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Abstract—In this paper, the problem of convergence rate
optimization for distributed primal-dual algorithm over wireless
communications is investigated. In the considered model, each
user locally updates the primal and dual variables, which are
uploaded to the base station (BS). The BS aggregates the data
from the users and broadcast the aggregated value to all users.
This resource allocation problem is formulated as an optimization
problem whose goal is to minimize the gap between the optimal
value and the obtained value after a fixed number of iterations
in distributed primal-dual algorithm. To solve this problem, the
convergence rate is obtained in closed form for the primal-dual
algorithm with considering the impact of wireless factors. Based
on this convergence rate, the optimal condition for the power
control and resource block allocation is obtained. An iterative
algorithm with low complexity is proposed to solve this joint
power control and resource block allocation problem. Simulation
results show that the proposed algorithm can achieve better
compared to baseline methods.

Index Terms—Dual method, convergence rate, resource allo-
cation.

I. INTRODUCTION

Recently, the security concern and the availability of abun-
dant data and computation resources in wireless networks are
pushing the deployment of optimization algorithms towards
the network edge [1]. This has led to a significant interest in
distributed optimization methods. In the distributed optimiza-
tion, each node can compute the data and sends the results
to its neighbours or the center. Distributed optimization has
many applications, such as channel estimation [2], trajectory
optimization, and user behaviour prediction [3].

Distributed optimization algorithms have two main classes:
distributed primal algorithm [4]-[7] and distributed primal-
dual algorithm [8]-[12]. In [4], the authors proposed fast
distributed gradient algorithms to minimize the sum of in-
dividual cost function. The decentralized gradient descent
method was proposed in [7], where all agents collaborate with
their neighbors through information exchange. Compared to
distributed primal algorithm, it was shown that distributed
primal-dual algorithm has better performance in terms of
fast convergence rate [8]. The distributed alternating direc-
tion method of multipliers (ADMM) was proposed in [8]
for solving separable optimization problems. For distributed

optimization with global inequality constraints, the authors
in [9] studied deterministic and stochastic primal-dual sub-
gradient algorithms. To reduce the communication cost of
a decentralized algorithm, [10] proposed a communication-
censored ADMM. A variant ADMM algorithm was proposed
in [11], which has less communication overhead but with the
same convergence rate of standard ADMM. To further reduce
the communication overhead, the authors in [12] investigat-
ed coding for stochastic incremental distributed primal-dual
algorithm. However, the above distributed primal-dual works
[8]-[12] all ignored the affect of wireless factors (such as
transmission error) when implementing distributed primal-dual
algorithm over wireless communications.

The main contribution of this paper is a framework for
optimizing primal-dual algorithm over wireless networks. In
particular, we formulate a joint resource allocation and power
control problem aiming to minimize the error of the primal-
dual algorithm. Considering the affect of wireless factors, the
convergence rate of the primal-dual algorithm is analysed.

The rest of this paper is organized as follows. System model
and problem formulation are described in Section II. Section
III provides the convergence analysis and resource allocation.
Simulation results are presented in Section IV. Conclusions
are drawn in Section V.

II. SYSTEM MODEL AND PROBLEM STATEMENT

Considering a distributed computing network with a set A/
of N users and one base station (BS). Each user n has a local
dataset D,,. Due to data privacy issue, only user n can access
dataset D,,.

A. Primal-Dual Model
We consider the distributed primal-dual algorithm for solv-

ing the optimization problem:

min f(@) 2

N
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where f,(x,D,) and g,,(x) are convex functions, N is
the total number of users, M = {1,--- , M}, and M is

st gm(x) <



the number of constraints. For notational simplicity, we use
fn(x,Dy) to denote f,(x) in the following.

To provide the distributed primal-dual algorithm, the La-
grange function of problem (1) can be given by:

| X M
= N Z fn(®) + Z Amgm ()
n=1 m=1
| X M
= N <fn(w) Z Amgm@’)) ) 2
n=1 m=1
where A = [A1,---, )7 is the Lagrange multiplier associ-

ated with constraint (1a). For each user n, we define the local
Lagrange function

Lo(x,A) = fo(x) + AT g(z), 3)

where g(z) = [g1(x), -+ ,gm(x)]T. The sub-gradients of
local Lagrange function can be given as follows:

Valn(x,A) =V, (x) + ATVg(x), 4
and

VaLn(x,A) = g(x). (5)

Based on the definition of local Lagrange function, the
distributed primal-dual algorithm is proposed to solve the
following minmax problem [9]:

max mln Z Ln(x,\) (6)

The distributed primal-dual algorithm is given in Algorithm
1. In Algorithm 1, each user updates the dual variable A(t+1)
and obtains a copy of the primal variable y, (¢ + 1). Note
that «(t) is a dynamic step size for the sub-gradient descend
procedure. The BS aggregates the obtained copies of primal
variables from all users and broadcasts this aggregated value
to all users. After a sufficient number of iterations, such as T’
iterations, each user can obtain the estimation of the optimal
primal variable as in (5).

B. Wireless Communication Model

For the uplink transmission, orthogonal frequency division
multiple access (OFDMA) technique is applied and each user
is assigned with one resource block (RB). Assume that there
are a total number of N RBs. Assume that there are /N RBs.
Let a;, € {0,1} denote the RB association, i.e., a;, = 1
means that RB [ is assigned to user n and a;, = 0 otherwise.
Due to the fact that each user can be assigned with only one
RB and each RB should be occupied by only one user, we

have
N N
E app =1, E ap, = 1.
=1 n=1

When user n is assigned with RB [, the uplink transmission
rate of user n is

r1n, = Blogs <1 +

Y
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pnﬂldn On) ’ (12)

I + BNy

Algorithm 1 Distributed Primal-Dual Algorithm
0 and dual variable

1: Initialize primal variable x(0) =
A(0) = 0.

2 for t =0,1,---,T

3:  parallel for user n ¢ N

4: Update the dual and primal variable

At +1) = Alt) + a(t)g((1)), (7
ynlt +1) = 2(t) - a()Vala(@(), AD).  ®)
Each user sends y;(t) to the BS.

end for
7. The BS computes

AN

N

Z

x(t+1) (t+1) 9)

and broadcasts the value to all users.
8: Sett=1t+1.

9: end for
10: Output weighted average value of the primal variable
2(T) = M_ (10)
Yo o(t)

where B is the bandwidth of each RB, p,, is the transmission
power of user n, (§; is the reference channel gain between
user and the BS on RB [ at the reference distance 1m, d,, is
the distance between user n and the BS, ( is pathloss factor,
on ~ exp(1l) is the small scale fading.

Due to the randomness of wireless communication cannel,
the user may transmit data with error. For user n with RB [,
the error rate is defined as

qin = ]P(’I"ln < R), (13)
where R is the minimum rate for uploading the updated primal
variable to the BS. To calculate the value of ¢;,,, we have the
following lemma.

Lemma 1. The data error rate of user n with RB [ is

Dy,
qin =1 — exp (—l) : (14)
Dn
R/B _1)(I,+BN,
where Dy,, = @77 -1Ui+BNo) BtZl(Elj o),
Proof: Based on (12) and (13), we have
qin = IP>(7"ln < R)
2R/B _ 1)(I, + BN,
:P<0n<( )(l_j 0))
p'mBldn
2R/B _ 1)(I; + BN,
:1—exp<—( )(l_+ 0)), (15)
pnﬁldn
where the last equality follows from o, ~ exp(1). ]



Since user n can occupy any one RB, the data error rate of
user n is

N
I =Y QinGin. (16)
=1

In the considered system, if the received primal variable
Yy, from user n contains errors, the BS will not use it for
the update of the aggregated primal variable. Let C,(¢t) €
{0,1} indicate that whether user n transmits primal variable
Y, in time ¢ contains error or not. In particular, C,(t) = 1
shows that y,, received by the BS does not contains any data
error; otherwise, we have C,,(t) = 0. The BS computes the
aggregated primal variable as'

> omet Cn(B)yn(t+ 1)

x(t+1) = ~ ) (17)
2 n=1Cn(t)
where
| 1, with probability 1 — ¢,
Cnlt) = { 0, with probability ¢, (18)

C. Problem Formulation

We aim to jointly optimize the RB allocation and power
control for all users to minimize the gap of the estimation and
the optimal value in distributed primal-dual algorithm, which
is given as

min - E(f(2(T)) - f(=")) (19)
P
N
st Y am=1, VIEN, (19a)
=1
N
Y am=1, Vnew, (19b)
n=1
N
an S Pmaxa (190)
n=1
am € {0,1}, Vi,neN, (19d)
0<p, <P, VnelN, (19¢)

where A = {aim}nxn, P = [p1,--,pn]" E(f(&(T)) -
f(x*)) denotes the gap of the estimation and the optimal value
in Algorithm 1, P, is the maximum total transmission power
of all users, and P, is the maximum transmission power of
user n. Constraints (19a) and (19b) indicate that each user can
occupy only one RB and each RB can be assigned with only
one user. Constraint (19a) shows that the total transmission of
all users cannot exceed a preferred value, which can guarantee
that the energy consumption of the whole system is limited.

INote that the denominator in (17) is zero only for the case that Cy, () = 0
for all n with probability Hﬁ:’:lqn. Since the probability Hﬁ:’zlqn approaches
zero when the number of users is large, we ignore the case that Cp, (t) = 0
for all n.

III. CONVERGENCE ANALYSIS AND RESOURCE
ALLOCATION

A. Convergence Analysis

To analyze the convergence rate of Algorithm 1, we make
the following three assumptions:

Assumption 1. Compact Feasible Set: The feasible set of
primal variable x satisfying (la) is non-empty, compact, and
convex. Denote R as the smallest radius of the o ball with
original center that contains the feasible set, i.e., |z| < R for
all x satisfying (la). Furthermore, this feasible set is known
by all users.

Assumption 2. Slater Condition: There exists a solution x
such that g, (x) < 0,Vm € M.

Assumption 2 indicates that the primal problem in (1) and
the dual problem (6) have the same optimal objective value,
and the optimal dual variable A* has a finite value. Denote S
as the finite maximum value for A, (¢), i.e., Ay (t) < S.

Assumption 3. Lipschitz Continuous: Both functions f,(x)
and g, (x) are convex on the feasible set, and the first-order
derivative of functions f,(x) and g, (x) are bounded by L,
ie.,

Viux) < L,Vgn(x) <L, VYneN,meM, (20)
where L < oo is a constant.

Based on the above assumptions, we have the following
theorem about the convergence of Algorithm 1.

Theorem 1. If we run Algorithm 1 with T iterations, we have

R+ (1
d2(1 - QO)

where di = S NL + LMS + ML?R?)a(t)?, dy =
2N /2 alt) and go = maxpen g

B qn)

E(f(&(T)) - f(z7))< 2D

Proof: Please refer to Appendix A. [ ]
Theorem 1 provides an upper bound of the gap between the
estimated value and the optimal value. If we choose the step
size a(t) (for example a(t) = 1/T) satisfying > oo au(t) =
oo and Y ;2 a(t)? < oo, we have limp_,o E(f(2(T)) —
f(x*)) = 0, which shows that &(T") approaches the optimal
solution.

B. Resource Allocation

Based on Theorem 1, problem (19) can be reformulated as

R+ di(l—gn)

i 22
11141»1;’1 d2(]— — MaXnpeN Qn) 22
s.t.  (19a) — (19¢) (22a)

To solve problem (22), we have the following lemma about
the optimal condition.



Lemma 2. For the optimal solution (A*,
we always have

p*) of problem (22),

(23)

Proof: Assume that the optimal solution of problem (22)
is (A*,p*) and there exists ¢ and j such that ¢f < q;. We
construct a new solution (A*, p) with

ﬁn:p:;ﬂpi:pf_e VTL#Z, (24)
where € > 0 is a small positive constant with satisfying ¢ <
@i < g;. Since the new solution (A*,p) is feasible and has
lower objective value compared to solution (A*, p*), which
contradicts that solution (A*,p*) is optimal. As a result, the
optimal condition (23) always holds for problem (22). ]

Based on the optimal condition (23), the objective

2 N _
function in (22) is equivalent to }ZJF;‘;;X ile(,\lf qi")‘)

R? R’ :
da(l—maxnen qn) +Nd1 Besides minimize Ta(l—maxnen an) 1S

equal to minimize max,ecns ¢, ). Consequently, problem (22)
can be simplified as

i 25

g}g}q q (25)
= Dln

st g>1-=) amexp (-p) , VneN, (25a)
=1 n

(19a) — (19¢), (25b)

where inequality (25a) holds with equality for the optimal
solution as otherwise the objective value can be further im-
proved. To solve problem (25), we use an iterative method,
which optimizes A and p in an alternating manner.

Give power vector p, problem (25) is a mixed linear integer
problem. By temporally relaxing integer variable a;, € [0, 1],
problem (25) with fixed p is a standard linear problem, which
can be effectively solved via the simplex method. Then, we can
obtain the integer value of a;, by using the rounding method.

With fixed RB association A, problem (25) reduces to

min ¢ (26)
P.q
Dl n
st. g>l—exp|——22), VneEWN, (26a)
Pn
N
> P < Pax; (26b)
n=1
0<p, <P, VnewnN, (26¢)
where [, is the assigned RB for user n, ie., a;,, = L

According to Lemma 2, constraint (26a) holds with equality
for the optimal solution and we can obtain

Dlnn
In(1 —q*)’
Substituting p} into constraints (26a)-(26b), the optimal ¢*
should satisfy

*

pn = Q7

< Pma)u (28)

n

Algorithm 2 Iterative RB Allocation and Power Control

1: Initialize RB allocation A and power contrl p.

2: repeat

3:  With fixed power control p, optimize RB allocation with
the simplex method and rounding technique.

4:  With fixed RB association A, obtain the optimal p by
solving (27) and (28).

5. until the objective value (25) converges.

where a|® = min{a,b}. Since the left hand-side of (28)
is a decreasing function with respect to ¢*, the minimal

q* satisfying (28) can be effectively obtained by using the
bisection method.

C. Complexity Analysis

The iterative algorithm for solving problem (22) is provided
in Algorithm 2. The major complexity in each iteration lies in
solving the RB allocation subproblem and the power control
subproblem. With fixed power control, the complexity of using
the simplex method is O(N3) [13] for solving (25). With
fixed RB association, the complexity of solving (28) with the
bisection method is O(N log(1/¢)), where € is the accuracy
of the bisection method. As a result, the total complexity of
Algorithm 2 is O(TyN3 + TyN log(1/€)), where Ty is the
number of iterations in Algorithm 2.

IV. SIMULATION RESULTS

In the simulations, there are N = 50 users uniformly in a
square area of size 500 m x 500 m with the BS at the center.
The path loss model is 128.1+37.6log; d (d is in km) and the
standard deviation of shadow fading is 8 dB. The bandwidth
of each RB is 1 MHz and the noise power spectral density
is Ng = —174 dBm/Hz. To show the performance of the
primal-dual algorithm, we consider the following classification
problem [9]

N

min f(z) 2 }V;logu rep(balz)  Q9)
st gm(x)=—-l—24m, Ym=1---d, (29a)
Imtd(x) = =l — 2, Ym=1,---,d,  (29b)
x|l <1, (29¢)

where a,, € R? and b,, € {—1,1}.

The convergence of the distributed primal-dual algorithm
is shown in Fig. 1. From this figure, we find that that the
distributed primal-dual algorithm has an oscillatory behavior.
When the number of users is large, the amplitude of oscillatory
behavior is obvious.

We compare the proposed Algorithm 2 to solve problem
(25) with two baselines: the fixed power control algorithm
with only optimizing RB allocation (labelled as ‘FPC’) and
the fixed RB allocation algorithm with only optimizing power
control (labelled as ‘FRBA’). Fig. 2 illustrates the maximum
transmission error among all user versus the maximum sum
transmit power. From this figure, the maximum transmission
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error decreases for all schemes as the maximum sum transmit
power varies. This is because high transmit power can decrease
the transmission error. It is observed that the proposed algorith-
m achieves the best performance, which shows the superiority
of the joint power control and RA allocation design.

V. CONCLUSIONS

In this paper, we have investigated the convergence opti-
mization problem of distributed primal-dual optimization over
wireless communication networks via jointly optimizing RB
allocation and power control. We derived the closed-form
expression of the expected convergence rate of distributed
primal-dual algorithm that considers the transmission error
over wireless communications. Based on this convergence
rate, we first obtain the optimal condition for the resource
allocation. Then, an iterative algorithm is proposed, where the
closed-form solution is obtained for power control subprob-
lem. Simulation results show the superiority of the proposed
solution.

APPENDIX A
PROOF OF THEOREM 1

E|lx(t+1)
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| +n21 <zl 10<>>
~(a(t)2||Vm£n(93(t)a AP

—2a(t)(x(t) — ) Vi Ly((t), A(t))),

where inequality (a) follows from the fact that squared
norm is a convex function. To obtain an upper bound of

z*|? +E

=|l(#)

(A1)

_Cnl) — _Gu®
E (vazlci(t)>’ we define K, = SN G0 Based on (18),
we have
1 . oqs
o — [ES ShA O with probability 1 — g, (A2)
0, with probability g,
: 1
Since v < m <1, we can obtain
Cn(t
E <N(>> = E(Hn) <1- qn- (A3)
Zi:l Ci(t)
Combining (A.1) and (A.3) yields
Elle( +1) — w*H2
<[le(t) -z ||2+Z 1—qn) ( (Ve Lo ((t), (1)
— 2a(t)(2(t) - @ )vaﬁn(m(t), A®)). (Ad)

According to the recursion in (A.4) with 2(0) = 0, we can
derive

E|j&(T) — =*||”
T—1 N
<l )2+ 0D (1) ( ([ Va Lo ((t), A1)
t=0 n=1
—2a(t)(z(t) — &%) VoLl (a(t), ,\(t))). (A.5)



Due to the non-negativity of left-hand side in (A.5), we have
T-1 N
=)+ > > (1= gn)er
t=0 n=1
T-1 N

Zzlflhl (t)*

t=0 n=1

£)?[| Vo L (2(t), At

)V L, (2(t), A(1)).
(A.6)

According to Assumption 3, £, (x, A) is convex with re-

spect to & and we have
(2(t) — ") Valy(@(t), A1)

=L (2(t), A(t) — Ln(z™, A1) (A7)
Based on (A.6) and (A.7), we have
T-1 N
2]+ > > (1 = gu)a(t)?|VaLa(@(t), At)|>
S t=0 n=1
>2> > (1= gu)a(t)(La(@(t), (1) — Ln(z", A1)
Y
2233 (1= g)al)(fal@(t) — folz"))
e
+2> 3 (1= gu)at)(AB) g(x(t) — A1) g(z"))
oo
>2) Y (1= gu)a(t)(fulz(t) = fulz"))
R
+237 3701 - ga)al)AWD) g(x(t)), (A8)
t=0 n=1

where (b) follows from the fact that g, (2*) < 0 and A, (¢) >
0. To derive a lower bound for the last term in the right hand
side of (A.8), we provide the following lemma.

Lemma 3. For all T, the following inequality holds

T—1 N
23 ) (1= gn)a®A(®) g(x(t)
t=0 n=1
T—1 N
3 Y- a)a®?lgE)> (A9
t=0 n=1

Proof: Using the updating procedure of dual variable
yields
IAE+ DI 2 W) + g (1))
=[ADP + 2a6)(A(1) T g(2(1) + a(t)?|lg(x(®))]*.

By using the recursion method and A(0) = 0, we can obtain

T-—1
T)|> =2 a(t) (At
t=0

Since H)\(T )|I? > 0, we have
T— —

a(t)?llg(z(t)|* =

t=0 t=0

~

Tg(z(t) +

a(t)?llg(z(t))]|*.

This completes the proof. [ ]
According to (A.8) and (A.9), we can obtain

T-1 N
z*1* + > > (1= au)a()?(| Ve ln(@(t), A(H)|I?
t=0 n=1
T-1 N
Zzlf‘]n ( ()) fn( ))
PR
=YD (1= gn)a(®)?lg(=(1)]

t=0 n=1

T—1

AN 3" (1 - an)at) (F(t) — Fa"))
t=0
T—-1 N

;Z:: 1 - gn)ox

where (c) fo lows from the definition ¢y = max,cn ¢, and

flx) = N Zn:1 fn().
Recall the definition of &(T") in (10), we have

E(f(@(T)) - f(z7))
) —

)% llg(x ()], (A.10)

OY g a)(f(=(t) — f(z*))
- S alt)
(A.10) 1

P <><””’*”2

2N (1 —qo
T—1 N
+ 30501 = gu)a [ Valal@(t), XD
1y
+ 30 D= aa®lg(=®)]?)
t=0 n=1
© 1 * (|2
ST tT—Ola@)(””” H
T—1 N
+ 30501 = gt Valale(t), XD
t=0 n=1
T—1 N
+ 33— ga@? ML R?), (A1)
t=0 n=1

where (d) follows from the convexity of function f(x) and
(e) follows from Assumption 3. To derive an upper bound for
IV Ly (z(t), A(t)||, we provide the following lemma.

Lemma 4. The sub-gradient of the Lagrangian function is
bounded by

Vo Lln(x(t), A#)||* < L(1+ MS).

Proof: From the definition of the Lagrangian function,
we have

Vo Lo (2(t), <>|| DV fa((t) + A6 Vg(2(t))]]
NIl + Z Am (1))

LA+ A®]1) < L1+ MS),

(A.12)

<V fu(x OV gm(

(A.13)



where (e) follows from the triangle inequality, (f) follows from
Assumption 3, (g) follows from Assumption 2. ]

Combining Assumption 1, (A.11) and (A.12), we can obtain
equation (21).
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