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Abstract—This paper studies the deep learning based adaptive
downlink beamforming solution for the signal-to-interference-
plus-noise ratio balancing problem. Adaptive beamforming is
an important approach to enhance the performance in dynamic
wireless environments in which testing channels have different
distributions from training channels. We propose an adaptive
method to achieve fast adaptation of beamforming based on the
principle of meta learning. Specifically, our method first learns
an embedding model by training a deep neural network as a
transferable feature extractor. In the adaptation stage, it fits a
support vector regression model using the extracted features
and testing data of the new environment. Simulation results
demonstrate that compared to the state of the art meta learning
method, our proposed algorithm reduces the complexities in both
training and adaptation processes by more than an order of
magnitude, while achieving better adaptation performance.

Index Terms—Meta-learning, embedding model, beamforming.

I. INTRODUCTION

Beamforming is one of the most promising multi-antenna
techniques that can realize the antenna diversity gain and
mitigate multiuser interference simultaneously. Optimizing
beamforming weights is critical to fully reap its benefits
and has been extensively studied in the literature for var-
ious objectives such as power minimization [1], signal-to-
interference-plus-noise ratio (SINR) balancing [2], and sum
rate maximization [3]. However, most beamforming solutions
are highly complex to implement because of their iterative
nature and slow convergence, and therefore cannot meet the
critical latency requirement in the fifth generation (5G) and
beyond communications systems.

Recently, the deep learning technique has been proposed
to address the complexity of beamforming design using the
‘learning to optimize’ framework [4]. It is based on the
intuitive idea that the mapping from the channel state to
beamforming can be learned by training a neural network
model in an offline manner, and then the beamforming solution
can be directly predicted using the trained model in real
time. The potential of this approach has been demonstrated
in solving a series of beamforming design problems [5]–
[8]. However, a major drawback with existing deep learning
based beamforming solutions is that they are restricted to
a static wireless environment, i.e., the training and testing
channel data follow the same distribution, which is unrealistic.
In practical wireless networks, the channel distribution may
change due to complex environments, high mobility (e.g.,

in vehicular networks) or unexpected perturbations. Even a
well trained model could cause unacceptable performance
degradation in the testing environment, which is known as the
task mismatch issue. Since re-training a model will violate the
latency constraint and is impractical, to tackle this challenge,
fast adaptation of beamforming solutions using limited data is
urgently needed in multi-antenna communications.

A potential method for adaptation of beamforming is the
model-agnostic meta-learning (MAML) algorithm proposed in
[9] that is widely applicable to general deep neural networks.
The MAML algorithm aims to learn a parameter initializa-
tion of the deep neural network model, such that a small
number of gradient updates of the parameter using limited
testing data from a new task will produce large reduction
in the loss function of that task. The MAML algorithm has
been successfully used to deal with the end-to-end decoding
problem over fading channels [10] with few pilots and to
learn the downlink channel state information (CSI) from the
uplink CSI in frequency division duplexing (FDD) systems
[11]. Although the MAML algorithm has a good adaptation
ability, it introduces high complexities in the training stage
due to iterations used and in the adaptation stage due to
fine tuning. To improve the training and adaptation efficiency
while maintaining the adaptation performance of MAML, the
authors in [12] investigated the key factors that affect the
effectiveness of MAML. The results show that feature reuse is
the dominant factor for MAML. Based on the results in [12],
an efficient learning method was proposed in [13] to solve few-
shot image classification by training a linear classifier based
on the extracted features rather than using the sophisticated
meta training algorithm.

Motivated by the work in [13], this paper aims to design
a low-complexity adaptive beamforming solution that can
achieve fast adaptation based on limited labelled data in dy-
namic wireless environments. Our main contribution is that we
propose a simple yet effective learning algorithm for adaptive
beamforming design. It first learns an embedding model as a
feature extractor using existing data in the pre-training stage,
and then fits a simple support vector regression (SVR) model
based on the extracted features and limited testing data of the
new task in the adaptation stage. Compared to MAML, our
proposed algorithm simplifies the pre-training design and does
not need fine tuning in the adaptation stage. By considering
the SINR balancing problem as an example, extensive simu-
lations are carried out to assess the adaptation capability of



the proposed algorithm in realistic communications scenarios.
The results verify that the proposed adaptive beamforming
algorithm outperforms the state of the art MAML algorithm in
terms of achieving better adaptation performance and requiring
lower computational cost.

II. SYSTEM MODEL AND PROBLEM
FORMULATION

We consider a multi-input single-output (MISO) downlink
system where a base station (BS) with Nt antennas serves
K single-antenna users. The received signal at user k can be
written as

yk = hHk wksk + nk, (1)

where hk ∈ CNt×1 denotes the channel vector of user k, (·)H
denotes the conjugate transpose, wk and sk denote the transmit
beamforming vector and the information-bearing signal for
user k with normalized power, respectively. nk is the additive
Gaussian white noise with zero mean and variance of σ2

k. The
received SINR at user k is expressed as

γk =
|hHk wk|2∑K

j 6=k |hHk wj |2 + σ2
k

. (2)

Based on the above model, the SINR balancing problem under
the total power constraint P can be formulated as

max
wk,k=1,...,K

min
1≤k≤K

γk, s.t.

K∑
k=1

‖wk‖2 ≤ P. (3)

There exist classical numerical algorithms that can find the
optimal solution of problem (3) such as [2], and more recently
deep learning based algorithms can solve the problem much
faster than the conventional optimization algorithms such as
[8]. However, the existing learning methods will cause the
task mismatch issue when the testing channel distribution is
different from the training channel which happens in dynamic
networks. Hence, we focus on the design of fast adaptive
beamforming algorithms to overcome the task mismatch issue.

III. OVERVIEW OF MAML ALGORITHM

MAML has been recognized as a promising technique to
solve the task mismatch issue in beamforming design via
training an effective parameter initialization of a deep neural
network. In the following, we briefly describe the training and
adaptation processes of the MAML algorithm.

A. Definition of Tasks and Datasets

Define a task set {T (k)}Lk=1, which includes L tasks. Each
task is defined as a prediction from a given set of channel
realizations. Training data and validation data of each task are
randomly selected from the meta-training dataset Dmeta(·).
We define the set of training data as the support set Dsup(·)
and the set of validation data as the query set Dque(·). The
support set and the query set of each task include Ns and
Nq sample pairs, respectively. The dataset used for adaptation
is defined as Dad(·), which includes Nad sample pairs. Note

that the distribution of channel realizations in the adaptation
dataset is the same as the distribution of channels in the testing
dataset, but different from those in the training dataset.

B. The Meta-training Stage

Fig. 1. The workflow of the meta-training stage of the MAML algorithm:
Step (1) – network parameter initialization; Step (2) – update of inner loop
task parameters; Step (3) – calculation of the loss function of the outer loop
task; Step (4): update of the network parameter.

As shown in Fig. 1, MAML uses two optimization loops to
obtain the meta initialization in order to achieve fast adaptation
on new tasks. Specifically, the inner loop is used to update the
parameters of each task based on the associated support set
and the global parameter of the network. The outer loop is
used to update the initialization of the global neural network
parameter based on the trained individual task parameters and
the associated query sets. We define a neural network model
with the global parameter θ as shown in step (1) of Fig. 1.

In the inner loop, each task aims to optimize its parameter
over its support set by using supervised learning as shown in
step (2) of Fig. 1, and this can be achieved by

φk = argmin
φ

LossDsup(k)(φ),∀k, (4)

where φk denotes the parameter of task k, φ is the gener-
alization notation for the parameter of each task, which is
initialized by θ, and LossDsup(k) is the loss function of task k
on its corresponding support set Dsup(k). The gradient descent
technique can be used to solve this specific problem. In the
j-th iteration, the parameter can be updated as

φ
(j)
k = φ

(j−1)
k − β∇

φ
(j−1)
k

LossDsup(k)(φ
(j−1)
k ), ∀k, (5)

with

φ
(0)
k = θ − β∇θLossDsup(k)(θ), ∀k, (6)

where β denotes the learning rate.
In the outer loop, the MAML algorithm aims to update

the global network parameter θ, which can be obtained by
minimizing the sum of the loss functions for all tasks on their
corresponding query sets as shown in steps (3) and (4) of Fig.
1, which can be achieved by solving the following problem:

θ = argmin
θ

L∑
k=1

LossDque(k)(φk), (7)



where LossDque(k) denotes the loss function of the task k on
its corresponding query set Dque(k). The problem (7) can be
solved by using the gradient descent technique below:

θ ← θ − α∇θ
L∑
k=1

LossDque(k)(φk), (8)

where α is the learning rate.

C. The Meta-adaptation Stage

In this stage, the pre-trained global network parameter θ is
used to adapt the new task over the adaptation dataset Dad.
The parameter updating process of the new task is similar to
the inner-task loop, which can be expressed as

φ
(j+1)
ad ← φ

(j)
ad − β∇φ(j)

ad

LossDad
(φ

(j)
ad ), (9)

where φad is the parameter of the new task and it is initialized
by θ, and j denotes the jth iteration. The global network
parameter θ has been trained to achieve adaptation, so it is
able to adapt to the new task with only a limited amount of
data.

IV. THE PROPOSED FAST ADAPTATION
ALGORITHM

Although MAML has the potential to design adaptive beam-
forming in dynamic networks, the complexities in the meta
training and meta adaptation stages are still high, which will
affect how fast it can respond to the changing environment.
In this section, we aim to design a simpler and faster adapta-
tion algorithm with comparable performance as MAML. Our
design is based on the observation in [12] and [13] that a
good embedding model that can extract key features is the
most important factor to achieve effective adaptation. In the
following, we will present the proposed fast meta learning
algorithm and its application to design adaptive beamforming.

Fig. 2. The workflow of the proposed fast adaptation algorithm.

A. Design of Fast Meta Learning Algorithm

The process of the proposed fast adaptation algorithm
is illustrated in Fig. 2, in which fθ represents the pre-
trained embedding model. Feature reuse is the main reason
for MAML to achieve good adaptation performance and it
does not need multiple tasks and two optimization loops
which are two factors that affect the training efficiency of

MAML. Therefore we avoid multiple tasks and instead pre-
train a simple embedding model for feature extraction based
on a single task T , which merges all meta training data
Dfast = ∪{Dsup(k),Dque(k)}Lk=1. Based on the single task
T , the simple embedding model can be obtained by solving
the following optimization problem:

θ = argmin
θ

LossDfast
(θ), (10)

where Loss(·)Dfast
is the loss function defined as the differ-

ence between the predicted output and the target output. The
parameter of the embedding model can be updated using the
gradient-based method as

θ ← θ − α∇θLossDfast
(θ). (11)

Because the process of training the embedding model is similar
to the conventional deep neural network training, which does
not include the alternating procedures, it is more time efficient
compared to the model training of the MAML algorithm.

As mentioned before, directly using the pre-trained model
to achieve the prediction on new tasks causes performance
degradation, and feature reuse from the old tasks to the new
tasks is the key technique to avoid such degradation. Hence,
we can use the pre-trained embedding model to first extract
the features of the new tasks. However, how to make use
of the extracted features to achieve fast adaptation is still a
challenge. In this paper, we propose to use support vector
regression (SVR), which is a fast regression algorithm based
on the support vector machine, as a solution to post-process
the extracted features for fast adaptation. SVR aims to find
a hyperplane, which has the shortest distance to all data
points. Specifically, the features of a new task are extracted
by using the pre-trained embedding model over the associated
adaptation dataset Dad, which is expressed as

yout = fθ(Dad(x)), (12)

where yout and Dad(x) denote the output features and the
input of the embedding model, respectively. Then we use the
extracted features yout as the input data of the trained SVR
model to predict the result. The parameter ϕ of the SVR
model, which includes the weight W and the bias b, can be
obtained by minimizing the loss function below (which also
includes the nonlinear kernel function chosen):

ϕ∗ = argmin
ϕ

LossDad(y)(Wyout + b,Dad(y)), (13)

where Dad(y) is the target output associated with Dad(x) in
the adaptation dataset.

Once we have the pre-trained embedding model fθ and
the SVR model ϕ, they can be used to find out the adaptive
solution in the testing stage. Full details of the proposed fast
adaptation solution are summarized in Algorithm 1.

Compared to the MAML algorithm, the proposed fast
adaptive algorithm has lower complexity in both training and
adaptation stages by using a simpler training process and
avoiding the fine-tuning of the pre-trained model.



Algorithm 1: The proposed fast adaptation algorithm

Input: Learning rate α, dataset Dfast, Dad, and Dtest
Output: Predicted value y∗test
Embedding model training

1) Randomly initialize the parameter θ
2) while not done do
3) Update θ according to (11) using the dataset Dfast
4) end while

Adaptation
1) Feature extraction on adaptation dataset: yout = fθ(Dad(x))
2) Train SVR model ϕ based on yout and Dad(y)

Testing
1) Feature extraction on testing dataset: ytestout = fθ(Dtest(xtest))
2) Predict the testing output: y∗test = fϕ(ytestout )

B. Selected Feature and Neural Network Structure

Directly predicting beamforming causes high training com-
plexity and inaccurate results due to the high dimensional
beamforming matrix. Because feature reuse is key to achieve
good adaptation performance, we propose to predict the low
dimensional uplink power allocation vector q, as the main
feature vector based on which the original beamforming
matrix can be readily recovered. According to the uplink-
downlink duality in [2] and [8], the same SINR region of
the uplink and downlink problems can be achieved with the
same total transmit power, so it is possible to use the uplink
power allocation vector to recover the downlink beamforming
solution by using eigenvalue decomposition as specified in [2].
The main advantage of predicting the uplink power allocation
vector q rather than the original beamforming matrix is to
improve accuracy and to reduce complexity by reducing the
output dimension from 2NtK (the beamforming matrix) to K.

Before we conclude this section, we will provide details
of the neural network employed for pre-training the embed-
ding model. We adopt the model-based beamforming neural
network approach proposed in [8] for our algorithm which
is composed of a convolutional neural network (CNN) ar-
chitecture followed by a fully connected (FC) layer. CNN
is chosen as the base of our learning framework in this
paper due to its ability of extracting features and reducing
learned parameters. Specifically, the neural network used for
our algorithm includes eleven layers: one input layer, two
convolutional layer (CL) layers, two batch normalization (BN)
layers, three activation (AC) layers, one flatten layer, one FC
layer and one output layer. The complex channel input is split
into two real value inputs, so the input dimension of the input
layer is 2×NtK. For the two CL layers, each CL layer applies
8 kernels of size 3×3, one stride, and one padding. The input
size of the first CL layer is equal to the size of the input data.
The input size of the second CL layer and the output size of
both CL layers are equal to 2×NtK× 8. Besides, ReLU and
Sigmoid functions are adopted at the first two activation layers
and the last activation layer, respectively. Adam optimizer is
adopted [14] for the optimization of the neural network.

V. SIMULATION RESULTS

In this section, numerical simulations are carried out to
evaluate the achievable SINR performance of the proposed
adaptive beamforming algorithm for different wireless com-
munications scenarios. A MISO downlink system in which one
BS with four transmit antennas serves four users is considered,
i.e., Nt = K = 4, unless otherwise specified. The main
simulation parameters are set as follows: carrier frequency
is 2.9 GHz, bandwidth is 20 MHz and noise power spectral
density is -174 dBm/Hz. We use Tensorflow 2.0.0 and Keras
2.3.1 to train the embedding model and Scikit-learn is used
to train the SVR model. PyTorch 1.4.0 is used to implement
the MAML algorithm. All simulation results are generated by
using a computer with a Intel i7-7700 CPU and a NVIDIA
Titan Xp GPU.

In our simulations, the labelled data used for training the
embedding model and SVR are generated by using the optimal
algorithm in [2] to solve the SINR balancing problem (3). In
order to enrich the feature extraction ability of the embedding
model, the training data includes three types of small scale
fading channel models: Rayleigh model with zero mean and
unit variance, Ricean model with the Ricean factor 3, and
Nakagami model with the fading parameter 5 and the average
power gain 2. For each fading model, we generate 5000
channel samples and obtain 5000 corresponding uplink power
values. Hence, the training dataset includes 15000 sample
pairs.

We consider the following typical fading scenarios for
testing the adaptation capability of the proposed algorithm:

• Large-scale fading case: in this scenario, the path loss is
given by PL = 128.1 + 37.6 log10(d [km]), where d is
the distance between a user and BS. The shadow fading
follows the log-normal distribution with zero mean and 8
dB standard deviation. The small-scale fading follows the
Rayleigh distribution with zero mean and unit variance.

• WINNER II outdoor case: this is a typical fixed urban
scenario specified in the WINNER II channel model [15].

• Vehicular case: this is an urban vehicle-to-infrastructure
(V2I) scenario defined in Annex A of the 3GPP release
14 [16].

For comparison, we introduce three benchmarks, namely,
the optimal solution, the MAML solution, and the non-
adaptive learning solution. The definitions of the benchmark
solutions for comparison are listed below.

• The optimal solution: this is the solution obtained by
using the iterative algorithm proposed in [2]. It serves
as a performance upper bound for all other schemes.

• The MAML solution: this solution shows the adaptation
result of the existing MAML algorithm [9] described in
Section III.

• The non-adaptive solution: this solution shows the result
of using a pre-trained model to predict the beamforming
results in a different testing environment without adapta-
tion. It provides a performance lower bound.



We first investigate the large-scale fading case in which
the BS is located at the center and all users are randomly
distributed within a radius of 500 m. To decide how many
samples will be used in the adaptation, we first study the effect
of the number of adaptation samples for an 8-user 8-antenna
system with 25 dBm transmit power. Note that more samples
will certainly improve the adaptation performance, but also
increase the computational complexity and latency. As shown
in Fig. 3, the SINR increases when the number of adaptation
samples increases for both MAML and our proposed algorithm
and the SINR performance converges fast for both algorithms.
As a result, in the subsequent simulations we choose to use 20
adaptation samples as a tradeoff between the low adaptation
overhead and the good SINR performance.
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Fig. 3. The effect of the number of adaptation samples on the adaptation
performance when Nt = 8,K = 8, transmit power is 25 dBm.

Next we examine the adaptation performance of the pro-
posed algorithm in Fig. 4. Fig. 4(a) shows the effect of
the transmit power on the SINR performance. As expected,
the SINR improves as the transmit power increases for all
schemes. The SINR result generated by the proposed algorithm
is very close to that of the optimal solution and is better
than the MAML solution. The non-adaptive solution achieves
the worst SINR compared to the adaptive schemes. In Fig.
4(b), the SINR performance versus the number of users is
shown. It is observed that as the number of users increases,
the performance gap between the adaptive algorithms and the
optimal solution is enlarged, but our proposed algorithm still
achieves better performance. We compare the execution time
of the adaptive algorithms in Fig. 5 versus the number of users.
It can be seen that our proposed algorithm achieves more than
an order of magnitude gain in terms of both training time and
adaptation time compared to the MAML solution. The results
in Fig. 4 and Fig. 5 verify that the proposed fast algorithm
provides a better and faster adaptive beamforming solution
than the MAML algorithm.

Then, we consider to test the adaptive algorithms in the
WINNER II outdoor scenario in which the BS is located
in the center of a disc with a radius of 1000 m. Users are
randomly distributed between 100 m to 1000 m away from
the BS. Fig. 6 demonstrates the adaptation capability of the
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Fig. 4. The SINR performance comparison on large-scale case for different
metrics: (a) transmit power when Nt = 4, K = 4, and (b) the number of
users when Nt = 8, P = 25 dBm.
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Fig. 5. Comparison of the execution time of the adaptive algorithms when
Nt = 8, P = 25 dBm.

proposed learning algorithm in the WINNER II outdoor case
through the SINR performance. As can be seen, the adaptive
solutions significantly outperform the non-adaptive solution,
while the proposed adaptive solution achieves slightly better
SINR performance than the MAML solution. For the urban
V2I case, we use the Manhattan grid layout with the region
size of 750 m × 1299 m and grid size of 250 m × 433 m.
There are two 3.5m-wide lanes in each direction. The BS is
located in the center. The vehicles are uniformly placed on
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Fig. 6. The SINR performance comparison in the WINNER II outdoor case.
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Fig. 7. The SINR performance comparison in the urban V2I case.

each direction of the road. The probability of each vehicle
to change its direction at the intersection is set to 0.4. The
velocity of each vehicle is 60 km/h. As seen in Fig. 7, when the
transmit power is low, all schemes have similar and low SINR
performance, and this is because they all need to combat the
adversarial channel conditions in this scenario. As the transmit
power increases, similar to the outdoor case, the proposed
algorithm achieves slightly better performance than MAML
and much higher SINR than the non-adaptive solution.

VI. CONCLUSIONS

In this paper, we proposed a simple and fast adaptation
optimization method of beamforming design in dynamic wire-
less environments. The core idea of the proposed scheme
is to learn a good embedding model that extracts key fea-
tures, followed by training a simple SVR for fast adaptation.
Simulation results demonstrated that the proposed adaptive
algorithm achieves better performance with lower complexity,
compared to the existing meta learning algorithm. We envisage
that the proposed adaptive beamforming design algorithm can
be extended to many other scenarios such as reconfigurable
intelligent surfaces for energy efficiency in wireless commu-
nications. Our results also shed some light on designing adap-
tive learning algorithms from few data for general resource
management problems in wireless networks.
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