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Summary: COVID-19 drug development to date has focused on reducing deaths among hospitalised patients, 

but greater public-health impact could come from drugs delivered to outpatients early in the course of disease, 

and that prevent hospitalisation and/or onwards transmission. 
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Abstract 

Background 

The public health impact of the COVID-19 pandemic has motivated a rapid search for potential therapeutics, 

with some key successes. However, the potential impact of different treatments, and consequently research and 

procurement priorities, have not been clear.  

Methods 

Using a mathematical model of SARS-CoV-2 transmission, COVID-19 disease and clinical care, we explore the 

public-health impact of different potential therapeutics, under a range of scenarios varying healthcare capacity, 

epidemic trajectories; and drug efficacy in the absence of supportive care.  

Results 

The impact of drugs like dexamethasone (delivered to the most critically-ill in hospital and whose therapeutic 

benefit is expected to depend on the availability of supportive care such as oxygen and mechanical ventilation) 

is likely to be limited in settings where healthcare capacity is lowest or where uncontrolled epidemics result in 

hospitals being overwhelmed. As such, it may avert 22% of deaths in high-income countries but only 8% in 

low-income countries (assuming R=1.35). Therapeutics for different patient populations (those not in hospital, 

early in the course of infection) and types of benefit (reducing disease severity or infectiousness, preventing 

hospitalisation) could have much greater benefits, particularly in resource-poor settings facing large epidemics.  

Conclusions 

Advances in the treatment of COVID-19 to date have been focussed on hospitalised-patients and predicated on 

an assumption of adequate access to supportive care. Therapeutics delivered earlier in the course of infection 

that reduce the need for healthcare or reduce infectiousness could have significant impact, and research into 

their efficacy and means of delivery should be a priority. 
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Introduction 

The COVID-19 pandemic has led to >4.5 million deaths as of 1st September 2021, and placed substantial 

pressure on healthcare systems, with demand for oxygen, advanced respiratory support (ARS) and beds nearing 

or eclipsing availability in settings hit hardest. This impact has motivated significant efforts to identify and 

develop therapeutics aimed at treating the disease - a need that has become even greater with the emergence of 

SARS-CoV-2 variants able to evade prior immunity[1–3]. This has underscored the potential for the virus to 

become endemic[4] and the need for an integrated, long-term approach to combating COVID-19. Such an 

approach will require a range of therapeutic options, targeting a range of points across the disease‟s natural 

history.  

 

To date, many clinical trials have been conducted to evaluate potential therapeutics for COVID-19, with initial 

focus centring on hospitalised patients. Dexamethasone has been shown to reduce mortality in both 

severely/critically-ill[5] and moderately-ill patients[6] and is now recommended for use by the WHO[7]. 

Evidence also indicates the potential efficacy of therapeutic anti-coagulation in some patients[8], as well as 

interleukin-6 receptor antagonists, such as tocilizumab and sarilumab[9]. Other candidates have included 

antivirals such as remdesivir, although its effect remains uncertain[10,11]. Recent months have also seen trials 

focussed on individuals who are not hospitalised, including those aiming to prevent progression to 

hospitalisation, such as for colchicine[12] and inhaled-budesonide[13,14]; as well as molnupiravir[15,16], 

peginterferon lambda[17] and monoclonal antibodies[18–20], which may also reduce transmission through 

reducing viral loads. Numerous other therapeutics aimed at treating early infection in the outpatient setting 

remain under active development[21]. 

 

These therapeutics have diverse epidemiological impacts (reductions in mortality, impacts on healthcare demand 

and community transmission) and vary in which patient populations they are administered to (hospitalised 

individuals or outpatients). Given these diverse properties, understanding the potential impacts of each, and how 

this is affected by other factors (such as epidemic trajectory and healthcare supply) is vital for guiding 

procurement and research priorities. Here we use a modelling approach to understand the impact of established 

and potential COVID-19 therapeutics on disease burden and how this is affected by epidemic context and 

healthcare resources. Our results highlight how limited healthcare resources can constrain this impact, limiting 

the benefits of existing therapeutics, and provide insight into the types of therapeutic properties that could be of 

greatest value.  

 

Methods 

Mathematical Model of SARS-CoV-2 Transmission 

We extended a model of SARS-CoV-2 transmission[25] to include an updated representation of COVID-19 

disease, healthcare capacity and the impact of potential therapeutics (Appendix, Fig.1A and Supp Fig.1). The 

model is age-structured and includes a detailed representation of disease severity and clinical care. Those with 

more serious symptoms deteriorate to the point of requiring hospitalisation - they progress to either moderate 

disease (requiring a general hospital bed and low/moderate-flow oxygen), severe disease (requiring an ICU bed 

and high-flow oxygen) or critical disease (requiring an ICU bed, high-flow oxygen and ARS) (Fig.1B). The 

model tracks healthcare resource use (beds, oxygen and ARS devices) to determine what care an individual 

actually receives (Fig.1C). Individuals recover or die, with a probability determined by an individual‟s age, 

disease severity, and healthcare received (see Appendix for further information). 
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Model Parameterisation 

Natural history parameters for SARS-CoV-2 infection were taken from the literature (Supplementary Tables 1-

3). Clinical parameters surrounding duration of hospital stay were derived from a literature review of 

publications spanning 20 countries (Supplementary Table 4). To derive estimates for parameters not estimable 

from the literature, we convened a clinical panel of 34 medical professionals who have treated patients with 

COVID-19 in 11 countries (Argentina, Brazil, Colombia, Ecuador, India, Indonesia, Kenya, Thailand, United 

Kingdom, Venezuela and Zambia). This focused on determining the potential effect of dexamethasone under 

different assumptions of healthcare availability and the overall effect of healthcare resource unavailability 

(either lack of ARS, oxygen or beds) on COVID-19 mortality. See Appendix for collated responses.  

 

Model Simulation 

We simulated epidemics under varying degrees of healthcare availability and epidemic trajectories; first in a 

setting with a profile typical of lower-middle income countries (an age-structure equivalent to the LMIC with 

the median proportion >65 years and median hospital-beds per-capita) under two epidemic scenarios that 

reflected different extents of control: a scenario with a high reproduction number for a poorly mitigated 

epidemic (R=2), and another with a low reproduction number for a partially mitigated epidemic (R=1.35). We 

varied healthcare resource availability, exploring scenarios with i)unlimited healthcare, ii)where availability of 

ARS only is limited, iii)where ARS and oxygen availability are both limited; and iv)where ARS, oxygen and 

hospital/ICU beds are all limited. To evaluate the potential impact of different therapeutics, we consider 6 

different types of therapeutic effects, each corresponding to a mode of action of at least one proposed 

therapeutic (see Table 1). For country-specific estimation, we fit our model to COVID-19 deaths data[22,23] 

using a Bayesian framework (see Appendix) and project the epidemic forwards under different assumptions of 

future control. 

 

Results 

Evaluating the Impact of Dexamethasone Under Different Assumptions of Epidemic Spread and Health 

System Capacity: We simulated an epidemic in a setting with a profile typical of LMICs under two epidemic 

scenarios (R=1.35 or 2.0). Our results highlight the substantial difference in the timing and intensity of 

healthcare demand resulting from epidemics of different sizes. Higher R epidemics (R=2, representing a poorly 

mitigated epidemic) lead to a smaller fraction of moderately ill patients (requiring a general hospital bed, 

Fig.2A) and severely/critically ill patients (requiring ICU-based care, Fig.2B) receiving the clinical care they 

need, with this disparity most pronounced for ICU-based care. A lower R reduces demand for healthcare, 

resulting in a higher proportion of individuals receiving the required care, but still leaves a high proportion not 

receiving the full ICU-based care they need. We next examine the „Infection Fatality Ratio‟ (IFR, the 

probability of death given infection) that persons with SARS-CoV-2 face, arising from the joint effect of 

disease, healthcare capabilities and usage of dexamethasone. Our results highlight the pronounced impact of 

healthcare constraints on the IFR, which is significantly higher when healthcare resources (ARS, O2 and beds) 

are limited (Fig. 2D: dots). This increase in IFR is most substantial for our high R scenario in which a higher 

fraction of individuals not receiving adequate care.  

 

The therapeutic impact of dexamethasone (Fig. 2D: boxes) is strongly dependent on these same factors: there is 

a substantial reduction in mortality due to the drug when there are adequate healthcare resources, but a much 

smaller effect when these resources are unavailable. This is especially the case when a larger epidemic has 

overwhelmed resources (Fig.2D). The reduced impact of dexamethasone in these circumstances is because 

fewer individuals are hospitalised and receive dexamethasone (due to shortages of beds) and fewer hospitalised 

individuals receive the other healthcare required (oxygen/ARS) to maximise the therapeutic benefit of 

D
ow

nloaded from
 https://academ

ic.oup.com
/cid/advance-article/doi/10.1093/cid/ciab837/6373521 by C

atherine Sharp user on 13 O
ctober 2021



Acc
ep

ted
 M

an
us

cri
pt

 

 

dexamethasone. As a result, prevailing healthcare resources in this typical setting allow only 45% (if R=1.35) or 

28% (if R=2.0) of the maximum potential impact of dexamethasone (defined as the reduction in IFR achieved 

by the drug under a scenario with no healthcare resource constraints) to be realised (Fig. 2E).  

 

We distinguish two layers of uncertainty in characterizing the effect of dexamethasone: the magnitude of the 

effect when supportive care is available, and the extent to which these effects would persist in patients not 

receiving such case. The second is not well understood but we constructed three alternative scenarios (based on 

clinical input described in the Supplementary) for the extent to which patients without supportive care may 

benefit from dexamethasone. We find only a small extra impact (60% of potential drug impact realised under 

R=1.35 scenario, and 52% under R=2scenario) if it was assumed that individuals for whom supportive care 

could not be provided still benefited to some degree from dexamethasone (Supp Fig.3). 

 

Evaluating the Potential Impact of Dexamethasone Globally: Our results suggest that limitations in 

healthcare capabilities that reduce dexamethasone‟s impact are likely to be most severe in LMICs. Under 

scenarios where extensive mitigation of transmission is achieved globally (R=1.35 scenario, Fig.3A), we expect 

a median of 28%, 43%, 91% and 100% of dexamethasone‟s maximum potential impact to be achieved across 

LICs, LMICs, UMICs and HICs respectively (Fig.3B), corresponding to averting 8%, 13%, 20% and 22% of 

total deaths. Under scenarios where epidemics are less controlled (R=2, Fig.3C), this reduces to 18%, 26%, 43% 

and 71% of dexamethasone‟s maximum potential impact (5%, 7%, 13% and 18% of deaths averted) (Fig.3D).  

 

Exploring the Potential Impact of Different Treatments and Drug Properties: We divide the spectrum of 

potential effects of the therapeutics currently under investigation into six types (Table 1) and explore their 

impact on COVID-19 mortality (Fig.4A and Supp Fig.4). The impact of therapeutics administered to 

hospitalised patients (types 1, 2 and 3) have a lower overall impact in reducing deaths, even when efficacy and 

coverage are high, because they suffer from the limitation that their therapeutic benefit is dependent on similar 

healthcare capabilities (such as oxygen and ARS) described above for dexamethasone (Fig.4A, top row). 

Therapeutics that reduce severity of disease (Type 2) or reduce the duration of hospitalisation (Type 3) do have 

an indirect effect in alleviating healthcare demand, but this is minimal because demand for healthcare resources 

outstrips supply by such a wide margin, even under comparatively well-controlled epidemics (low R scenario). 

In these scenarios, a slightly faster throughput of patients therefore does not substantially reduce the number of 

individuals unable to access healthcare due to a lack of availability. 

 

Therapeutics that are not administered in hospitals (and so do not suffer the same limitations) and address 

patients at an earlier stage of disease progression have a potentially greater impact, even after allowing for the 

lower coverages that may be achieved (Fig.4A, bottom row). Type 4 therapeutics (which reduce likelihood of 

severe disease and hospitalisation) have both a direct effect (reducing mortality) and an indirect effect (reducing 

healthcare demand and enabling greater access to healthcare for others) - and avert a significant fraction of 

COVID-19 mortality. For our low R scenario, there is an even greater effect from Type 5 therapeutics (which 

reduce infectiousness). Through reducing community transmission, they lead to reductions in the overall number 

of people infected with SARS-CoV-2 during the epidemic and alleviate demand for healthcare resources. This 

would be especially the case if therapeutics are administered before onset of symptoms (Type 5b), although the 

coverage that could be achieved with such therapeutics would be expected to be lower than for therapeutics 

administered following symptom onset (Type 5a). It follows that the estimates of impact are influenced by R 

and healthcare resources (see Supp Fig 4 in SI) - for Type 5 therapeutics, relative impact is higher under the low 

R scenario, and lower in the high R scenario (though still comparable with the best performing hospital 

administered therapeutics); for our high R scenario, Type 4 therapeutics were predicted to have the greatest 
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benefit in the range of indicative coverages and efficacies explored (Supp Fig 4B). If healthcare needs do not 

eclipse resources, the direct effect of hospital-delivered therapeutics is greater than otherwise, although the 

overall impact on mortality from Types 4, 5a and 5b remains high. 

 

Discussion 

Understanding the contexts in which COVID-19 treatments are likely to be most effective is essential for 

guiding research and procurement. Here, we utilise a modelling approach to evaluate the potential impact of 

COVID-19 treatments under a range of different assumptions about healthcare availability and epidemic 

trajectory. Our results show that effect sizes for therapeutics estimated in clinical trials will not necessarily 

provide a guide to their „real-world‟ impact on COVID-19 disease burden as „real-world‟ impact also crucially 

depends on prevailing healthcare constraints, the trajectory of the epidemic and the extent to which benefits 

persist in the absence of supportive care. We find that the impact of the main therapeutic currently 

recommended by the WHO (dexamethasone) could be considerable in well-resourced settings with an epidemic 

under control (averting almost a quarter of deaths), but far smaller in settings where resources are limited and/or 

there is large epidemic (averting fewer than 10% of deaths). Whilst our focus here is on dexamethasone, these 

results would apply similarly to other therapeutics for which clinical benefit is dependent on the presence of 

supportive care such as oxygen or ARS.  

 

Our results highlight that treatments with different types of effect can yield vastly different scales of population-

level impact. In particular, the results show that substantial impact could be achieved with therapeutics delivered 

to persons not in hospital that either reduce the duration of infectiousness (and hence transmission) or disease 

severity (preventing hospitalisation, reducing healthcare strain), in-keeping with recent work highlighting the 

need for effective COVID-19 treatment for early infection in the outpatient setting[21]. Indeed, our results 

highlight that even modest levels of treatment efficacy or coverage could achieve high levels of impact, 

although the exact level of impact will likely be determined by a complex interplay of baseline transmission, 

household structure, quarantining practices, and the background of other control measures being implemented – 

factors only crudely considered here through our modulation of the reproduction number. However, because of 

the nature of their administration (delivered in the community) and the effects of these therapeutics (which 

depend only minimally on the availability of constrained healthcare resources), our results suggest their 

potential impact would also be less affected during larger epidemics.  

 

Although most trials to date have focussed on evaluating treatments aimed at critically ill, hospitalised patients, 

there are promising results from some trials. Several individual/combination monoclonal antibody treatments 

have shown an impact on viral loads and hospitalisation[18–20]; however significant challenges related to 

delivery (the need for intravenous infusions) and their high cost likely preclude widespread utilisation in 

resource-poor settings. Numerous repurposed therapeutics have also been or are currently being evaluated as 

part of large scale adaptive trials: these include PRINCIPLE (evaluating azithromycin[24], doxycycline[25] and 

inhaled budesonide[13] in outpatient populations, amongst other drugs), ANTICOV (led by the Drugs for 

Neglected Diseases Initiative, evaluating a number of different therapeutics in 13 countries across Africa[26]), 

and the ACTIV-6 platform, which is testing a number of repurposed drugs[27]. Whilst some of these (e.g. 

inhaled budesonide) have shown promise, the majority of drugs assessed through these platforms aim to reduce 

duration and severity of symptoms in those with mild disease (a Type 4 property), rather than transmission 

(Type 5). It is in this context that results from the trials of orally administered antiviral molnupiravir (which has 

shown preliminary evidence of potentially both properties) are eagerly anticipated[15, 16].  
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Whilst the impact of drugs delivered in the outpatient setting are less dependent on prevailing in-hospital 

healthcare resources, this would need to be balanced by the ability of healthcare systems to deliver therapeutics 

in the community (including health worker capacity and distribution channels) and the costs of doing so. There 

therefore remain numerous factors that will modulate their effectiveness that warrant discussion here. Perhaps 

most crucially is the need for rapid, widely-available COVID-19 testing to identify persons infected early and 

hence maximise reductions in onwards transmission achieved by drugs with Type 5 properties (and to a lesser 

degree, ensuring Type 4 drugs are delivered to individuals before significant disease progression). Testing 

capacity thus represents a crucial determinant of the effectiveness of these drugs, but this remains inadequate in 

many parts of the world: for instance, recent results from a post-mortem surveillance study in Lusaka, Zambia 

suggest that the majority of COVID-19 deaths (>70%) had occurred without any test having been conducted. A 

related limitation is that we assume levels of healthcare-seeking within the population such that all individuals 

with COVID-19 requiring hospitalisation will seek care. Numerous studies have highlighted the disparities in 

access to healthcare that exist globally (e.g.[28,29]), and that cost of care (if borne privately) can be a key 

determinant[30]. To the extent that not all of those in need seek care in-hospital, the limitations we have found 

for therapeutics for hospitalised patients and the potential benefits of therapeutics for non-hospitalised patients 

would be even greater than our results show. More generally, whilst our results have highlighted that only 

modest levels of coverage among patient populations with these therapeutics is required for significant impact, 

such levels are likely impractical for therapeutics requiring infusion such as monoclonal antibody therapies. The 

current cost of these therapies is also substantial and may prove prohibitive in all but the most well-resourced 

settings. Achieving levels of coverage required for substantial impact may be more feasible for orally delivered, 

low-cost therapeutics.  

 

Additional caveats to the framework developed here includes lack of waning immunity or the possibility of 

novel SARS-CoV-2 variants able to partially evade protective immunity (as in Brazil[2], South Africa[31] and 

many other countries), nor how emergence of new variants may erode efficacy of previously effective 

therapeutics (such as bamlanivimab in the case of the Delta[32]). We further consider only country-level 

outcomes, which indicates broad trends, but which masks important sub-national variation in the availability of 

healthcare resources (e.g. as highlighted in recent work across Indonesia[33] and Brazil[34]) that would likely 

see mortality concentrated in areas with the least capacity– nor do we take into account the COVID-19 death 

underreporting that is likely concentrated in resource-poor settings with the least developed civil and vital 

registration capacity, and would result in inference of more mature epidemics and higher degrees of population-

level immunity. The modelling also does not consider the judgments that may be made about how available 

resources are allocated among different patients, in view of their varying needs, risk of complications (including 

“long COVID”), and likelihood of success of different treatment options, which may mitigate to some small 

extent that effect of the constraints indicated. 

 

Despite these caveats, our results highlight that low health system capacity in LMICs will likely limit the impact 

of many of the COVID-19 therapeutics currently being used to treat hospitalised patients (such as 

dexamethasone) and underscore the crucial need for effective COVID-19 therapeutics targeting outpatients with 

mild-to-moderate disease, early in the disease course. However, we also highlight important logistical and 

practical challenges to achieving the significant impact possible with these therapeutics, underscoring the 

importance of accompanying clinical trials with operational research in order to ensure mechanisms for drug 

delivery to affected communities can occur in a way that maximises their potential benefit. 
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FIGURE LEGENDS 

 

Figure 1: Mathematical modelling approach used to evaluate potential COVID-19 treatment 

impact. (A) Schematic representation of the natural history of SARS-CoV-2 infection and COVID-19 

disease in the model. (B) Description of the different disease states included in the model and the 

associated healthcare requirements. (C) Decision-tree diagrams illustrating the conditional delivery of 

healthcare components according to disease severity and availability. There is excess mortality 

associated with not receiving the full set of required healthcare components. 

 

Figure 2: Projected impact of dexamethasone on COVID-19 mortality under different scenarios of 

epidemic progression and healthcare availability. (A) Daily general hospital bed demand under an epidemic 

scenario with a high reproduction number (R = 2, orange) or a low reproduction number (R = 1.35, green). 

Dashed lines indicate availability of different healthcare resources, and the right hand panel describes the 

proportion of patients that require oxygen and a general hospital bed who receive complete (bed and oxygen), 

incomplete (bed only) or no healthcare (neither). (B) As for (A), but describing demand and healthcare received 

for severely and critically ill patients requiring an ICU bed, oxygen and advanced respiratory support (ARS). 

(C) Schematic illustration of the impact assumed for dexamethasone on COVID-19 mortality in different patient 

populations (moderate, severe or critical illness), and according to the care received (complete, incomplete or 

none)  (D) The impact of dexamethasone on the COVID-19 infection fatality ratio under different assumptions 

for R (low, green or high, orange) and healthcare availability (unlimited, limited ARS, limited ARS and oxygen 

or limited ARS, oxygen and beds). In all panels, black points show the IFR without dexamethasone, and the 

boxplots show the modelled IFR using the assumed dexamethasone clinical benefit estimates described in (C). 

(E) The percentage of maximum potential dexamethasone impact (defined as the reduction in IFR achieved by 

dexamethasone under a situation of unlimited healthcare) achieved in each of the different scenarios for 

healthcare availability. Orange and green bars refer to high and low R scenarios respectively, with the shading 

indicating the extent of imposed healthcare constraints, coloured as for (D). 

 

Figure 3: The global impact of dexamethasone on COVID-19 mortality under different assumptions for 

future transmission and epidemic spread. (A) The percentage of maximum potential dexamethasone impact 

(defined as the reduction in IFR achieved by dexamethasone under a situation of unlimited healthcare) achieved 

for each country under an epidemic scenario of extensive mitigation control (R = 1.35). (B) The percentage of 

maximum dexamethasone impact achieved in each country. Each dot is the result for a single country, coloured 

according to the World Bank strata that country belongs to, with the boxplot presenting summary statistics for 

the modelled countries in aggregate. (C) As for A, under an assumption of an epidemic scenario characterised 

by uncontrolled spread (R = 2). (D) As for B,  under an assumption of an epidemic scenario characterised by 

uncontrolled spread (R = 2). 
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Figure 4: Impact of different therapeutic product effects on COVID-19 disease burden. (A) For an 

epidemic with an R of 1.35, the proportion of COVID-19 deaths averted as a function of therapeutic efficacy 

and therapeutic coverage, for 6 different types of potential effects (Table 1). These include reducing COVID-19 

disease mortality (Type 1); preventing deterioration and worsening of disease in hospitalised patients (Type 2); 

reducing duration of hospitalisation (Type 3); preventing hospitalisation due to COVID-19 (Type 4) and 

reducing duration of infectiousness, either among symptomatics (Types 5a) or all infected-persons (Type 5b). 

Inset boxes indicate the range of plausible values of coverage used to generate the estimates in (B). (B) 

Disaggregation of therapeutic effect type impact by whether this is direct or indirect. Bars are coloured 

according to the type of impact (direct reduction in mortality, indirect reduction in mortality due to reduced 

pressure on healthcare or indirect reduction in mortality due to reductions in community transmission), with 

error bars indicating the maximum and minimum proportion of deaths averted under the range of coverage and 

effectiveness values considered for each effect type (indicated by the boxes in (A) and Table 1).  
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Table 1: Potential COVID-19 therapeutic effects and their impacts. (Note: Inclusion in this list indicates that studies are underway to test for 

this property, and not that evidence has been found. 

Effect Description Target Population Epidemiological 
Impact 

Examples of Therapeutics Which May Have This 
Property* 

Indicative 
Potential 
Efficacy Range  

Indicative 
Potential 
Coverage Range  

Type 1 Reduce 

COVID-19 

mortality 

Hospitalised 

patients 

(moderately, 

severely or critically 

ill) 

Reduced mortality Dexamethasone (moderately[5] & severely/critically ill 

patients[5,6]).  

Remdesivir (moderately ill patients[10,11], per the meta-

analysis of the two trials) 

Tocilizumab and Sarilumab (severely/critically ill 

patients[9]) 

Therapeutic anticoagulants (moderately ill patients[8]) 

20-45% relative 

reduction in 

mortality 

90-100% 

Type 2 Reduce 

COVID-19 

severity (in 

hospitalised 

patients) 

Hospitalised 

patients 

(moderately, 

severely or critically 

ill) 

Reduced mortality 

and healthcare 

pressure  

Possibly therapeutic anticoagulants (moderately ill 

patients[8]) 
20-45% relative 

reduction in 

hospitalised 

patients 

requiring ICU 

stay 

90-100%  

Type 3 Reduce 

duration of 

hospitalisation 

with COVID-

19 

Hospitalised 

patients 

(moderately, 

severely or critically 

ill) 

Reduced healthcare 

pressure  

Remdesivir (moderately ill patients[11]).  20-45% decrease 

in duration of 

hospitalisation 

90-100% 

Type 4 Prevent 

hospitalisation 

due to 

COVID-19 

Post-symptom 

onset. Mildly 

symptomatic 

individuals in the 

Reduced mortality 

and healthcare 

pressure  

Monoclonal antibodies[18–20] 

Molnupiravir[15,16] 

25-75% 

reduction in 

chance of 

hospitalisation 

25-50%  
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community Inhaled Budesonide[13,14]  

Possibly Colchicine[12]  

Type 

5a 

Reduce 

duration of 

infectiousness 

Post-symptom 

onset. Mildly 

symptomatic 

individuals in the 

community 

Reduced mortality, 

healthcare pressure 

and transmission 

Postulated for Monoclonal antibodies due to effect on 

viral loads[18–20] 

Possibly Molnupiravir[15,16] 

Possibly Peginterferon-Lambda[17] 

25-75% 

reduction in 

duration of 

infectiousness 

25-50%  

Type 

5b 

Reduce 

duration of 

infectiousness 

Post-exposure. All 

individuals exposed 

to risk of infection,  

irrespective of 

symptoms  

Reduced mortality, 

healthcare pressure 

and transmission 

Postulated for Monoclonal antibodies due to effect on 

viral loads[18–20] 

Possibly Molnupiravir[15,16] 

Possibly Peginterferon-Lambda[17] 

20-75% 

reduction in 

duration of 

infectiousness 

10-25%  
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