a mid-region

antibody excelled.197 These data were further supported by in vivo

experiments.198 Clinical trials of this antibody, bepranemab (UCB0107,

UCB,Roche/Genentech), in bothPSPandADstarted early 2018.While

clinical development of bepranemab in AD remain in process, plans to

continue clinical testing in PSP have been halted.

Because conformational changes in the N-terminal of tau occur

early in AD, this region has been the focus of several efforts to develop

anti-tau antibodies for AD. The N-terminal fragment also has been a

focus in AD because it has been shown to play a role in increasing Aβ
production199 and also to damage neurons by interfering with mito-

chondrial function and synaptic plasticity.200 Although antibodies tar-

geting the N-terminal region of tau have exhibited various degrees of

efficacy in preclinical trials, there have been clinical trial failures in PSP.

There are ongoing clinical trial efforts in AD.

In July 2019, after a preplanned interim futility analysis, AbbVie

halted a phase 2 trial of ABBV-8E12, an anti-tau antibody that targets

theN-terminal. A humanized IgG4antibody, ABBV-8E12 recognizes an

aggregated, extracellular form of pathologic tau that has been impli-

cated in transneuronal propagation of tau pathology in cell-based and

mousemodels, and also is believed to account for the stereotypical pro-

gression of tau pathology in AD.101,201 However, the antibody is still

undergoing testing in a phase 2 trial of individuals with MCI and early

dementia due to AD.

Later in 2019, a phase 2 study of another antibody that targets the

N-terminus, gosuranemab (BIIB092; Biogen)202 for PSP was discon-

tinued. The primary endpoint, as measured by the PSP rating scale at

week 52, proved not to be statistically significant, and the study did not

demonstrate efficacy with regard to key clinical secondary endpoints.

However, although Biogen discontinued development of gosuranemab

forPSPandotherprimary tauopathies, a phase2 studyof gosuranemab

for the treatment ofMCI in individuals with AD ormild AD is ongoing.

The pan-tau monoclonal antibody semorinemab is currently in

phase 2 trials in prodromal andmild AD (TAURIELGN39763)203 and in

moderate AD (LAURIET GN40040)204 after positive safety data from

the phase 1 study. Although final results are expected in the third quar-

ter of 2021, Roche and AC Immune have announced that TAURIEL did

not meet its primary or secondary endpoints demonstrating no benefit

over placebo.

The limited success to date in clinical trials testing passive

immunotherapydirected at tau and amyloid targets offers some insight

into several ways in which future anti-tau antibody trials might evolve.

Determining sufficient dose and target engagementwith pharmacody-

namic and biologic effects of a tau-based therapy is likely to be critical.

The development of passive immunotherapy for the amyloidopathy of
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AD has underscored the need to have sufficient dosing. Several mon-

oclonal antibodies, including aducanumab and gantenerumab, failed

to show therapeutic effects until the need for sustained and larger

doses was appreciated. The need to better identify the target pathol-

ogy in those selected for inclusion in trials was underscored in the bap-

ineuzumab phase 3 program, in which an a N-terminus directed beta

amyloid monoclonal antibody was tested in trials with more than 2000

subjects and inwhich 21.4%of participantswerePittsburgh compound

B PET negative for the target amyloidopathy prior to enrollment.205

It is also important to recognize the value of being able to diagnose

patients at an earlier stage of disease. The availability of neuroimag-

ing of markers of amyloidopathy and tauopathy; CSF biomarkers; and,

more recently, blood-based biomarkers of amyloid and tau offers criti-

cal newopportunities formeeting this goal. Another important aimwill

be to eliminate factors that might potentially confound trial findings,

such as patients or clinical trial participants taking large numbers of

medications simultaneously. A third important goal will be to improve

outcomemeasures so they are tailored todifferent clinical phenotypes.

The heterogeneity among different tauopathieswith regard to their

biochemical composition, their capacities for seeding and propagation,

their different morphologies (tau inclusions), and their tendency to

reside in specific compartments of neuronal and glial cells strongly sug-

gests that a single anti-tau immunotherapy is unlikely to be effective in

the treatment of multiple tauopathies.22,206

Active tau vaccines, like passive anti-tau antibodies, target vari-

ous regions of tau, including the C-terminus, the microtubule-binding

domain, and the mid-region. In preclinical studies, many anti-tau vac-

cines developed to date have demonstrated the ability to reduce tau

pathology,207 and in animals, some of these have resulted in improved

cognition or motor abilities. Only two active anti-tau vaccines have

begun to be tested in clinical trials: the ACI-35 vaccine for AD (AC

Immune SA, Janssen) and the AADvac1 vaccine for AD and nonfluent

primary progressive aphasia (Axon Neuroscience SE). In April 2020,

AADvac1 was reported in a phase 2 trial to slow neurodegeneration

as measured by significant reduction in levels of plasma neurofila-

ment light chain as well as levels of CSF tau and phosphorylated tau.

Although initially ACI-35 demonstrated only a weak immune response

during early clinical testing, recent data fromaphase 1/2 study demon-

strated very high levels of anti-tau antibody titers, levels unprece-

dented in the tau field, bringing hope that this enhanced immunogenic-

ity approachwill show therapeutic effects.

ASOs, whose safety and efficacy have been demonstrated in clinical

trials in other therapeutic areas, are short, single-stranded, synthetic

DNA-likemolecules designed to target anddegrademRNAthrough the

nuclear enzyme RNase H1, thereby reducing production of the sub-

sequent protein.208 Unlike immunotherapy, tau ASOs can target both

intracellular and extracellular tau. However, due to their highly nega-

tive charge and inability to cross the BBB, ASOs must be administered

intrathecally. Importantly, ASOs are highly selective, dose titratable,

and reversible. The first ASO to directly targetMAPT gene expression

(ISIS814907/BIIB080), and in turn tau protein levels, was developed by

Ionis Pharmaceuticals in collaborationwithTimothyMiller atWashing-

tonUniversity in St. Louis. In adult wild-type and human tau-transgenic

mouse models, ASOs that targeted tau mRNA, resulting in decreased

tau protein levels, have been shown to reduce toxin-induced seizures,

neuronal loss, and neurofibrillary pathology. Importantly, human tau

ASOs in tau-transgenic mice not only prevented additional tau pathol-

ogy from forming, but reversed pre-existing neurofibrillary tangles and

“seed-competent” tau species. Tau ASOs also have normalized behav-

ioral phenotypes and lengthened survival in mice.209 Infusion of tau

ASO into the CSF of cynomolgus monkeys by an intrathecal bolus was

shown to reduce taumRNA across different brain regions, and CSF tau

protein levels after ASO exposure directly correlated to hippocampal

tau levels.208 In partnership with Biogen, Ionis Pharmaceuticals is test-

ing the MAPT-Rx ASO in a phase 1 clinical trial in mild AD. Enrollment

for this study was completed in January 2020, and the MAPT-Rx ASO

has been well tolerated thus far. Biogen recently licensed BIIB080 and

will run all future clinical trials in AD and primary tauopathies.

It is critical that we learn lessons from the negative results in anti-

amyloid trials of recent years.Wemust determinewhen (atwhat stage)

to treat andhow todiagnose early, using biomarkers to identify individ-

uals at an earlier stage of disease. It will be essential to develop mark-

ers of patient variability in progression and to determine howmuch tau

should be reduced to ensure safety and efficacy. It also will be impor-

tant to validate outcome measures to enable robust measurement of

biologic and cognitive change.

6.1 Addressing challenges associated with
current approaches to drug development

At Tau 2020, several presentations offered a glimpse of unique strate-

gies currently being pursued in industry to address challenges associ-

ated with developing anti-tau therapies. Moving forward, innovative

clinical trial designswill be needed to improve the efficiencywithwhich

high-quality evidence is obtained during the testing of new interven-

tions. In the field of oncology, for example, master protocols designed

with the goal of answeringmore clinical questions more efficiently and

in less time have been successfully implemented.210 One such master

protocol, a basket study, was recently used for the first time in tau

research to assess the safety, tolerability, and pharmacodynamics of

the microtubule stabilizer TPI-287 in AD, PSP, and corticobasal syn-

drome (CBS).211 The goal of a basket study is to examine a single tar-

geted therapy in the context of multiple diseases or disease subtypes,

defined by specific underlying molecular causes.210,211 Although the

clinical trial examining TPI-287 did not support further development

of the intervention, it did demonstrate the potential value of conduct-

ing basket clinical trials to compare the effects of tau-directed thera-

pies in AD, which is a secondary tauopathy, as well as in the primary

tauopathies PSP and Aβ PET-negative CBS.211

One significant obstacle to treating neurodegenerative disorders

has been the difficulty in crossing the BBB, which regulates the trans-

fer of proteins, nutrients, andwaste products to protect the brain from

toxins, but can also restrict the entry of some drugs. Using the trans-

ferrin receptor (TfR), expressed by brain capillary endothelial cells,

Denali Therapeutics has developed a large molecule platform—known
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as the transport vehicle (TV)—that is capable of transporting a range of

molecules over theBBBbybinding the apical domain of TfRengineered

into the Fc domain of an IgG and subsequently trancytosing through

endothelial cells and into the interstitial space of the central nervous

system (CNS).212 Denali has demonstrated both utility and modular-

ity of their TV platform to significantly increase brain levels of numer-

ous types of cargo attached to this TV system, including enzymes,213

proteins, antibody Fab arms (ATV; eg, ATV:Tau), and oligonucleotides

(OTV).With thismodularity built into the TVplatform,Denali is explor-

ing whether tau can be directly targeted using an ATV:Tau molecule

that increases tau antibody levels in the brain and/or an OTV:Tau that

delivers a tau-targeted oligonucleotide to the CNS via a systemic injec-

tion.

Arvinas is creating a newclass of drugs that are capable of degrading

pathogenic proteins, including tau. The company designs proteolysis-

targeting chimera (PROTAC) degrader molecules, which are heter-

obifunctional, modular small molecules engineered to induce the

degradation of disease-causing proteins by harnessing the ubiquitin-

proteasome system.214 PROTAC small molecules can target the source

of pathologic intracellular tau; degrade it; and, in turn, impact the

source of extracellular pathologic tau. They also can discriminate

between wild-type and pathologic forms of tau. Arvinas’s investiga-

tional therapeutic has the potential to ensure BBB penetration with

oral administration. This approach has advantages over antibodies,

which only block extracellular tau, and over current ASOs in the clinic,

which so far do not appear capable of discriminating between normal

and pathologic tau.

7 LOOKING AHEAD

At Tau 2020, the tau research community demonstrated an enthusias-

tic commitment to advancing the development of anti-tau therapeu-

tics, necessary new imaging agents and biomarkers, and the critical

tools that will be needed to facilitate anti-tau drug development. The

meeting was marked by a strong collaborative spirit and dedication to

deepening our understanding of all aspects of tau biology and its rela-

tionship to a wide range of heterogeneous tauopathies.

Representatives of various public, private, and academic entities

conveyed their blueprints for moving forward. The National Institute

on Aging (NIA), for example, has expressed a commitment to pursuing

a diversified pharmacologic and nonpharmacologic portfolio of demen-

tia treatments, with a significant portion of their budget devoted to

research and related development of treatments for tauopathies and

other dementias.

During the past year, the NIA awarded a $73-million grant over 5

years toward the establishment of the Target Enablement to Acceler-

ate Therapy Development for Alzheimer’s Disease (TREAT-AD) Drug

Discovery Center, whichwill be devoted to researching the tau protein

and other targets. The Discovery Center will be led by Allan Levey of

Emory University, Atlanta; Lara Mangravite of Sage Bionetworks; and

Aled Edwards, of the Structural Genomics Consortium. These research

teams and otherswill leverage the data and results from theAccelerat-

ing Medicines Partnership–Alzheimer’s Disease program and develop

a series of new therapeutic hypotheses centered on tau, among other

prioritized novel targets. TREAT-ADwill develop target-enabling tools,

including high-quality antibodies and chemical probes, and will openly

disseminate all data, methods, and reagents to all interested academic

and/or commercial investigators to accelerate validation of novel drug

targets and to seed new drug-discovery efforts.

Moving forward, an important focus will be supporting tau-focused

drug discovery efforts as well as early-career researchers. Toward this

aim, the Rainwater Charitable Foundation and the Alzheimer’s Asso-

ciation have partnered to fund emerging drug discovery programs

as part of their Tau Pipeline Enabling Program. These 2-year awards

go to drug-discovery teams at private and academic organizations

in the United States and European Union. A total of $7 million has

been granted in the 2 years of this partnership to 13 therapeutic

programs.215 Additionally, the Tau Consortium funds a large portfo-

lio of therapeutic programs focusing on diverse tau targeting mecha-

nisms and modalities (small molecules, antibodies, intrabodies, PRO-

TACS, andASOs) and provides integrated drug discovery expertise and

resources throughpartnershipswithdrugdiscovery institutes and con-

tract research organizations.216 Importantly, academic drug discovery

teams are guided by drug discovery and intellectual property consul-

tants to ensure development of robust data with forward movement

into clinical development.

The NIA is also funding many new and early-career awards, includ-

ing those for non-AD investigators interested in AD research, while

the National Institute of Neurological Disorders and Stroke has estab-

lished a new multidisciplinary Centers Without Walls for research on

tau, with a primary focus on data sharing and open science.

A second global tau conference is planned for 2022. As with Tau

2020, the goal of the upcoming Tau 2022 conference will be to provide

a forum for academic, industry, philanthropic, and government stake-

holders to share new developments in tau research while encouraging

enhanced collaboration and alignment regarding remaining challenges

in the field. It is hoped that Tau 2022will continue to attract new talent

and funding to the field, while fostering greater awareness of the need

for this important research.
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