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ABSTRACT 

 

Species distribution models (SDM) have been proposed as valuable first screening tools 

for predicting species responses to new environmental conditions. SDMs are usually 

conducted at the species level, assuming that species-environment relationships are a 

species-specific feature that do not evolve and show no variability across a species’ 

range. However, broad environmental tolerances at the species level can encompass 

narrower and different environmental tolerances for specific lineages or populations. In 

this study, we evaluate whether SDMs that account for within-taxon niche variation in 

climate and human-habitat associations provide better fits between projected 

distributions and real occurrence data for alien bird species than species-level SDMs. 

Our study focuses on eight alien bird species with established alien populations for 

which detailed phylogeographic information was available. Similarity in climates and 

human disturbance conditions occupied by different phylogenetic groups within species 

was low and not greater than random expectations. Accounting for intraspecific niche 

variation in SDMs modified the distribution and extent of suitable habitat predicted as 

susceptible to invasion, but did not result in more accurate model predictions in alien 

ranges. Until more accurate information on intraspecific variability is available, species-

level models can be reasonable candidates. When phylogeographic information is 

available, the use of the most conservative criterion (i.e. to model both species and 

lineages on the basis of the actual range) is recommended. 

 

 

Keywords: alien species, birds, climate, human disturbance, intraspecific niche 

variation, invasion risks, species distribution models 
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INTRODUCTION 

 

Human activities are accelerating the rate and magnitude of changes in species 

geographic ranges worldwide. Climate change, land-use transformations, habitat 

fragmentation or environmental pollution, among others, threaten the persistence of 

several species in formerly suitable locations, leading to species range contractions or 

extinctions, or pushing species to track new suitable environmental conditions beyond 

former range limits (Pimm et al. 1995; Vitousek 1997; Parmesan et al. 1999). The 

increase and development of trade and transport infrastructures, in turn, have 

accelerated the dispersal, and subsequent establishment, of alien species in places far 

away from their native range (Blackburn et al. 2009; Hulme 2009). Such changes have 

notably altered the distribution of species worldwide, homogenizing species 

assemblages (McKinney and Lockwood 1999; Capinha et al. 2015; Sayol et al. 2021), 

with detrimental effects on biodiversity and ecosystems. 

Although biotic interactions and dispersal are important in constraining species 

ranges, environmental factors can exert a primary role (Gaston 2003; Huntley et al. 

2007). Species distribution models (SDMs; models that statistically relate observed 

species occurrences to environmental variables) have thus been proposed as valuable 

first screening tools for predicting species responses to new environmental conditions in 

new geographic areas (e.g. invasion risk assessments) or under future environmental 

scenarios (e.g. global climate-change) based on current species occurrence-environment 

relationships (Guisan and Thuiller 2005; Araújo and Peterson 2012). SDMs rely on 

ecological niche theory, which predicts that for relatively recent events such as 

biological invasions, the environmental niche is expected to be conserved (Peterson 

2011). SDMs often focus on macroclimatic variables. Additionally, accounting for 

environmental factors other than climate, such as habitat characteristics and human 

disturbance, can substantially improve model predictions (Strubbe et al. 2015; Cardador 

and Blackburn 2020). 

SDMs are usually conducted at the species level, assuming that species-

environment relationships are a species-specific feature that does not evolve and shows 

no variability across a species’ range. However, widely distributed species often 

encompass different taxonomic or evolutionary units, which can reflect the existence of 

ecotypes and locally adapted populations (Smith et al. 2019). Spatial heterogeneity in 

environments coupled with reduced gene flow can encourage local adaptation and 

functional differences, leading to divergence in niches among closely related lineages.  

In fact, recent work has suggested that broad environmental tolerances at the species 

level usually encompass narrower and different environmental tolerances for specific 

lineages or populations within the species (Peterson and Holt 2003; Pearman et al. 

2010). Hence, modelling a species as a single undifferentiated entity may obscure the 

possibility that these lineages occupy distinct niches and, as a consequence, miss the 

idiosyncratic response of intraspecific lineages to changing environmental conditions 

(Pearman et al. 2010; Lecocq et al. 2019). Accounting for intraspecific niche variation 

in SDMs has thus been highlighted as important for forecasting species range shifts 

under changing environmental conditions, particularly under global climate change 

(Pearman et al. 2010; Peterson et al. 2019). In particular, phylogeographic structures 

have been proposed as a useful proxy to incorporate intraspecific differentiation in 

SDMs. However, the efficiency of using these proxies in SDMs remains largely 

unknown, in part because spatiotemporally independent data to test the accuracy of 

model predictions are often unavailable (Peterson et al. 2019). 
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Biological invasions represent unique, large‐scale biogeographical experiments 

for evaluating model transferability (Liu et al. 2020). Large numbers of alien species 

have been introduced well outside their native ranges, resulting in geographically 

independent datasets. However, the relevance of including intraspecific niche variation 

in invasion risk assessments has not often been addressed (but see exceptions, Strubbe 

et al. 2015; Godefroid et al. 2016). Many alien species currently arrive at new areas 

because they are imported as trade commodities (Hulme et al. 2008; Abellán et al. 2016; 

Cardador et al. 2017, 2019). If individuals coming from different geographic origins 

belong to different lineages that have particular ecological niches (in terms of climate or 

human tolerances), their invasion success is also likely to differ across different 

recipient environments. The omission of intraspecific niche structure from niche 

modelling exercises may lead to some lineages having little representation in the 

resulting species models (Pearman et al. 2010; D’Amen et al. 2013). This can lead to 

underestimation of the climate tolerances of alien species and, as a consequence, their 

potential for establishment and spread in new environments.  

Here, we assess the key assumption of distribution modelling theory – that the 

environmental niche remains conserved across species native ranges – as applied to the 

bird invasion process. For this, we focused on eight alien bird species with established 

alien populations, selected because of the availability of robust phylogeographic 

information, and for which different phylogenetic lineages (i.e., phylogroups) have been 

identified in previous studies. We explored niche variation in the climatic and human 

disturbance spaces occupied by the different lineages in the native range in order to 

assess whether the different phylogeographic lineages or genetic units occupy different 

niches. It should be noted that the niches considered here relate to the realized niche 

(occupied niche) and the Grinnellian niche concept: that is, the response of species to a 

set of non-consumable environmental variables that influence their large-scale 

geographical distribution (Soberón 2007). As evidence of niche conservatism was not 

found, we assessed how accounting for intraspecific niche variation in SDMs influences 

predictions about potential distributions in adventive regions for the whole species. 

Accounting for intraspecific variation is expected to improve the representation of 

different phylogroups in models (particularly the scarcest and narrowly distributed in 

the native range), and thus to produce better fits between projected distributions and real 

occurrence data for alien bird species than species-level models not considering within-

taxon niche structure. 

 

 

METHODS 

 
Phylogenetic and occurrence data 

 

Our study focuses on 8 alien bird species that have established alien populations in 

different regions of the world and for which detailed phylogeographic information 

derived from analyses of mitochondrial and/or nuclear DNA sequences was available 

from the literature (Table 1). We only considered studies reporting a clear definition of 

intra-specific phylogenetic divisions and covering substantial parts of species’ native 

ranges. Thiessen polygons were applied to locations with available phylogenetic data to 

delimit geographic boundaries of different phylogroups (Figs. 1a and S1 in Supp. Info.) 

(Strubbe et al. 2015). Thiessen polygons define an area of influence around each 

sampled point (points with genetic data in our study), where every location of the study 

area (species ranges in our case) is nearer to this point than to all the others. Thiessen 
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polygons derived from sampled points where a given phylogroup was identified were 

merged together to obtain the phylogroup geographic boundaries. We used ArcGIS 10.5 

for those analyses. Note that for most species, different phylogroups were allopatric 

(Fig. S1), although cases of partial overlap in geographic ranges also occur. For each 

species, occurrence data for niche and modelling analyses were compiled from the 

Global Biodiversity Information Facility (GBIF, GBIF.org, 2017,Table S1). GBIF 

records spanned the years 1744 to 2017 (Table S2). Compiled records were classified as 

pertaining to the native breeding range or alien established range according to range 

maps provided by the BirdLife International & NatureServe (2014) and the Global 

Avian Invasions Atlas (Dyer et al. 2017), respectively. Note that in the case of 

Copsychus saularis, BirdLife International & NatureServe (2014) provided separate 

maps for Copsychus saularis and Copsychus mindanensis. Based on the phylogenetic 

data available, we considered these two taxa as the same species and considered their 

range maps jointly (Sheldon et al. 2009). Species occurrences in the native range were 

then assigned to different phylogroups according to geographic boundaries defined by 

Thiessen Polygons (Figs. 1a and S1 in Supp. Info.). Occurrence data were aggregated at 

5-arcminute resolution, which corresponds approximately to 10 × 10 km. This 

resolution was considered to be representative of the size of the smallest cities, and thus 

adequate to capture the main responses of bird species to humanized environments with 

acceptable computing time. Samples with reported geographical issues, location 

uncertainty above 5 km, or with central grid coordinates of atlases of >10 km resolution, 

were removed from analyses. Duplicate samples at the 5-arcminute resolution were 

handled as single observations. Final sample sizes ranged from 3,156 to 32,052 for 

different species in the native range, and from 2 to 2,368 in the alien range (Table 1).  

 

Environmental variables 

 

We considered eight bioclimatic variables (obtained from WorldClim 1, 

http://www.worldclim.org/) (Hijmans et al. 2005), which are known to affect bird 

distributions (Strubbe et al. 2015; Cardador et al. 2016): annual mean temperature, 

temperature seasonality (standard deviation ×100), maximum temperature of the 

warmest month, minimum temperature of the coldest month, annual precipitation, 

precipitation of the driest month, precipitation of the wettest month and precipitation 

seasonality (coefficient of variation). However, annual mean temperature, temperature 

seasonality and annual precipitation were highly correlated with other climate variables 

across the world (r ≥0.90) and thus removed from analyses (Cardador and Blackburn 

2019). We considered two variables as descriptors of human transformed environments: 

i) the Global Human Influence Index, which provides a weighed composite map of 

anthropogenic impacts including urban extent, population density, land cover, night 

lights and distance to roads, railways, navigable rivers and coastlines (Sanderson et al. 

2002), and ii) the percentage of urban habitats, as a more specific descriptor of 

urbanization. The percentage of urban habitats at the 5-arcminute resolution was derived 

from MODIS-based global land cover climatology data at 500m resolution (Broxton et 

al. 2014).  

 

Niche analyses 

 

We compared the climatic and human disturbance niches of different phylogroups of a 

given species in its native range using the framework proposed by Broennimann et al. 

(2012). These analyses involved four steps: (1) definition of a two-dimensional gridded 

http://www.worldclim.org/
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environmental space, (2) calculation of the density of occurrences along the two-

dimensional environmental space using kernel smoothers (3) measurement of niche 

overlap between occurrence densities of two given groups along the environmental 

space and (4) statistical tests of niche similarity using a randomization approach. For 

climatic niche analyses the gridded environmental space was that formed by the first 

two axes of a PCA on the five climatic variables considered (see above) in 5-arcminute 

pixels across the world. These axes explained 78% of the inertia. The first PCA axis 

(45%) predominantly represented temperature gradients (with higher values 

representing warmer climates) while the second axis (33%) represented precipitation 

gradients (with higher values representing drier climates with higher precipitation 

seasonality, Table S3). For the human space, the two axes represented the two human-

related variables considered (i.e., the Global Human Influence Index and the percentage 

of urban environments - see above). Niche similarity was assessed using the Schoener's 

D metric, calculated from the occupancies in the environmental space depicted by the 

two first axes of the PCA. This metric indicates the overall match between two niches 

over the whole climatic or human spaces and ranges from 0 (no overlap) to 1 (complete 

overlap). We calculated niche similarity between each phylogroup of a species and all 

the other phylogroups using one-to-one comparisons.  

We assessed niche conservatism by conducting niche similarity tests, whereby 

each obtained value of niche similarity was compared against a null distribution of 100 

simulated similarity values (obtained when comparing the observed niche of one 

phylogroup with niches obtained by drawing occurrences at random within available 

habitats and vice versa) (Warren et al. 2008; Broennimann et al. 2012). Note that the 

niche similarity test is thus bidirectional, and two tests were conducted for each 

comparison between two phylogroups. As available habitat for each phylogroup in 

species’ native ranges for analyses, we considered two alternative approaches. First we 

considered all ecoregions (Olson et al. 2001) occupied by each species in its native 

range (Figs. 1b and S2), as this might represent the complete gradient of climatic and 

human conditions that the study species could have reasonably encountered considering 

that dispersal is expected to be mainly limited by major biogeographical barriers in 

native ranges (Soberon and Peterson 2005). Second, we accounted for potential spatial 

constraints limiting the access of different phylogroups to available habitat for the 

whole species. For this, we repeated the niche similarity tests considering as available 

habitat for each phylogroup that present within the geographic range actually occupied 

by that particular phylogroup: i.e., that limited by the geographic boundaries derived 

from Thiessen polygons (Fig.S1). The results of both analyses were highly consistent 

(Table S4), and for simplicity we thus only provide those for the former approach in the 

main manuscript. All analyses were conducted using the ‘ecospat’ library in R software 

(Broenniman et al. 2014). The minimum sample size for analyses was five occurrences 

(Broennimann et al. 2012). 

 

Species distribution models 

 

We fitted SDMs calibrated on occurrences of different phylogroups (single-phylogroup 

models) and for the species as a whole (species-level model) to generate global 

predictions of species potential distributions outside their native ranges. For robustness 

of analyses only phylogroups with more than 50 occurrence locations (exceptions: 1 

phylogroup for the northern cardinal Cardinalis cardinalis, 1 for the oriental magpie-

robin Copsychus saularis and 9 for the ring-necked parakeet Psittacula krameri) were 

retained for single-phylogroup models (Stockwell and Peterson 2002). Data from 
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phylogroups with fewer than 50 occurrence locations were also disregarded from 

species-level models, to avoid biases in model comparisons related to differences in the 

data used. Predictions were derived from an ensemble model of three techniques – 

generalized linear models, MAXENT and random forest – using R library ‘biomod2’. 

Both the linear and quadratic terms of the climate and human predictors were 

considered, to account for positive or negative responses to intermediate values of the 

variables. All models were run with a single set of a maximum of 10,000 pseudo-

absences randomly drawn from all ecoregions occupied by each species across its native 

range as with niche analyses (Figs. 1b and S2). Presences and pseudoabsences were 

weighted as such to ensure neutral (0.5) prevalence.  

To reduce the potential effect of sampling biases in the data, a bias file was 

created by retrieving from GBIF occurrence data at the family level for each species 

(Elith et al. 2010; Cardador and Blackburn 2019). We derived a kernel density map of 

sampling bias at a 5-arcminute resolution using ArcMap 10.5 to be included as a fixed 

effect in model training. Occurrence data from species in the same taxonomic family are 

expected to suffer from the same detection limitations, reducing the effect of sampling 

biases in observed distribution patterns. To further account for potential effects of the 

data selection, we conducted 10 replicates for each model by using random samples 

(70%) of the complete datasets. Final ensemble model predictions for each species and 

phylogroup were generated as averaged means of all model replicates conducted (Fig. 

1c-e). Sampling bias was set to its maximum value for model predictions. For each 

species, a composite model prediction integrating information on all single-phylogroup 

models was then developed (phylogroup-composite model) (Fig. 1f). For this, single-

phylogroup predictions were first standardized to a maximum value of 1 to make them 

comparable. We then calculated the mean probability of occurrence of at least one of 

the related phylogroups using the multiplicative probability method described in 

Pearman et al. (2010). We converted continuous model predictions into binary 

presence–absence maps by implementing a threshold for species presence that 

maximized sensitivity plus specificity (Liu et al. 2005) in the training region (Fig. 1g). 

In the case of composite models, binary maps were obtained by assigning species 

presence to each cell that was predicted suitable for at least one single-phylogroup 

model (Fig. 1h). To reduce problems related to model extrapolation, model projections 

were adjusted using multivariate environmental similarity surfaces (MESSs) (Mateo et 

al. 2014) (Fig. S3). Environmental suitability in dissimilar areas (MESS <0) was 

considered to be zero. However, analyses using non-adjusted model projections were 

highly concordant (see results). 

Model accuracy of phylogroup-composite and species-level models in predicting 

species occurrences in the native range were evaluated using the Boyce index (which 

ranges from -1 to 1, with higher values indicating higher match (Hirzel et al. 2006)) and 

AUC (which ranges from 0 to 1, with values up to 0.5 representing models not better 

than random (Phillips et al. 2006)), using the libraries ‘pROC’ and ‘ecospat’ in R. 

Sensitivity (i.e., the proportion of correctly classified presences) was also computed  

using the binary maps derived from continuous predictions. Potential differences in 

accuracy metrics among species-level and phylogroup-composite models in native 

ranges were evaluated using non-parametric paired Wilcoxon signed rank tests. 

 

Geographic extent of SDM predictions 

 

We calculated the extent of predicted suitable habitat in km2 for each species at a global 

scale according to binary map projections of single-phylogroup, phylogroup-composite 
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and species-level models, using the library ‘raster’ from R. Accounting for intraspecific 

variation is expected to improve the representation of different phylogroups in models 

(particularly the most scarce and narrowly distributed in the native range), and thus to 

increase the geographical distribution of habitat conditions predicted as suitable for 

alien birds: environments occupied by rarer phylogroups are expected to be marginal, 

and thus result in low probabilities of occurrence in those environments when 

distribution is modelled at the species level. Differences in the extent of phylogroup-

composite and species-level model predictions in alien ranges were evaluated using 

one-tailed paired t-tests. We also tested the hypothesis that the niches occupied by the 

most narrowly distributed phylogroups in the native range are little represented in 

species-level models. For this, we assessed the relationship between the percentage of 

habitat predicted as suitable by single-phylogroup models also predicted as suitable by 

species-level models and phylogroup relative range size (i.e., the proportion of species 

native range covered by a given phylogroup). We used general linear models (GLM) for 

those analyses. 

 

Accuracy of SDM predictions 

 

SDM-based predictions were tested against real occurrence data in alien ranges using 

the Boyce index, AUC and sensitivity using the libraries ‘pROC’ and ‘ecospat’ in R as 

in native ranges. As background for AUC and Boyce calculations, we followed the 

framework proposed by (Strubbe et al. 2013, 2015) to estimate the area that could have 

been effectively accessible to introduced birds. We buffered each 5-arcminute alien 

locality with a distance equal to the minimum invasion speed recorded for birds (i.e. 

4.59 km year, derived from (Blackburn et al. 2009)) multiplied by the number of years 

since introduction (Fig. S4). For localities with duplicate records the oldest year was 

used in analyses. When the specific year of introduction was not provided (≤ 4% of total 

alien localities for each species), we were conservative and only considered that locality 

(not a buffer around it) for background calculations. Buffers were only allowed to cover 

areas effectively outside species native breeding ranges. Both occurrence localities in 

regions where the species has effectively established (see ‘Phylogenetic and occurrence 

data’ section) and known introduction localities (compiled from (Redding et al. 2019)) 

were used. Differences in the accuracy of phylogroup-composite and species-level 

model predictions in alien ranges were evaluated using one-tailed paired t-tests (AUC) 

and one-tailed paired Wilcoxon signed rank tests (Boyce and sensitivity) according to 

fit of normality and homoscedasticity assumptions. 

 

RESULTS 

 
Intraspecific climatic and human niche variation  

 

Phylogenetic groups within species occupied partially overlapping portions of the 

climate and human spaces available in the native range. However, climatic niche 

similarity among phylogroups of a species was low (mean ± SD, D = 0.07 ± 0.09, N = 

8) and not more similar than expected by chance for the vast majority of phylogroups 

within species (95% of 101 reciprocal similarity tests involving 32 phylogroups from 

eight species had P > 0.05, Table S4). Human niche similarity was higher than climatic 

niche similarity (D = 0.32 ± 0.13), but generally not more similar (97% of tests had P > 

0.05) than expected by chance for most comparisons. 
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Species distribution models in native ranges 

 

Species-level and phylogroup-composite model predictions showed a good agreement 

with species occurrences in the native ranges (mean ± SD, species-level: Boyce = 0.88 ± 

0.24, AUC = 0.86 ± 0.11, sensitivity = 0.78 ± 0.19; phylogroup-composite: Boyce = 

0.91 ± 0.12, AUC = 0.84 ± 0.09, sensitivity = 0.89 ± 0.10). No significant differences in 

model performance between species-level and phylogroup-composite models were 

observed (one-tailed paired Wilcoxon rank test: Boyce, V = 21.5, P = 0.71; AUC, V = 

28, P = 0.93; sensitivity, V = 6, P = 0.054). 

 

Geographic extent and accuracy of model projections in alien ranges 

 

Species-level and phylogroup-composite models provided similar but not equal 

predictions of habitat susceptible to invasion (Figs. 1e-h, S5 and S6). Notably, 

phylogroup-composite models projected significantly larger habitat suitability at a 

global scale than species-level models (Fig. 2a, t = -2.0, df = 7, P = 0.04). On average, 

only 30 ± 16% of total pixels predicted as suitable by binary maps derived from both 

species-level and phylogroup-composite models were coincident between both types of 

models, while 52 ± 30% of pixels were predicted as suitable only by phylogroup-

composite models and 18 ± 19% only by species-level models. The capacity of species-

level models to predict the occurrence of individual phylogroups was significantly 

related to phylogroup range size (estimate: 0.68 ± 0.13, P < 0.001, R2 = 0.55; Fig. 3). 

When used to predict occurrences in alien ranges, model accuracy was on average 

good according to different metrics considered (Figs. 2b-d), but high variability was 

observed among species (Figs. 2b-d; see also Fig S7 for comparisons of models not 

adjusted by MESS analyses). Accounting for intraspecific niche variation did not 

improve model accuracy (Boyce, V = 21, P = 0.69; AUC, t = -0.09, df = 7, P= 0.47; 

sensitivity, V = 9, P= 0.22). These result hold when omitting Platycercus elegans from 

analyses (Boyce, V = 14, P = 0.53; AUC, t = -0.29, df = 6, P= 0.39; sensitivity, V = 9, 

P= 0.22), for which sample size in the alien range was very low (Table 1). 

 

DISCUSSION 

 
There is a limited number of studies considering intraspecific niche variation in models 

assessing environmental susceptibility to the colonization by alien birds, and they have 

rarely compared modelled predictions against independent sets of occurrence data 

(Peterson et al., 2019). Our results agree with recent evidence suggesting that 

conspecific phylogenetic lineages of a species can differ in the climates and human 

disturbance conditions they experience in native ranges (Peterson and Holt 2003; 

Pearman et al. 2010; D’Amen et al. 2013): we find little climatic niche similarity among 

phylogroups of the 8 species in our study. Accounting for intraspecific variation in 

SDMs modified the distribution and the extent of potential suitable habitat for the whole 

species. However, contrary to our expectations, accounting for intraspecific niche 

variation did not result in more accurate model predictions, according to current 

distributions of established alien species.  

The increased extent of phylogroup-composite model predictions, when compared 

to classical species-level models, suggests that the omission of intraspecific niche 

structure from species distribution models underestimates intraspecific realized niche 

variation, and thus species-level prediction of habitat susceptible to invasion (Peterson 
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and Holt 2003; D’Amen et al. 2013; Godefroid et al. 2016). The extents of geographic 

areas occupied by different phylogroups of a species in our study were not equivalent 

(Fig. S1), and this may lead to some phylogroups (particularly the most scarce and 

narrowly distributed in the native range) having little representation in model 

predictions obtained by classical species level models (Fig. 3). 

However, contrary to our expectations, accounting for intraspecific niche variation 

did not improve model accuracy when predicting occurrences in alien ranges. These 

results could be related to different, not mutually exclusive processes. First, it should be 

noted that phylogroup separation – in this study and in general – relies on neutral 

molecular markers. Strong structuring in these markers across populations indicates 

reduced dispersal and thus increased potential for local genetic adaptation to emerge 

(Lenormand 2002). Yet, we do not know whether genetic structuring in neutral markers 

really reflects local genetic adaptation to climatic and human environmental conditions 

experienced (Holderegger et al. 2006), and thus in these species tolerances, or just 

reflects differences in the realized (i.e., occupied) niche of different phylogroups 

(Guisan et al. 2014; Peterson et al. 2019). In this sense, since most phylogroups within 

species considered have allopatric distributions, observed realized niche divergence may 

have been driven by different environmental conditions in the range of each 

phylogroup, rather than by adaptation to different conditions within a shared spatial 

distribution (Maia-Carvalho et al. 2018). If so, dividing a species’ range into several 

groups might have yielded different climate–occupancy relationships for each group 

even in the absence of local adaptation. In our study, this could explain the larger 

species range predictions of models considering phylogroup information, but the quite 

similar prediction performances. For some species it is also possible that local 

adaptation occurs at higher or lower taxonomic levels (Peterson et al. 2019; Smith et al. 

2019) or geographic scales (Cardador et al. 2016). 

Second, lineages little represented in classical species-level models are also those 

less likely to be introduced and subsequently established in new areas, given the 

positive effects of abundance and geographic range size on introduction and 

establishment success in alien species (Blackburn and Duncan 2001b, a). If this is the 

case, accounting for intraspecific niche variation would result in small differences in 

model prediction for the most commonly translocated taxa. At the same time, 

accounting for intraspecific niche variation might overestimate the potential alien range 

size, as the environmental tolerances of alien individuals would actually be narrower 

than that of the species as a whole. Under this hypothesis (i.e., the more common 

phylogroups in native areas are more often introduced and established in alien ranges), 

higher model accuracy for the more common phylogroups should be expected. 

However, post-hoc analyses assessing the relationship between accuracy of single-

phylogroup model predictions and phylogroup relative range size (i.e., the proportion of 

species native range covered by a given phylogroup) offer little support for this 

hypothesis (Pearson correlation coefficients between accuracy metrics and phylogroup 

range size, AUC: r = -0.20, P =0.33; Boyce: r = -0.01, P = 0.97, N = 25). 

Third, as most bird introductions are relatively recent, species might not occupy 

all of the potential suitable environments available in the invaded range, due to dispersal 

limitations (Blackburn et al. 2009; Ascensão et al. 2020). For some species, current 

alien distributions may thus reflect the characteristics of the new introduction localities 

rather than optimum environmental conditions, which might be more likely to be moved 

into during spread (Abellán et al. 2017). Furthermore, while climate and human 

variables appeared to be major factors shaping alien species distributions (Cardador and 

Blackburn 2019), omission of other important drivers of bird distributions, such as 
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interspecific interactions (Blackburn et al. 2009; Redding et al. 2019), might also 

produce an overestimate of the projected suitable area for species. Some species might 

even undergo niche shifts in alien ranges, although this seems to be less frequent 

(Broennimann et al. 2007; Strubbe et al. 2013; Cardador and Blackburn 2020). All of 

these issues may have contributed to reduce model accuracy for both species-level and 

phylogroup-composite model predictions in alien ranges, masking potential differences.  

Overall, our results show variability in model predictions linked to taxonomic 

level considered. However, comparisons of model predictions with current available 

distribution data in alien ranges do not provide evidence of an improvement in 

prediction accuracy for models accounting for intraspecific niche variation. This result 

is relevant given the lack of information about the presence and geographical 

distribution of phylogeographic lineages for many species: according to our results, 

until more accurate information on intraspecific variability is available, species-level 

models can be reasonable candidates. However, when phylogeographic information is 

available, the use of the most conservative criterion (i.e. to model both species and 

lineages on the basis of the actual range, e.g. Mori et al. 2019) is recommended, given 

that the ultimate purpose of such modelling exercises is to reduce invasion risks and 

their consequences on biodiversity conservation. 
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Table 1. Bird species selected on the basis of the existing literature on phylogeographic structure. Species name, number of phylogroups per 

species, source for phylogenetic data and the number of occurrences available in the native and alien ranges according to GBIF (www.gbif.org) 

are provided. For native occurrences, the minimum and maximum occurrences available for different phylogroups are shown in parentheses.  

Species Phylogroups References Native occurrences Alien occurrences 

Alauda arvensis 2 Zink et al. 2008  19789 (232- 19557) 2378 

Cardinalis cardinalis 6 Smith et al. 2011  41372 (9- 40079) 200 

Copsychus saularis 3 Sheldon et al. 2009  3893 (20 - 3726) 36 

Corvus frugilegus 2 Haring et al. 2007  7445 (52- 7393) 53 

Perdix perdix 2 Liukkonen-Anttila et al. 2002  6444 (1804 - 6291) 2316 

Pica pica 2 Haring et al. 2007  32052 (782 - 31270) 115 

Platycercus elegans 2 Joseph et al. 2008  5046 (79- 4967) 2 

Psittacula krameri 17 Strubbe et al. 2015  3156 (1-1834) 701 
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Figure Legends 0 

 1 

Figure 1. Phylogroup distribution, native occurrences and model predictions for the 2 
Eurasian skylark Alauda arvensis. (a) Distribution of two different phylogroups (red 3 
and orange) as derived from Thiessen polygons and locations with genetic data (points); 4 
(b) native occurrence data (black dots) and background (i.e., all ecoregions occupied by 5 
each species in its native range, grey) used for species distribution modelling; (c-d) 6 

continuous predictions of single phylogroup models, polygons show the distribution of 7 
the phylogroup used in models; (e) species-level model continuous predictions; (f) 8 
phylogroup-composite model continuous predictions; (g) species-level model binary 9 
predictions; (h) phylogroup-composite model binary predictions. In (g) and (h), green 10 
represents habitat predicted as suitable and grey as non-suitable. 11 

 12 
Figure 2. Comparisons of (a) extent of suitable habitat and (b – d) model accuracy in 13 
alien ranges between species distribution models accounting or not for phylogroup 14 

niche variation. Extent of suitable habitat (a) is derived from binary maps using the 15 
maximum sensitivity plus specificity threshold. Model accuracy in alien ranges is 16 
assessed by the AUC (b), TSS (c) and sensitivity (d). N = 8. 17 
 18 

Figure 3. Similarity between single-phylogroup and species-level model predictions in 19 
relation to phylogroup relative range size. Similarity refers to the percentage of pixels 20 

predicted as suitable by a single-phylogroup model also predicted as suitable by 21 
species-level models at a global scale. 22 
 23 
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