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Abstract 

Confidence predictors can deliver predictions with the associated confidence required for decision making and can 
play an important role in drug discovery and toxicity predictions. In this work we investigate a recently introduced 
version of conformal prediction, synergy conformal prediction, focusing on the predictive performance when applied 
to bioactivity data. We compare the performance to other variants of conformal predictors for multiple partitioned 
datasets and demonstrate the utility of synergy conformal predictors for federated learning where data cannot be 
pooled in one location. Our results show that synergy conformal predictors based on training data randomly sampled 
with replacement can compete with other conformal setups, while using completely separate training sets often 
results in worse performance. However, in a federated setup where no method has access to all the data, synergy 
conformal prediction is shown to give promising results. Based on our study, we conclude that synergy conformal 
predictors are a valuable addition to the conformal prediction toolbox.
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Introduction
Confidence predictors [1], such as conformal predictors, 
have been demonstrated to have several properties that 
make them useful for predictive tasks in drug discov-
ery and other biomedical research [2]. Well calibrated 
models with defined uncertainties can facilitate decision 
making and has been identified as an important area of 
development [3, 4].

Conformal predictors allow predictions to be made at 
a pre-set confidence level, with errors guaranteed to not 
exceed that level. This is achieved under only mild con-
ditions. Both transductive [5] and inductive conformal 

predictors [6] (ICP) have been described but we will 
focus on ICP in this study. The basis of an ICP is that a 
calibration set is used to relate new predictions to cali-
bration instances with known labels. The conformal 
predictor then outputs a prediction region based on the 
calibration results and the selected confidence level. For 
example, a prediction set for a binary classification has 
four possible outcomes, no prediction, either of the two 
labels, or both labels. For details on how this is achieved 
we direct the reader to Norinder et al. [7] and Alvarsson 
et al. [8]. Reviews on the application of conformal predic-
tion in the field of cheminformatics are also available [2, 
3]. Conformal predictors can be calibrated for each class 
separately, called Mondrian conformal predictors. Mon-
drian conformal predictors have been shown not only to 
give the expected error rate for each class independently, 
but also to give excellent performance for imbalanced 
data [9, 10].
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When evaluating conformal predictors two key metrics 
are validity and efficiency. Validity measures the fraction 
of predictions containing the correct label while effi-
ciency measures the fraction of predictions containing 
only one label (or in the case of regressions, the width of 
the prediction region). The properties of conformal pre-
diction guarantees that validity is always achieved as long 
as the conditions are met. It is generally desired to have 
as high efficiency as possible to maximise the utility of 
the predictions.

Several different approaches have been described for 
conformal prediction. The baseline ICP method uses 
fixed predefined training and calibration sets. Com-
monly, this process is repeated multiple times with dif-
ferent splits between training and calibration, and the 
p-values averaged, in what is called an aggregated con-
formal predictor (ACP) [11, 12]. This has the advantage 
that the prediction becomes less sensitive to the split 
between training and calibration data. However, while 
ACPs empirically have been shown in many applications 
to generate valid conformal predictors (an error rate not 
exceeding the set confidence-level) [13, 14], they have not 
been theoretically proven to be valid.

Recently, a new type of conformal predictor, called 
a synergy conformal predictor (SCP), has been intro-
duced for classification [15] and regression problems 
[16]. In this application, the nonconformity scores from 
several different predictors are aggregated to construct a 
conformal predictor using a shared calibration set. This 
approach has been shown to satisfy the requirements for 
theoretical validity. SCP has previously been applied to 
toxicity predictions [17], but applications to other chem-
informatics problems have to our knowledge not been 
reported and a systematic evaluation of SCP in chemin-
formatics is not available.

Key aspects of the different conformal predictors are 
shown schematically in Fig. 1. While the basic principle 
remains the same, the key difference between the differ-
ent conformal predictors is the strategy used to split the 
data. Splitting the training data into smaller individual 
sets for SCP risk decreasing the predictive performance 
of the model compared to approaches trained on the full 
training set. However, the disjoint training sets allow for 
applications in for example federated learning [18] or dis-
tributed training that is not possible to achieve with other 
conformal methods that require access to all the available 
training data.

Federated learning is the process where several par-
ties jointly train a machine learning model but keep their 
respective data local and private [19]. Federated learning 
can therefor help overcome issues related to confidential-
ity or privacy of data while still generated models based 
on a large amount of data.

Previous work has shown that prediction intervals 
from multiple non-disclosed datasets can be integrated 
by aggregating conformal p-values, but without produc-
ing valid results [20]. Applying SCP for federated learning 
is also convenient as it is a rigorously defined framework 
for aggregating the results from multiple sources. How-
ever, the aggregation still requires access to a shared cali-
bration set.

SCP can also be used to construct predictor ensembles 
with overlapping training data as long as the calibration 
set remains the same. This allows for each split to con-
tain sufficient training data to generate well-performing 
models regardless of the number of splits used and might 
allow for more efficient models compared to a single ICP 
predictor while still maintaining the guaranteed error 
rate as SCP methods have been shown to be theoretically 
valid.

In this study, we compare the performance of SCP with 
that of ICP and ACP on large-scale bioactivity datasets. 
We also explore potential applications of SCP in feder-
ated learning.

Results and discussion
To evaluate SCP for bioactivity data, two sets of 
PubChem data described by two sets of descriptors 
were used. These datasets have previously been used for 
machine learning evaluations [21, 22]. We compared the 
performance of SCP with five or ten splits (SCP 5 and 
SCP 10), SCP with ten random overlapping splits (RSCP 
10), ACP with ten aggregations (ACP 10), and ICP. The 
results were evaluated using mainly the model efficiency, 
defined as the fraction of single label predictions. This is 
due to the fact that we expect all conformal predictors to 
give valid models, that is models with an error rate cor-
responding to the set significance level. See the methods 
section for more detail on these metrics. Efficiency for 
all methods is shown Figs. 2, 3, 4, 5 along with pairwise 
comparison for statistically significant differences (Wil-
coxon signed-rank test). All methods produced valid 
models (see Additional files 1 and 2).

Overall, all the methods follow a similar pattern for 
the efficiencies and there are no dramatic differences, 
this is also evident from the fact that most of the com-
parisons did not produce a statistically significant differ-
ence in performance. However, ICP and RSCP tend to 
deliver slightly more efficient models at the higher con-
fidence levels. This can be rationalized by ACPs tendency 
to produce slightly over valid models (overconservative) 
with a resulting loss in efficiency. For SCP 5 and SCP 
10, the division of the training data is likely the cause of 
the lower efficiency, this is also supported by the overall 
lower efficiency for SCP 10.
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Despite the somewhat lower efficacy of the SCP 
models, our results indicate that they can still generate 
well-performing models. Especially when not dividing 
the training data in too many partitions, as seen from 
the generally better performance of SCP 5 compared to 
SCP 10. In situations where a single joint training set is 
not available, either for technical reasons (aggregating 

a large amount of for example image data might be 
challenging), or where data cannot be shared between 
collaborators for reasons of confidentiality, SCP can be 
an option where models can be trained in a distributed 
fashion and the results joined together by a common 
calibration set.

Fig. 1  Outline of the different conformal prediction algorithms used in this study. Split percentages and number of repeats reflect the methods 
used in this study. The difference between the algorithms lies in the way the data is split. Note that an ICP is equivalent to an ACP with just one split
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The RSCP method overall produced more efficient 
models compared to SCP 5 and SCP 10 and can be a 
good alternative to ACP when the theoretical validity 
of the models is an important consideration or when 
ACPs tendency to generate overconservative mod-
els is undesirable. However, the need to draw ran-
dom samples of the available training data means that 
the opportunities for distributed learning are lost for 
RSCP.

To investigate the potential utility of SCP for feder-
ated or distributed learning, we compared the results 

from modelling the individual parts of the training sets 
and using the average prediction (INDICP 5 and IND-
SCP 5) to the aggregated results for SCP 5. We elected 
to use the SCP 5 models as these had consistently bet-
ter performance compared to SCP10. This reflects 
a scenario where data cannot be pooled to train one 
model and without federation the models would only 
have access to parts of the data, one fifth in this case. 
The average performance of the individual models 
compared to the federated model is shown in Figs.  6 
and 7. Clearly, having access to more data in total 

Fig. 2  Top panels: efficiency for the active class for Set 1 using the different conformal predictors at a range of significance levels (0.1–0.3). Results 
for RDKit descriptors left and fingerprints right. Bottom panels: pairwise comparison (Wilcoxon signed-rank test with Bonferroni correction for 
multiple testing, 0.05 significance level, across all significance levels and datasets) of methods on rows with methods on columns, significantly 
better result is indicated in blue, significantly worse result in red. p-values are indicated in the figure. For example, in the bottom left panel we can 
see that SCP 10 is significantly worse than all other methods it is compared with
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improves the federated model compared to the indi-
vidual models trained on only parts of the data. These 
results show promise for SCP for applications in feder-
ated learning. However, additional studies are required 
to benchmark SCP against other approaches in feder-
ated learning.

Overall, our study supports the previously published 
results on SCP and expand these to bioactivity predic-
tion [15, 16]. In this study we employed Random Forest 
as the underlying model coupled with either molecu-
lar descriptors from RDKit or Morgan fingerprints. 
However, due to the flexible framework of conformal 

prediction any underlying method and descriptor can 
be used, allowing for easy conversion of already vali-
dated prediction setups. This is especially useful for 
federated learning since each participant can use their 
preferred model and descriptor type independently of 
what the other participants use.

Conclusions
We have demonstrated that synergy conformal pre-
dictors can achieve predictive performance on par 
with ICP and ACP methods. The same type of benefit 
that has been observed for other Mondrian conformal 

Fig. 3  Top panels: efficiency for the inactive class for Set 1 using the different conformal predictors at a range of significance levels (0.1–0.3). 
Results for RDKit descriptors left and fingerprints right. Bottom panels: pairwise comparison (Wilcoxon signed-rank test with Bonferroni correction 
for multiple testing, 0.05 significance level, across all significance levels and datasets) of methods on rows with methods on columns, significantly 
better result is indicated in blue, significantly worse result in red. p-values are indicated in the figure
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predictors for heavily imbalanced data is also true for 
SCP and the minority class is well predicted.

Since disjoint training sets can be joined with a shared 
calibration set, SCP has the potential to unlock confor-
mal prediction, and thus predictions with a defined error 
rate, in  situations where data is difficult to aggregate 
for one model and for applications in federation learn-
ing. Our results indicate that good performance can be 
obtained from such models.

In summary, SCP is a useful addition to the conformal 
prediction toolbox and can complement other methods 
in situations where a theoretical validity is paramount or 
where distributed training is desired.

Methods
Datasets
Two different sets of data, both originating from 
PubChem [23], were used in this analysis and previ-
ously employed and reported on in references [21] 
(Set 1) and [22] (Set 2). The AID and number of 
compounds for each dataset is shown in Table  1. 
The compiled datasets both include data from AID 
2314. However, differences in how these datasets 
were curated means that the number of compounds 
included is different.

The chemical structures were standardized using the 
IMI eTOX project standardizer [24] in order to generate 

Fig. 4  Top panels: efficiency for the active class for Set 2 using the different conformal predictors at a range of significance levels (0.1–0.3). Results 
for RDKit descriptors left and fingerprints right. Bottom panels: pairwise comparison (Wilcoxon signed-rank test with Bonferroni correction for 
multiple testing, 0.05 significance level, across all significance levels and datasets) of methods on rows with methods on columns, significantly 
better result is indicated in blue, significantly worse result in red. p-values are indicated in the figure
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consistent compound representations and then further 
subjected to tautomer standardization using the MolVS 
standardizer [25]. Activity was assigned according to 
the PubChem annotation, and compounds with ambig-
uous activity were discarded.

A set of 97 physicochemical/structural feature 
descriptors, previous used in studies with good 
results [13, 26] were calculated using RDKit version 
2018.09.1.0 [27]. A second descriptor set comprised 
of Morgan fingerprints [28] using radius 4 and hashed 
onto a binary feature vector of length 1,024 were also 
calculated using RDKit.

The data sets were randomly divided into a training set 
(80%) and a test set (20%).

Study design
Four different Mondrian conformal prediction protocols 
(outlined in Fig.  1) were used to derive in silico models 
for the data sets:

1.	 ICP.
2.	 Aggregated Conformal Prediction (ACP) using 10 

randomly selected pairs of proper training and cali-
bration sets, respectively. (ACP 10).

Fig. 5  Top panels: efficiency for the inactive class for Set 2 using the different conformal predictors at a range of significance levels (0.1–0.3). 
Results for RDKit descriptors left and fingerprints right. Bottom panels: pairwise comparison (Wilcoxon signed-rank test with Bonferroni correction 
for multiple testing, 0.05 significance level, across all significance levels and datasets) of methods on rows with methods on columns, significantly 
better result is indicated in blue, significantly worse result in red. p-values are indicated in the figure



Page 8 of 11Norinder et al. J Cheminform           (2021) 13:77 

3.	 Synergy Conformal Prediction (SCP) using a ran-
domly selected calibration set and a random 5- or 
tenfold division of the proper training set (mutually 
exclusive subsets). (SCP 5 and SCP 10).

4.	 Synergy Conformal Prediction using a randomly 
selected calibration set and 10 randomly selected 
subsets (70%) of the proper training set (RSCP 
10). This selection allows duplication of instances 
between proper training sets.

Additionally, for comparison to federated models we 
also use ICP and SCP on each training set separately 
and merged the results from the 5 parts (INDICP 5 
and INDSCP 5) into one file of predicted p-values, 
respectively. Since the comparison, as noted above, 
was made to SCP5, each training set was split in 5 
parts.

All underlying models were built using the Random-
ForestClassifier in Scikit-learn [29] version 0.20.4 with 

Fig. 6  Distribution of efficiency for the individual models compared to the federated for Set 1. RDKit descriptors on top row and FP bottom, active 
left and inactive right. Statistically significant differences are indicated (Wilcoxon signed-rank test with Bonferroni correction for multiple testing, 
0.05 significance level)
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default parameters (100 estimators), that previously has 
been shown to be a robust and accurate methodology 
for bioactivity prediction [30, 31].

Method evaluation
As introduced above, conformal predictions are typically 
evaluated by calculating the validity and efficiency of the 
predictors. In this study we define validity as the fraction 
of predictions that include the correct label and efficiency 
as the fraction of single label predictions. Since confor-
mal predictors should be valid, focus is generally on the 

efficiency as a more efficient predictor will produce more 
useful output. For a more in-depth explanation on con-
formal prediction and its validation, see Norinder et  al. 
[7].

Statistical test
A Wilcoxon signed-rank test (significance level 0.05) with 
Bonferroni correction for multiple testing was used in 
order to determine statistical significance between the 
conformal prediction methods. Methods were compared 
across all datasets and significance levels.

Fig. 7  Distribution of efficiency for the individual models compared to the federated for Set 2. RDKit descriptors on top row and FP bottom, active 
left and inactive right. Statistically significant differences are indicated (Wilcoxon signed-rank test with Bonferroni correction for multiple testing, 
0.05 significance level)
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