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To the Editor - Over the next decade, it is projected that artificial intelligence (AI), particularly machine 69 
learning, centred systems will become key components of several workflows within the health sector. Medical 70 
diagnosis is particularly seen as one of the first areas that would harbour the adoption of AI innovations. 71 
Indeed, over 90% of health-related AI systems that have reached regulatory approval by the U.S. Food and 72 
Drug Administration belong to the field of diagnostics 1.  73 
 74 
In the current paradigm, the majority of diagnostic investigations require interpretation from a clinician to 75 
identify the presence of a target condition; a crucial step in determining subsequent treatment strategies. 76 
Despite being an essential step in the provision of patient care, many health systems find it increasingly 77 
difficult to meet the demand for diagnostic test interpretation. To address this issue, diagnostic AI systems 78 
have been characterised as medical devices which may alleviate the burden placed upon diagnosticians: 79 
serving as case triage tools, enhancing diagnostic accuracy, and stepping in as a second reader when 80 
necessary. As AI centred diagnostic test accuracy (AI DTA) studies emerge, there has been a concurrent rise in 81 
systematic reviews which amalgamate the findings of comparable studies. 82 

Strikingly, of these published AI DTA systematic reviews, 94% have been conducted in the absence of an AI 83 
specific quality assessment tool 2. The most commonly used instrument is the QUADAS-2 (Quality Assessment 84 
of Diagnostic Accuracy Studies) tool 3. QUADAS-2 is a risk of bias and applicability tool whose use is encouraged 85 
by PRISMA 2020 guidance 4. QUADAS-2 does not, however, accommodate for niche terminology encountered 86 
in AI DTA studies nor does it signal researchers to the sources of bias found within this class of studies. 87 
Examples of such biases, when framed against the established domains of QUADAS-2 (Patient Selection; Index 88 
Test; Reference Standard; and Flow and Timing) are listed in table 1.  89 

Domain Description Biases

Patient 
Selection  
 

A description of 
included patients 
detailing prior 

In AI DTA studies, eligible patients are often excluded on account of 
competing input data entry requirements (e.g. image quality) which, 
themselves, are variably reported. As highlighted by the CONSORT-AI 



 testing, 
presentation, 
setting and the 
intended use of 
the index test. 

guidelines 5, there is a need to accurately characterise the source, size 
and quality of input data alongside clear patient eligibility criteria. 

Data source issues can negatively impact the performance and overall 
applicability of an index test. For example, to minimise research costs, 
there has been increasing usage of datasets sourced from open-source 
repositories. Whilst this offers a pragmatic option, many open-source 
datasets have been found to house the inadvertent duplication of data 
across repositories, erroneous labelling, and incomplete patient 
demographic data.   

Manuscripts reporting both the development and validation of an index 
test rarely present the rationale and breakdown of its training, 
validation, and test sets. Small datasets, particularly those that lack 
complexity and balance, can result in overfitting, whereby the final index 
test resembles the training data too closely and is unable to reliably fit 
additional data. The clinical manifestation of this issue is the inability to 
accurately diagnose instances of a pathology if its clinical presentation 
does not closely resemble the training cases that the index test had 
previously encountered.  

There are various points within the data curation pipeline where quality 
may be compromised. For example, image pre-processing, a practice 
whereby image formats and resolutions are homogenised for the 
purpose of training, is an essential step in AI workflows. However, either 
down- or up-scaling resolution may impact the ability of certain index 
tests to identify diagnostic features effectively. Moreover, the lack of 
image metadata can also preclude the ability to explore an index test’s 
dependence on specific data acquisition parameters, for example, the 
model of scanner used to acquire imaging data. 

Index 
Test 
 
 

The diagnostic test 
being evaluated 
and how it has 
been conducted 
and interpreted 
within the context 
of the study. 

Only a limited number of published studies have undertaken adequate 
external evaluation when presenting the development and evaluation of 
their diagnostic tests. Reliance upon data from the same dataset that is 
used to train the diagnostic test (internal holdout set) can overestimate 
diagnostic performance. 

Reference 
Standard  
 
 

The choice of 
reference standard 
and how it has 
been conducted 
and interpreted 
within the context 
of the study. 

There are multiple instances, as highlighted by Harris et al. 6, in which 
studies have reported the development of index tests against 
inappropriate reference standards, as opposed to more appropriate tests 
that provide higher sensitivity and specificity. For example, a clinician 
using a chest X-ray to diagnose pulmonary tuberculosis rather than the 
more accurate use of sputum culture. Studies with inappropriate 
reference standards are poorly reflective of real-world clinical practice in 
which reference standards consist of the amalgamation of clinical, 
radiological and laboratory data. 



Flow and 
Timing  
 
 

The time interval 
and the use of any 
interventions 
between the 
application of the 
index test and the 
reference standard 

The timing between index test and reference standard is often poorly 
reported. As highlighted in a recent systematic review 7, studies which 
reported the performance of index tests to diagnose SARS-CoV-2 from 
chest X-rays did not routinely note the timing of the confirmatory RT-PCR 
test in relation to the imaging data. It is well understood that RT-PCR is a 
time sensitive assay and failing to report this relationship significantly 
hinders the overall clinical validity of the study results. 

 90 

Table 1: Examples of bias within AI DTA studies 91 

In order to tackle the sources of bias described above, as well as AI specific examples such as algorithmic bias, 92 
we propose an AI-specific extension to QUADAS-2 and QUADAS-C 8, a risk of bias tool developed for 93 
comparative accuracy studies. This new tool, QUADAS-AI, will provide researchers and policy makers with a 94 
specific framework to evaluate the risk of bias and applicability when conducting reviews evaluating AI DTA 95 
and reviews of comparative accuracy studies evaluating at least one AI centred index test. 96 

QUADAS-AI will be complementary to ongoing reporting guideline tool initiatives, such as STARD-AI 9 and 97 
TRIPOD-AI 10. QUADAS-AI is being coordinated by a global Project Team and Steering Committee consisting of 98 
clinician scientists, computer scientists, epidemiologists, statisticians, journal editors, EQUATOR Network 99 
representatives, regulatory leaders, industry leaders, funders, health policy makers and bioethicists. Given the 100 
reach of AI technologies, we view that connecting global stakeholders is of the utmost importance for this 101 
initiative. In turn, we would welcome contact from any new potential collaborators.  102 
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