
Appendices
A Gradient terms for the adaptation scheme

A.1 Gradients for the entropy approximation

Following the arguments in [13], we can compute the gradient of the term in (13) using

∂

∂θi
L(θ) = Tr

(∞∑
k=0

(−1)k [DL]
k ∂

∂θi
{DL}

)
= EN,ε

[
N∑
k=0

(−1)k

pk
ε> [DL]

k ∂

∂θi
{DL} ε

]
,

which yields a stochastic gradient via a Russian-roulette estimator.

Additionally, to avoid gradients with infinite means even if DL is not contractive, we consider a
spectral normalisation, so that instead of computing recursively η0 = ε and ηk = DLηk−1 for
k ∈ {1, . . . , N}, we set η̄0 = ε and

η̄k = DLη̄k−1 · min {1, δ′ ‖η̄k−1‖2 / ‖DLη̄k−1‖2} (15)

for k ∈ {1, . . . , N} and δ′ ∈ (0, 1), such as δ′ = 0.99 in all our experiments. We obtain an estimator

∂

∂θi
L(θ) ≈ EN,ε

[
N∑
k=0

(−1)k

pk
η̄>k

∂

∂θi
{DL} ε

]
.

A.2 Gradients for the penalty function

We used the following penalty function

h(x) = (x− δ)2
1{x∈[δ,δ2)} + ((δ2 − δ)2 + (δ2 − δ)2(x− δ2))1{x>δ2}

throughout our experiments with δ ∈ {0.75, 0.95}, and δ2 = 1 + δ. The motivation was to have
a quadratic increase for the penalty term if the largest absolute eigenvalue approaches 1, and then
smoothly switch to a linear function for values larger than δ2. Gradients for this function can be
computed routinely using automatic differentiation.

A.3 Gradients for the energy error

We can write the energy error as

∆(q0, v) = U(TL(v))− U(q0) +K(WL(v))−K(C−>v)

= U

(
q0 + LhCv − h2CC>ΞL(v)− Lh

2

2
CC>∇U(q0)

)
− U(q0)

+
1

2

∥∥∥∥∥v − h

2
C [∇U(q0) +∇U (qL)]− hC

L−1∑
`=1

∇U(q`)

∥∥∥∥∥
2

− 1

2
‖v‖2 . (16)

Recall from (5) that ΞL(v) is a weighted sum of potential energy gradients along the leap-frog
trajectory. For computing gradients of the energy-error for the fast approximation, we therefore stop
the gradient for all∇U(q`) for any ` ∈ {1, . . . , L}.

B Proof of Lemma 1

Proof. We generalise the arguments from [14], Lemma 7. Proceeding by induction over n, we have
for the case n = 1, for any v ∈ Rd, that DT1(v) = hC and S1(v) = 1

hC
−1q0 − h

2C
>∇U(q0) with

derivative of zero. For the case n = 2, using (3) and (5), one obtains

DT2(v)− 2hC − h3CC>∇2U(T1(v))C (17)

15

and moreover

DS2(v) = −h
2

2
C>∇2U(T1(v))C (18)

which establishes (10). Clearly, ‖DS2(v)‖2 <
1
8 if 22h2 < 1

4‖C>∇2U(T1(v))C‖2
.

Further, for any n < L, again from (3) and (5),

DTn+1(v) = (n+ 1)hC − h2CC>DΞn+1(v)

= (n+ 1)hC − h2CC>

[
n∑
i=1

(n+ 1− i)∇2U(Ti(v))DTi(v)

]

= (n+ 1)hC − h2CC>

[
n∑
i=1

(n+ 1− i)∇2U(Ti(v))ihC (I +DSi(v))

]

= (n+ 1)hC + (n+ 1)hC

[
−h2

n∑
i=1

(n+ 1− i)
n+ 1

iC>∇2U(Ti(v))C (I +DSi(v))

]
,

which shows the representation (10) for the case n+ 1 by recalling that

DTn+1(v) = (n+ 1)hC(I +DSn+1(v)).

Assume now that ‖DS`(v)‖2 < 1/8 holds for all ` 6 n. Then for any v ∈ Rd

‖DSn+1(v)‖2 6
h2

n+ 1

n∑
i=1

i(n+ 1− i)
∥∥C>∇2U(Ti(v))C

∥∥
2
‖I +DSi(v)‖2

6
h2

n+ 1

n∑
i=1

L2

4

∥∥C>∇2U(Ti(v))C
∥∥

2
‖I +DSi(v)‖2

6
h2

n+ 1

n∑
i=1

L2

4

1

4L2h2

(
1 +

1

8

)
6

1

8

where the second inequality follows from (n + 1 − i)i 6 (n+1−i+i
2)2 6 L2

4 , whereas the third
inequality follows from the induction hypothesis and the assumption L2h2 < supq

1
4‖C>∇2U(q)C‖2

.

C Extension to learn non-linear transformations

The suggested approach can perform poorly for non-convex potentials or even convex potentials
such as arsing in a logistic regression model for some data sets. We illustrate here how to learn
a reasonable proposal for a general potential function by considering some version of position-
dependent preconditioning. Consider an invertible differentiable transformation f : Rd → Rd. The
idea now is to run HMC with unit mass matrix for the transformed variables z = f−1(q) where
q ∼ π. Write π̃ for the density of z and let Ũ be the corresponding potential energy function which
is given by

Ũ(z) = U(H(z))− log |detDf(z)|
with gradient

∇Ũ(z) = Df(z)>∇U(f(z))−∇ log |detDf(z)|.
The transformation f as well as Ũ generally depend on some parameters θ that we again omit for a
less convoluted notation. Our approach can be seen as an alternative for instance to [31] where such
a transformation is first learned by trying to approximate π̃ with a standard Gaussian density using
variational inference, while the HMC hyperparameters are adapted in a second step using Bayesian
optimisation.

We write T̃L : v 7→ zL for the transformation that maps the initial velocity v = p0 ∼ N (0, I) to the
L-th leapfrog step zL, starting at z0 based on the potential function Ũ with unit mass matrix M = I.
Analogously, we define the mapping W̃L : v 7→ pL and similarly to (7), we define

S̃L(v) =
1

Lh
T̃L(v)− v.

16

We can then reparametrize the proposal at the point q0 = f(z0) by v 7→ f(T̃L(v)). Consequently,
the log-density of the proposal is given by

log rL(f(T̃L(v))) = log ν(v)− log |detDf(T̃L(v))| − log |detDT̃L(v)|,

and we can write

log |detDT̃L(v)| = d logLh+ log |det(I +DS̃L(v))|.

We use the same approximation

DS̃L(v) ≈ −h2L
2 − 1

6
∇2Ũ(zbL/2c)

based on the transformed Hessian now.

Hessian-vector products can similarly be computed using vector-Jacobian products: With g(z) =

grad(Ũ,z), we then compute ∇2Ũ(z)w = vjp(g, z, w)> for z = f−1(stop grad(f(zbL/2c)).
The motivation for stopping the gradients comes from considering the special case f : z 7→ Cz that
corresponds to the position-independent preconditioning scheme above. For such a linear transfor-
mation,

Ũ(z) = C>∇2U(Cz)C.

To recover the previous case, we stop gradients at qbL/2c = f(zbL/2c) = CzbL/2c.

Gradients for the log-accept ratio can be computed based on the log-accept ratio of the transformed
chain [35]. The energy error of the transformed chain is

∆θ(q0, v) =Uθ(T̃L(v))− Uθ(f−1(q0)) +K(W̃L(v))−K(v)

=U
{
f
[
f−1(q0) + Lhv − h2Ξ̃L(v)

− Lh
2

2

(
Df(f−1(q0))>∇U(q0)−∇ log |detDf(f−1(q0))

)]}
+ log |detDf(zL)| − U(q) + log |detDf(f−1(q))|

+
1

2

∣∣∣∣∣
∣∣∣∣∣v − h

2

[
Df(z0)>∇U(f(z0))−∇ log |detDf(z0) + Df(zL)>∇U(f(zL))

−∇ log |detDf(zL)|
]
− h

L−1∑
`=1

Df(z`)
>∇U(f(z`))−∇ log |detDf(z`)|

∣∣∣∣∣
∣∣∣∣∣
2

− 1

2
‖v‖2 ,

where

Ξ̃L(v) =

L∑
i=1

(L− i)
[
Df(zi)

>∇U(f(zi))−∇ log |detDf(zi)
]

and z0, . . . , zL is the leap-frog trajectory starting at z0 = f−1(q0). We also stop all U gradients,
i.e. ∇U(f(z`)) ← stop grad(∇U(f(z`)). It can be seen that this recovers the above setting if
f : z 7→ Cz.

17

D Gradient-based adaptation using the expected squared jumping distance
and variations

We consider the different loss functions

FGSM(θ) = −
∫ ∫

π(q0)ν(v)
[

log a{(q0, v), (TL(v),WL(v))} − β log rL(TL(v))
]
dvdq0

(19)

FESJD(θ) = −
∫ ∫

π(q0)ν(v)
[
a{(q0, v), (TL(v),WL(v))} ‖q0 − TL(v)‖2

]
dvdq0 (20)

FL2HMC(θ) = −
∫ ∫

π(q0)ν(v)
[a{(q0, v), (TL(v),WL(v))} ‖q0 − TL(v)‖2

λ
(21)

− λ

a{(q0, v), (TL(v),WL(v))} ‖q0 − TL(v)‖2
]
dvdq0.

The L2HMC objective (21) has been suggested in Levy et al. [40] for learning generalisations of
HMC, although we ignore a burn-in term that has been included originally. In our implementation,
we adapt λ > 0 online as a moving average of the expected squared jumping distance. The objectives
(20) and (21) can be optimized using stochastic gradient descent similar to Algorithm 1 without the
approximations as required for the GSM objective (19).

E Proof of the HMC proposal reparameterizations

For completeness, we provide a proof of the reparameterization (3) and (4) of the L-th step position
qL and momentum pL using the velocity v that relates to the initial momentum p0 ∼ N (0,M)
via p0 = C−>v. Such representations with an identity mass matrix have been used previously in
[42, 21, 14].

Proof. We proceed by induction over ` ∈ {1, . . . , L}. For the case ` = 1, the recursions in (2)
imply

q1 = q0 + hCC>
[
p0 −

h

2
∇U(q0)

]
= q0 + hCv − h

2
CC>∇U(q0)

and

p1 =

[
p0 −

h

2
∇U(q0)

]
− h

2
∇U(q1) = C−>v − h

2
[∇U(q0) +∇U(q1)] .

Suppose now that the representations hold for 1 6 ` < L. Then, using the recursions in (2),

q`+1 = q` + hCC>
[
p` −

h

2
∇U(q`)

]
= q0 −

[
`h2

2
CC> +

h

2
CC>

]
∇U(q0) +

[
`hC + hCC>C−>

]
v − h2CC>∇U(q`)

− h2CC>
`−1∑
i=1

∇U(qi)− h2CC>Ξ`(v)

= q0 −
[
(`+ 1)

h2

2
CC>

]
∇U(q0) + (`+ 1)hCv − h2CC>

∑̀
i=1

∇(`+ 1− i)∇U(qi).

This establishes the representation for qL. The induction step for the momentum is a straightforward
application of (2) to the induction hypothesis.

18

F Gaussian targets experiments

F.1 High-dimensional Gaussian targets

(a) (b) (c)

(d) (e) (f)

Figure 7: Anisotropic Gaussian target (d = 1000). Minimum (7a), mean (7b) and median (7c)
effective sample size of q 7→ qi per second. Average acceptance rates in 7d and estimates of the
eigenvalues of DL in 7e. Condition number of transformed Hessian C>Σ−1C in 7f.

(a) (b) (c)

(d) (e) (f)

Figure 8: Independent Gaussian target (d = 10000). Minimum (8a), mean (8b) and median (8c)
effective sample size of q 7→ qi per second. Average acceptance rates in 8d and estimates of the
eigenvalues of DL in 8e. Condition number of transformed Hessian C>Σ−1C in 8f.

19

F.2 Ill-conditioned anisotropic Gaussian target

(a) (b) (c)

(d) (e) (f)

Figure 9: Ill-conditioned Gaussian target (d = 100). Minimum (9a), mean (9b) and median (9c)
effective sample size of q 7→ qi per second. Average acceptance rates in 9d and estimates of the
eigenvalues ofDL using power iteration in 9e. Condition number of transformed Hessian C>Σ−1C
in 9f. Values computed after adaptation.

F.3 Correlated Gaussian target

(a) (b) (c)

(d) (e) (f)

Figure 10: Correlated Gaussian target (d = 51). Minimum (10a), mean (10b) and median (10c)
effective sample size of q 7→ qi per second. Average acceptance rates in 10d and estimates of
the eigenvalues of DL using power iteration in 10e. Condition number of transformed Hessian
C>Σ−1C in 10f. Values computed after adaptation.

20

F.4 IID Gaussian target

(a)
(b) (c)

Figure 11: IID Gaussian target (d = 10). Minimum effective sample size of q 7→ qi per second in
11a and absolute minimum effective sample size where NUTS is run for 1/10-th of the iterations of
the other schemes in 11b. Average acceptance rates in 11c. Values computed after adaptation.

G Logistic regression experiments

G.1 Australian credit data

(a) (b) (c)

(d) (e) (f)

Figure 12: Bayesian logistic regression for Australian Credit data set (d = 15). Minimum effective
sample size per second after adaptation of q 7→ qi in 12a, of q 7→ q2

i in 12b and of q 7→ log π(q) in
12b. Median marginal effective sample per second in 12d and average acceptance rates in 12e and
estimates of the eigenvalues of DL in 12f.

21

G.2 Heart data

(a) (b) (c)

(d) (e) (f)

Figure 13: Bayesian logistic regression for heart data set (d = 14). Minimum effective sample size
per second after adaptation of q 7→ qi in 13a, of q 7→ q2

i in 13b and of q 7→ log π(q) in 13b. Median
marginal effective sample per second in 13d and average acceptance rates in 13e and estimates of
the eigenvalues of DL in 13f.

G.3 Pima data

(a) (b) (c)

(d) (e) (f)

Figure 14: Bayesian logistic regression for Pima data set (d = 8). Minimum effective sample size
per second after adaptation of q 7→ qi in 14a, of q 7→ q2

i in 14b and of q 7→ log π(q) in 14c. Median
marginal effective sample per second in 14d and average acceptance rates in 14e and estimates of
the eigenvalues of DL in 14f.

22

G.4 Ripley data

(a) (b) (c)

(d) (e) (f)

Figure 15: Bayesian logistic regression for Ripley data set (d = 3). Minimum effective sample size
per second after adaptation of q 7→ qi in 15a, of q 7→ q2

i in 15b and of q 7→ log π(q) in 15c. Median
marginal effective sample per second in 15d and average acceptance rates in 15e and estimates of
the eigenvalues of DL in 15f.

G.5 German credit data

(a) (b) (c)

(d) (e) (f)

Figure 16: Bayesian logistic regression for German credit data set (d = 25). Minimum effective
sample size per second after adaptation of q 7→ qi in 16a, of q 7→ q2

i in 16b and of q 7→ log π(q) in
16c. Median marginal effective sample per second in 16d and average acceptance rates in 16e and
estimates of the eigenvalues of DL in 16f.

23

G.6 Caravan data

(a) (b) (c)

(d) (e) (f)

Figure 17: Bayesian logistic regression for Caravan data set (d = 87). Minimum effective sample
size per second after adaptation of q 7→ qi in 17a, of q 7→ q2

i in 17b and of q 7→ log π(q) in
17c. Median marginal effective sample per second in 17d and average acceptance rates in 17e and
estimates of the eigenvalues of DL in 17f.

H Log-Gaussian Cox Point Process

(a) (b) (c)

Figure 18: Cox process in dimension d = 64. Minimum (18a) and mean (18b) effective sample size
per second after adaptation. Estimates of the eigenvalues of DL using power iteration in (18c).

I Stochastic volatility model

24

(a) Inverse mass matrix (Λ +
Σ−1)−1 of the Riemann manifold
based samplers.

(b) Inverse mass matrix CC>

for the entropy-based scheme with
L = 1.

(c) Inverse mass matrix CC>

for the entropy-based scheme with
L = 5.

Figure 19: Inverse mass matrices for the Cox process with d = 256 for the different schemes.

(a) (b) (c)

(d) (e) (f)

Figure 20: MCMC mixing efficiency for the stochastic volatility model (d = 2519) after adaptation:
Minimum (20a) and median (20b) effective sample size per second. Maximum (20d) and median
(20e) R̂ of q 7→ qi. Average acceptance rates (20c) and estimates of the eigenvalues of DL (20f).

(a) First 100 dimensions of M−1

for L = 5 with a tridiagonal mass
matrix.

(b) Last 100 dimensions of M−1

for L = 5 with a tridiagonal mass
matrix.

(c) Last 100 dimensions of M for
L = 5 with a tridiagonal mass ma-
trix.

Figure 21: Learned (inverse) mass matrices for the stochastic volatility model.

25

