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Abstract

Building modelling is a valuable tool in the
widespread efforts to decarbonise the built environ-
ment. To ensure modelling robustness, uncertainty
and sensitivity analysis techniques are often used.
Such techniques commonly require model input dis-
tributions to be defined. This paper describes a novel
approach, within the built environment, for identi-
fying empirically-derived probability distributions of
model inputs. Following data cleaning, candidate dis-
tributions selected based on measures of skewness and
kurtosis are fitted using maximum likelihood estima-
tion. The distribution that best describes the dataset
is identified using Akaike Information Criterion and
its derivatives along with goodness-of-fit plots. The
method was demonstrated for a dataset of wall U-
value measurements in English homes.

Key innovations

• This paper presents a novel approach of identi-
fying probability distributions of building mod-
elling inputs that adequately describe empirical
data.

• Code for implementation has been made
publicly available (https://github.com/
giorgospetrou/distrmultifit).

Practical implications

The use of inappropriate distributions in building
modelling can have a substantial impact on the out-
put. By implementing the approach detailed in this
paper, a modeller can more appropriately incorporate
relevant information in their modelling.

Introduction

With a share of 39 % of global greenhouse gas (GHG)
emissions in 2018, building construction and opera-
tion play an important part in the efforts to reduce
GHG emissions and limit global warming to 1.5 ◦C
above pre-industrial levels (IEA, 2019; IPCC, 2018).
Given the complex nature of the built environment,
striking the right balance between reducing emissions
while ensuring a healthy and comfortable indoor en-

vironment in a cost-effective manner is a challeng-
ing task. Building simulations can be an important
part in this transition. They enable modellers to as-
sess the different routes to decarbonisation and their
unintended consequences by easily running multiple
simulations and testing the efficacy of different tech-
nologies or design approaches at the individual build-
ing or urban level.

An important part of the modelling process is sensi-
tivity and uncertainty analysis, a topic that has been
widely researched and whose value is well-recognised
within the field of building modelling (Tian et al.,
2018). The lack of detailed uncertainty propagation
can lead to overly confident and unreliable models.
Sensitivity analysis can quickly identify model in-
puts that can greatly influence outputs. Monte Carlo
methods, commonly used for forward uncertainty
propagation and Bayesian methods often used for in-
verse uncertainty quantification require the modeller
to choose appropriate distributions for model inputs
(Tian et al., 2018). These distributions may repre-
sent the uncertainty around a parameter for a sin-
gle building or the spread in values within a group
of buildings. The normal distribution is commonly
assumed in building performance simulation due its
convenience and familiarity. Similarly, the uniform
distribution is often used to express lack of knowledge
about the possible value or distributional form of a
model input. However, with data availability on the
rise, distributions used for uncertainty quantification
could in some cases be based on empirical evidence.
If the modeller identifies the distribution that best
describes the observed data relating to a model in-
put, they can capture its expected value and shape
more accurately. Alternatively, the use of inappropri-
ate distributions could contribute to the ‘performance
gap’ – the difference between the predicted and mea-
sured (or real) energy performance of a building (or
group of buildings) (de Wilde, 2014). Examples of
using non-normal and non-uniform distributions ex-
ist within the field of building modelling (Booth et al.,
2012), however, no clear guidance on how to identify
the most suitable distributions for a given dataset
could be found.

https://github.com/giorgospetrou/distrmultifit
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The aim of this work is to present a step-by-step guide
on how to identify the probability distribution func-
tion that best describes a given dataset of building-
related parameters, potentially improving building
performance modelling workflows and the accuracy
of their predictions. This process is demonstrated for
a set of wall U-value measurements that are avail-
able from Hulme and Doran (2014). The R code used
for this analysis and a set of relevant functions have
been made publicly available1 to enable modellers to
reproduce this work and apply this method for their
own analysis.

Methods

A method to identify the appropriate probability dis-
tribution functions will be demonstrated on a dataset
that can be found in Appendix F of Hulme and Doran
(2014). Firstly, a brief description of the dataset will
be provided. The proposed method will then be out-
lined and its underpinning theory will be discussed.
This covers the four main steps of the process:

1. Data visualization and cleaning

2. Identification of candidate distributions

3. Fit data to candidate distributions using Maxi-
mum likelihood

4. Identify the candidate distribution with the best
goodness-of-fit

The dataset

During 2012-2013, fieldwork commissioned by the UK
Department of Energy and Climate Change (which
in 2016 became part of the Department for Busi-
ness, Energy and Industrial Strategy (BEIS)), aimed
to provide an assessment of the thermal performance
of walls in English dwellings and compare it to the
theoretical values (Hulme and Doran, 2014). The
Building Research Establishment (BRE) led the data
collection. For approximately 300 dwellings, in-situ
measurements were taken using heat flux plates (Huk-
seflux HFP01) and surface temperature measure-
ments for a period of two weeks. The homes were
a sub-sample of the 2010/11 English Housing Sur-
vey (EHS); a national survey that takes place every
two years and consists of household interviews and
physical surveys (BRE, 2014a). Two measurements
were taken for each dwelling as far away as possi-
ble from any thermal bridges. For this work, a 6 %
adjustment was applied to the raw data, since fol-
lowing the publication of the original report it was
discovered that the heat flux plates read 4-8 % lower
than intended (BRE, 2016). Table 1 provides a sum-
mary of the data, where the U-value is the arithmetic
mean between the two measurements taken at each
dwelling and following the 6 % correction. Although
interesting, the discrepancy between the theoretical
U-value expected for each wall type by the Standard

1The complete code is available here: https://github.com/
giorgospetrou/distrmultifit

Assessment Procedure (SAP) (BRE, 2014b) and the
measured U-values will not be the focus of this pa-
per – Li et al. (2015) have addressed this discrepancy
specifically for UK solid walls in great detail. Instead,
the paper will focus only on the method of identify-
ing the distribution that best describes the dataset.
For brevity, the method will be applied only on the
U-value measurements of filled cavity walls.

Step-by-step process

This section describes the four main steps under-
taken:

1. Data visualisation and cleaning: A histogram
is used to visualise the data. This allows for data
cleaning to be performed through observation of his-
togram extremes and removal of outliers. This is pre-
ferred over automated procedures based on the data’s
interquartile range or standard deviation when the
data does not appear to be normally distributed. It
is easier to identify and reject outliers when there is
already an established model of the measured vari-
able and its distributional form is known. However,
this is often not the case and automatic methods of
outlier detection, such as the Chauvenet’s Criterion
that assumes a Gaussian distribution would be inap-
propriate (Hughes and Hase, 2014). Given that many
of the model parameters within the built environment
field have a physical meaning, it might be better to
compare measured extreme values with their theoret-
ical equivalents and our understanding of the physical
system being studied.

2. Identify candidate distributions: Once out-
liers are removed, the data’s empirical distribution,
together with the “Cullen and Frey” graph of kurto-
sis against the square of skewness are used to iden-
tify candidate distributions. Skewness, is a measure
of symmetry, with a value of zero indicating a fully
symmetric distribution (Reimann et al., 2008). Kur-
tosis, indicates how heavy the tails of a distribution
are (i.e is how flat or peaked the distribution is) with
a value of three for a normal distribution (Reimann
et al., 2008). By plotting the kurtosis and square
skewness of the collected data on a graph and overlay-
ing the values that common distributions would take,
one can infer the candidate distributions that may
best describe the data. Since skewness and kurto-
sis may easily be affected by extreme values, one can
employ a bootstrap technique of random sampling (at
least 1000 samples) with replacement to plot multiple
possible values on the Cullen and Frey graph (Hes-
terberg, 2011; Delignette-Muller and Dutang, 2015).
Note that it is possible that none of the distributions
that appear on the Cullen and Frey Graph may be
appropriate and other distributions might need to be
explored.

3. Fit candidate distributions: The candidate
distributions are then fitted to the data using Max-
imum Likelihood Estimation – this is achieved with

https://github.com/giorgospetrou/distrmultifit
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Table 1: Summary statistics, mean and percentiles, of wall U-value measurements.

Wall Type Sample Size
Wall U-value [W/(m2K)]

2.5 % 25 % Mean 50 % 75 % 97.5 %
1 Filled cavity 109 0.3 0.6 0.7 0.7 0.8 1.2
2 Other solid 33 0.6 1.1 1.4 1.4 1.6 2.1
3 Standard solid 85 1.0 1.4 1.7 1.7 1.9 2.2
4 Unfilled cavity 50 0.8 1.3 1.5 1.5 1.7 2.0

the R package fitdistrplus (Delignette-Muller and Du-
tang, 2015; R Core Team, 2018). To fit the candi-
date distributions to the data, several methods ex-
ist. The cautious recommendation of this paper is the
use of Maximum Likelihood Estimation (MLE) which
is a commonly used method of distribution fitting
and is the default option in the library fitdistrplus
(Delignette-Muller and Dutang, 2015). Other meth-
ods may be preferred under specific circumstances,
such as when placing more weight on one of the data
distribution’s tail is desirable. One such case might
be when the interest is in the least energy efficient
dwellings whose building characteristics (e.g. perme-
ability) are described by the tails of the distributions.
A probability density function, specified as f(x1|θ),
quantifies the probability of observing data point x1,
given the distribution parameters θ (i.e. assuming
that θ are known) (Portet, 2020). Trying to fit a dis-
tribution to a set of known data points is the inverse
problem where xi are known and θ are unknown. As-
suming xi = x1, . . . , xn independent and identically
distributed (i.i.d.) observations, the likelihood func-
tion is a function of parameters θ defined as (Smith,
2013):

L(θ|xi) =

n∏
i=1

f(xi|θ). (1)

The likelihood function quantifies the probability of
obtaining the observed data xi, if the parameters θ
had a specific value (Portet, 2020). By employing an
optimisation algorithm, for any candidate distribu-
tion (f(·|θ)) and observed data (xi), parameters θ are
optimised in order to maximise the log of the likeli-
hood function (Delignette-Muller and Dutang, 2015).
This process is repeated for all candidate functions
separately so as to identify the parameters and den-
sity function that best describes the data.

4. Identify the candidate distribution with
the best goodness-of-fit: Finally, drawing from In-
formation Theory, the Akaike Information Criterion
(AIC) and its derivates are used to identify the best
fitting distribution (Burnham and Anderson, 2004).
Density plots, Q-Q plots, P-P plots and Cumulative
Distribution Function plots provide a supplementary
measure of goodness-of-fit and inform the modeller
whether the best-fitting distribution is satisfactory.

To identify the best fit amongst the candidate distri-
butions, AIC and its derivatives may be used. AIC is

defined as (Burnham and Anderson, 2004):

AIC = −2 log(L(θ̂|xi)) + 2K, (2)

where θ̂ is the maximum likelihood estimate of pa-
rameters θ, log(L(·|·)) is the log likelihood and K is
the number of distribution parameters (as an exam-
ple, the normal distribution has two parameters: the
mean and the standard deviation). For a collection of
R candidate distributions (or models more generally),
the best distribution given the data xi is the one with
the minimum AIC value (Portet, 2020). For a small
number of observations, where K > (N/40), the cor-
rected AIC may be used instead (Portet, 2020):

AICc = AIC +
2K(K + 1)

N −K − 1
, (3)

with AICc approaching AIC as N approaches infinity.
While equations 2 - 3 enable the ranking of candidate
distributions, the actual values of AIC or AICc are
not themselves easily interpretable. However, some
more interpretation is possible through the manipu-
lation of the estimated AIC values. Rescaling AIC (or
AICc) of each candidate distribution j, with regards
to the minimum AIC (AICmin) results in an estimate
(∆j) of the information loss when distribution j is
selected instead of the best candidate distribution;
effectively quantifying the strength of the AIC differ-
ences (Burnham and Anderson, 2004):

∆j = AICj −AICmin. (4)

Burnham and Anderson (2004) suggested that:

• Models with ∆j < 2 have substantial support
(evidence)

• Models with 4 < ∆j < 7 have considerably less
support

• Models with ∆j > 10 have almost no support

Therefore, an alternative to the best candidate dis-
tribution (the one with the lowest AIC) with a ∆j

less than 2 may be considered a good alternative
while one with ∆j greater than 10 should not. Portet
(2020) warns that these guidelines should be treated
with caution if, for example, a large number of can-
didate distribution are assessed. Instead, one can go
further and estimate the Akaike weights (or “weight
of evidence”) (Burnham and Anderson, 2004; Portet,
2020):

wj =
exp(−∆j/2)∑R
r=1 exp(−∆r/2)

, (5)



where exp(−∆j/2) is the distribution likelihood. The
quantity wj is the probability that distribution j is
best amongst the candidate distributions given the
observations xi. Finally, a direct comparison between
two candidate distributions may be done by com-
puting their evidence ratio wj/wk, quantifying the
strength of evidence of model j over model k.

While the AIC and its derivatives can help a modeller
determine which model is best between the candidate
models, determining whether the best model is good
enough for its intended purpose has yet to be an-
swered. This may be decided by visualising the the-
oretical data, originating from the best distribution,
against the empirical data in four plots (see Figure 3
for an example):

1. Histogram with theoretical densities
2. Quantile-Quantile plot (Q-Q plot)
3. Empirical and theoretical Cumulative Distribu-

tion Function (CDF) plots
4. Percentile-Percentile plot (P-P plot)

A histogram of the data superimposed by the theo-
retical densities provides a quick and comprehensive
check of the distribution fit. In a Q-Q plot, the the-
oretical quantiles from the assumed distribution are
plotted against the empirical quantiles and a straight
line would provide support for the assumed distribu-
tion. A P-P plot, will instead have the probabilities
of the hypothetical distribution plotted against the
probabilities of the empirical data at fixed quantiles.
While a Q-Q plot is useful at exposing discrepancies
in the tails of the distributions, a P-P plot focuses
more on the main body (Reimann et al., 2008). The
empirical CDF, is a step function, where as the num-
ber of data points increase, it should approximate
the underlying distribution function (Reimann et al.,
2008).

Results

A histogram with a density plot of the measured U-
values for filled-cavity walls is shown in Figure 1.
By simply inspecting the histogram, the data dis-
tribution seems to be positively skewed as the right
tail is slightly longer than the left one. The low-
est measured value is 0.2 W/(m2K) while the largest
value is 1.5 W/(m2K). While a value of 0.2 W/(m2K)
is well within the expected theoretical values of
well-insulated cavity walls (BRE, 2014b), a value of
1.5 W/(m2K) is rather high (BRE, 2014b, 2016). This
high value could be the result of surveyors incorrectly
classifying the wall as filled-cavity or placing the heat
flux over a thermal bridge. However, lower than nom-
inal levels of insulation and poor workmanship could
also lead to a worse than intended thermal perfor-
mance. With no strong evidence to reject this data
point, it was kept in the analysis.

To determine which distribution should be fitted, the
skewness and kurtosis of the sample was estimated
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Figure 1: Histogram with a density line of the wall
U-value measurements taken from filled cavity walls.

and plotted in a Cullen and Frey graph shown in Fig-
ure 2. The sample’s values, indicated by the blue dot,
suggest that the gamma, Weibull and lognormal dis-
tributions could all likely describe the collected data
well (this will be determined by the goodness-of-fit
analysis in step 4). To account for the uncertainty in
the sample skewness and kurtosis, a non-parametric
bootstrap analysis was run 1000 times, with the re-
sults shown as yellow rings in Figure 2. Many of the
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Figure 2: Cullen and Frey graph of kurtosis against
square of skewness.

points lie within the shaded area that represents pos-
sible kurtosis and squared skewness values the beta
distribution can take. However, as the beta distri-
bution is bound within the [0, 1] interval it was not
chosen as a candidate distribution. A few bootstrap



points concentrated close to the kurtosis of three and
squared skewness of zero, encouraging the inclusion
of the normal in the candidate distributions.

Following the selection of the candidate distributions
(normal, lognormal, Weibull and gamma), each one
was fitted and their computed AIC was used to rank
them in Table 2. The gamma distribution has the
lowest AIC value (−16.07), indicating that it can best
represent the data amongst the candidate distribu-
tions. It is followed by the lognormal with an AIC
of −13.72, the normal (AIC = −8.04) and Weibull
(AIC = −7.59). To enable some further interpreta-
tion of the results, equations 4-5 were used to deter-
mine the strength of the AIC differences (∆j), and
the Akaike weights (wj). Based on the suggestions
by Burnham and Anderson (2004), with a ∆j = 2.34
there is some support for the lognormal as an alterna-
tive to the gamma, with considerably less support for
the normal and Weibull distributions. This is further
supported by the Akaike weights, with a 0.75 proba-
bility that the gamma distribution is the best distri-
bution among the candidates given the observed wall
U-values. A significantly lower probability of 0.23 is
assigned to the lognormal while an almost negligible
probability of 0.01 was assigned to the normal and
Weibull distributions.

The collection of AIC metrics suggest that the gamma
distribution best represents the data amongst the
candidate distributions. To determine whether the
gamma provides a good enough description of the
dataset, a closer look of the proposed fit is required
and this is provided by the plots in Figure 3. As
a comparison, the best fit using a normal distribu-
tion was also included. The empirical and theoreti-
cal densities and CDFs for the gamma seem to align
well, with the alignment being worse for the normal
distribution. The Q-Q and P-P plots allow a closer
examination of the extremes and body of the curve,
respectively. The diagonal line in either plot indicates
a perfect agreement between empirical and theoreti-
cal values. For both plots, the points relating to the
gamma distribution align with the diagonal well. At
the lower end of the Q-Q plot, a point lies below the
diagonal, suggesting the theoretical prediction is not
as low as the empirical evidence, while at the upper
end a theoretical value is not as high as the empir-
ical. However, the fit at either end is visibly bet-
ter than for the normal distribution. The P-P plot,
which allows for more attention to the body of the
curve, reveals a small variation around the diagonal
for the gamma, yet no sizeable deviation is observed.
In comparison, deviations from the diagonal are gen-
erally greater for the normal distribution, with mul-
tiple points not located on the diagonal. Given these
results, the gamma distribution does indeed describe
the empirical data better than the normal distribu-
tion. In addition, the description that the gamma
distribution offers is considered to be satisfactory for

the dataset under investigation. Although small devi-
ations were observed, especially in the Q-Q plot, this
was at the extremes and differences were not consid-
ered large enough to reject gamma as a suitable dis-
tribution. If the fit was not deemed satisfactory, the
lognormal could be assessed although it would likely
not provide as good of a fit overall as the gamma did
given the AIC statistics computed. However, it might
provide a better fit for just a part of the data (e.g. the
right tail). Alternatively, a new set of distributions
would need to be fitted and assessed.

Table 2: Distributions ranked in decreasing order of
goodness of fit based on the Akaike Information Cri-
terion (AIC), difference in AIC (∆j) and Akaike
weights (wj).

Distributions AIC ∆j wj

Gamma -16.07 0.00 0.75
LogNormal -13.72 2.34 0.23
Normal -8.04 8.03 0.01
Weibull -7.59 8.47 0.01

Discussion

This work aimed at providing step-by-step guidance
on how to identify appropriate probability distribu-
tions of building modelling inputs given an empirical
dataset. This novel technique was demonstrated us-
ing a dataset of wall U-value measurements in English
dwellings, with the gamma distribution determined to
be an appropriate theoretical model for the dataset.
Assuming that this is the best dataset currently avail-
able, a modeller interested in capturing the variation
of U-values for filled cavity walls in English dwellings
can draw random samples from a gamma distribution
with parameters Gamma(9.52, 13.5).

It is important to reflect on what this method
achieves. It enables modellers to identify a theoretical
distribution, in the form of a parametric probability
model, which describes well the empirical distribu-
tion available (see Wild (2006) for a broader discus-
sion around distributions). We do not claim to have
identified a mathematical definition of the data gen-
erating process but merely a satisfactory description
of the best indication we have of the data generating
process, the empirical distribution. The data gen-
erating process is the mechanism behind the distri-
bution of true filled cavity wall U-values within the
English housing stock. This process would have mul-
tiple components, such as the effect of using different
insulation materials, the change of building practices
and regulations over time or workmanship. Since it
is infeasible to accurately model this mathematically,
we try to capture a snapshot of this process’ output
by taking measurements for a sample of filled cav-
ity walls. This results in the empirical distribution
of true wall U-values augmented with measurement
and sampling errors shown in Figure 1. By following
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Figure 3: Goodness of fit plots with the empirical data compared to the theoretical values of a gamma and normal
distribution.

the procedure described in this paper, a theoretical
distribution was identified that adequately describes
the dataset. The appropriateness of the assumed dis-
tribution will vary depending on the application and
the potential impact that a misrepresentation of the
data might have on the model output.

Through this work the use of an empirically-based
distribution has been recommended over a normal or
uniform distribution chosen out of convenience. How-
ever, there will be many cases where the normal or
uniform distribution will indeed be the best choice
of theoretical model and the method detailed in this
paper should be able to identify them. For example
and as a consequence of Central Limit Theorem, it
is expected that a normal distribution would be ap-
propriate when the dataset consists of mean-averaged
values (Hughes and Hase, 2014, p. 31).

Although the usefulness of the proposed method in
building stock modelling may be evident, its use is

not only limited to this application. A similar pro-
cess can be used to identify distributions of model
inputs for individual buildings when repeated mea-
surements may need to be taken, especially when the
measurement method is associated with large uncer-
tainties. The approach detailed in this paper may
also be pertinent to modelling parameters that vary
over the simulation year in a single building, as might
be the case for occupancy-related inputs. Finally, cer-
tain model outputs may also be represented as distri-
butions and their theoretical form can be identified
using the steps summarised in the Methods section.

While the proposed approach should be effective in
multiple cases, a few changes could be made if con-
sidered necessary. Firstly, it was recommended to
use the MLE approach of fitting the candidate dis-
tributions. As discussed in the methods section,
there might be cases where a different method is pre-
ferred that would yield slightly different results and



Delignette-Muller and Dutang (2015) provide a few
such examples. In addition, while the workflow is
based on the popular programming language R and
the package fitdistrplus, other options do exist. A
modeller can adapt the methodology to be used in
their programming language of preference (e.g. SciPy
in Python) and it is expected that they should have
similar results. With present day computing power,
the burden of fitting multiple distributions is rather
small. Therefore, a modeller may choose in some
cases to skip the step of identifying candidate distri-
butions (step 2 in the Methods section) and instead
fit all the distributions included in Cullen and Frey
graph (see the online repository of this paper on how
to easily implement this in R). The rest of the process
would remain the same.

Implications

With R being a free to use programming language,
the approach described within this paper could easily
be implemented by modellers in academia and indus-
try without any licensing or costs constraints. Quan-
tifying the impact of using a distribution that de-
scribes the data well compared to a poor and simplis-
tic approximation is rather challenging since it will
depend on the specific application. Yet, it is safe
to assume that in some cases, given a fairly bad ini-
tial assumption of a sensitive model input, the use
of inappropriate distributions will contribute to the
“performance gap” with the model not representing
reality well. This could lead to the underestimation
building parameters such as energy use and indoor
environmental quality.

Limitations

In this paper a novel method was applied to a single
dataset. Applying this across different datasets will
likely result in insights relating both to the method
but also to what candidate distributions should be
considered for different building model parameters.
We have applied this method in an ongoing modelling
study focused on the English housing stock. During
that application, most distributions were identified
based on the candidates provided by the Cullen and
Frey graph. In two instances, relating to floor area
and floor-to-ceiling height, that this was not the case,
based on the qualities of their empirical distribution
(long right tails), the Fréchet was tested and deter-
mined suitable. It is expected that there will be other
cases where the distributions provided by the Cullen
and Frey graph will not provide an adequate fit. A
modeller might address this limitation by reviewing
the properties of different distributions and selecting
candidates according to their characteristics, simi-
larly to how we identified the Fréchet for our own
application. Alternatively, one can leverage the great
number of distributions already provided by R and fit
several (or all) of them in a “brute-force” approach
(see this paper’s online repository for a demonstra-

tion). This might the preferred choice for modellers
who are not familiar with several distributions, al-
though it is the more computationally expensive ap-
proach. In either case, a careful evaluation of the
goodness-of-fit must follow (step 4).

Conclusion

This paper provides a detailed and novel guidance
on how to identify appropriate probability distribu-
tions of model inputs from empirical datasets for
more accurate model prediction. The method re-
quires the four following steps: (i) Data visualisa-
tion and cleaning, (ii) Identification of candidate dis-
tributions, (iii) Fit data to candidate distributions
and (iv) Identify the candidate distribution with the
best goodness-of-fit. To demonstrate its application,
a dataset of wall U-value measurements were used
and a Gamma(9.52, 13.5) was found to best repre-
sent values relating to filled cavity walls in the English
housing stock. Amongst the candidate distributions,
the use of Akaike weights suggested that probability
of the normal being the best-fitting distribution was
only 0.01 while the best fitting gamma distribution
had a probability of 0.75. In future work, this tech-
nique will be applied to multiple datasets.
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