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Abstract 

The research on recognizing the most discriminative regions 
provides referential information for weakly supervised ob-
ject localization with only image-level annotations. Howev-
er, the most discriminative regions usually conceal the other 
parts of the object, thereby impeding entire object recogni-
tion and localization. To tackle this problem, the Dual-
attention Focused Module (DFM) is proposed to enhance 
object localization performance. Specifically, we present a 
dual attention module for information fusion, consisting of a 
position branch and a channel one. In each branch, the input 
feature map is deduced into an enhancement map and a 
mask map, thereby highlighting the most discriminative 
parts or hiding them. For the position mask map, we intro-
duce a focused matrix to enhance it, which utilizes the prin-
ciple that the pixels of an object are continuous. Between 
these two branches, the enhancement map is integrated with 
the mask map, aiming at partially compensating the lost in-
formation and diversifies the features. With the dual-
attention module and focused matrix, the entire object re-
gion could be precisely recognized with implicit infor-
mation. We demonstrate outperforming results of DFM in 
experiments. In particular, DFM achieves state-of-the-art 
performance in localization accuracy in ILSVRC 2016 and 
CUB-200-2011. 

Introduction 

In recent years, object detection has achieved satisfactory 

performance in recent years (Ren et al. 2017; Zhou et al. 

2019; Lin et al. 2017). However, it requires abundant loca-

tion annotations work which is time-consuming and tedi-

ous. Weakly Supervised Objective Localization (WSOL) 

algorithms are devised to alleviate the obstacle. WSOL 

algorithms are able to detect the object regions with only 

the image-level labels instead of the bounding box infor-

mation.  

    In some researches, scholars discover the discriminative 

features in classification network are significant reference 

information which helps locate the objects. Unfortunately, 

the CAM merely focuses on the most discriminative re-

gions (Zhou et al. 2016). 

Solution?

 
 

Fig 1: Attention transfers to the background with ADL method. 
The red arrows indicate the transfer direction and the stars mean 
the most discriminative regions. Our work is to put forward a 

solution for accurate object attention computation and object 
localization. 
 
    To solve this problem, Hide-and-Seek method is pro-

posed to hide patches in a training image randomly, forcing 

the network to seek other relevant parts (Singh and Lee, 

2017). Wei et al. drive the classification network to se-

quentially discover new and complement object regions by 

erasing the current mined regions in an adversarial manner 

(Wei et al. 2017). Zhang et al. utilize two adversary classi-

fiers for complementary object regions localization. One 

classifier is employed to guide the erasing operation and 

the other one discovers the rest parts of object regions 

(Zhang et al. 2018). A guided attention inference network 

is proposed to treat the most discriminative parts as masks 

and search the other regions in the following network (Li et 

al. 2018). To simplify the network structure and keep mul-

ti-time object regions extraction, Attention-based Dropout 

Layer (ADL) is presented to improve the accuracy of 

WSOL (Choe and Shim 2019). It completes the most dis-

criminative regions erasing in the dropout layer which en-

hances computing efficiency. The importance map is uti-

lized to increase the classification accuracy. 

Although the most discriminative regions erasing is an 

effective idea for entire object detection, there are two 

drawbacks for the present researches. 1) The erasing meth-

ods abandon all the information on the most discriminative 

regions, thereby sometimes resulting in attention misdirec-

tion, which leads to biased localization. For example, as 



shown in Fig. 1, the attention regions spread to the back-

ground with ADL method. In this case, the bounding box is 

too large to precisely locate the object. 2) The classifica-

tion accuracy has declined to some degree mainly in two 

reasons. Firstly, the classification network structures have 

been altered, so the classification performance is not as 

good as before. Second, this issue also relates to the atten-

tion misdirection problem, which leads to a wrong classifi-

cation as the focused attention has been changed to other 

objects. In order to tackle these two challenges, we propose 

a Dual-attention Focused Module (DFM) to enhance object 

classification and localization performance. 

DFM inherits the two advantages of the ADL algorithm. 

It needs no extra trainable parameters compared to the 

baselines, so it is weight light. Additionally, the module is 

insertable as it could be applied in kinds of CNN. On the 

other side, the differences between proposed DFM and 

ADL are mainly in two marked parts. Firstly, DMF con-

siders about the attention regions in more comprehensive 

aspects. In DFM, we present a dual-attention module, con-

sisting of a position branch and a channel branch. For 

channel branch, a Channel Enhancement Map (CEM) and 

a Channel Mask Map (CMM) are computed. The CEM is 

utilized to distribute large weights on the discriminative 

channels and little weights on the valueless ones, which 

could improve the classification accuracy. The CMM con-

ceals the most informative channels so that the subsidiary 

important ones could be highlighted in the following layers 

computation. For position branch, there is the similar pro-

cess, but the information dimension is on the position, so a 

Position Enhancement Map (PEM) and a Position Mask 

Map (PMM) are acquired.  

What the most significant is that we complete the infor-

mation fusion and complementary. Specifically, the CEM 

is summed with PMM, while CMM is combined with PEM. 

The CEM could supplement the abandoned information of 

PMM, so the attention extraction in the following layers 

will not be scattershot as CEM provides the weighted im-

plicit information to the next layer. Hence, the object local-

ization accuracy could be increased. The added implicit 

information behaves better than directly maintaining partial 

the most discriminative parts, because it includes the chan-

nel significance information which furthest improves the 

classification accuracy. Similarly, the PEM offers the 

CMM implicit position information during the subsidiary 

important channel extraction. In addition, we design a 

neighbor focused matrix to further avoid attention devia-

tion. It utilizes the basic principle that the pixels of an ob-

ject are continuous. We strengthen the mask surrounding 

pixels value to certain multiples to prevent attention from 

being diverted to non-object. 

In general, there are three contributions of DFM to 

WSOL.  

1) We reveal two drawbacks of the present methods 

based on the most discriminative regions erasing, in-

fluencing the WSOL performance. To address these 

problems, the DFM is proposed to enhance object 

classification and localization accuracy. 

2) Two branches are employed to include comprehen-

sive information. The information fusion between 

the position branch and the channel branch is pre-

sented. It provides the implicit information to make 

up the disadvantage of abandoning the most dis-

criminative regions in mask maps, and improve the 

classification accuracy, thereby compensating the 

two drawbacks. 

3) The neighbor focused matrix is proposed to keep ex-

tracted attention continuously gathering on the ob-

ject, auxiliary improving the WSOL performance. 

This method has achieved state-of-the-art effects in 

CUB-200-2011 and ILSVRC 2016. 

Related Works 

Attention Mechanism 

Attention mechanism is an effective data processing meth-

od learnt from human perception process (Mnih et al. 

2014). It decides the distribution of available processing 

resources, which places more weights on the most informa-

tive regions (Mnih et al. 2014; Bahdanau, Cho, and Bengio 

2014). With this feature, it brings many benefits to various 

fields, such as image captioning (Xu et al. 2015), image 

localization and understanding (Cao et al. 2015; Jaderberg 

et al. 2015; Zhou et al. 2016; Li et al. 2018; Wei et al. 

2018), image inpainting (Yu et al. 2018; Liu et al. 2018), 

scene segmentation (Fu et al. 2019). Wang et al. propose a 

trunk-and-mask attention mechanism using an hourglass 

module (Wang et al. 2017). Squeeze-and-excitation block 

is proposed in (Hu, Shen, and Sun 2018). It is specialized 

to model channel-wise relationships in a computationally 

efficient manner and designed to enhance the representa-

tional power. Woo et al. present Convolutional Block At-

tention Module (CBAM) to utilize the channel attention 

and spatial attention at the same time, increasing the accu-

racy of the object classification (Woo et al. 2018). An at-

tention branch is proposed for classification performance 

improvement (Fukui et al. 2019), which extends a re-

sponse-based visual explanation model by introducing a 

branch structure with an attention mechanism. A Dual At-

tention Network (DANet) is proposed to build two global 

dependencies for scene segmentation (Fu et al. 2019). 

Compared with CBAM and DANet, the proposed FDM 

generates the mask maps to improve object localization. 

Meanwhile, the position branch and the channel branch 

are fully self-attention without any overhead parameters,  
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Fig 2: The overall structure of proposed DFM. It contains position and channel branches, focused matrix, and information fusion blocks. 
The computation process for each map is elaborated in the subsections. 

 

and the classification and localization accuracy are im-

proved to a greater extent with the devised information 

fusion strategy. 

Weakly Supervised Object Localization 

WSOL aims to solve expensive annotation problem by 

using image-level labels. The multiple-instance learning 

with CNN features is employed to localize objects in some 

researches (Cinbis et al. 2015; Gao et al. 2018). A method 

for self-taught object localization involving masking out 

image regions to identify the regions is proposed (Bazzani 

et al. 2016). CAM is employed to identify the discrimina-

tive image regions in a single forward (Zhou et al. 2016). 

A method to tweak the images by randomly hiding patches 

so that more object parts could be recognized (Singh and 

Lee 2017). Wei et al., Zhang et al., and Li et al. both re-

place the most discriminative regions as masks and look 

for the rest parts of object in the following network (Wei et 

al. 2017; Zhang et al. 2018; Li et al. 2018). A dropout layer 

is designed to randomly select importance map and mask 

map, in order to achieve trade-off between CNN classifica-

tion and localization accuracy (Choe and Shim 2019). Our 

work DFM takes the channel information into considera-

tion, not limited on the position aspect. The most effective 

part is the information fusion between channel branch and 

position branch, enhancing classification and localization 

accuracy simultaneously.  

Dual-Attention Focused Module 

The overall structure of DFM is shown in Fig. 2. It is con-

cise and insertable without extra trainable layers. There are 

two parallel attention branches with implicit information 

communication. The neighbor focused matrix is embedded 

in the position mask branch.  

Channel Branch and Position Branch 

The Channel Branch and Position Branch are computa-

tional units which introduce channel and spatial infor-

mation. As they are fully self-attention and have no kernel 

restriction, these two branches could be employed on any 

intermediate layer of CNN model. Assume a feature map 
c h w inF  as the input, the channel attention map 

1 1c AC  and position attention map 1 h w AP  are re-

spectively computed by the GAP and Channel Average 

Pooling (CAP). 
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where the GAP() represents GAP function and CAP() indi-

cates CAP function. As the pixel value in each point corre-

sponds to the contribution score to network classification, 

we could recognize the most discriminative channels and 

positions whose average values rank top list. Then the at-

tention map 1 1c AC  and 1 h w AP  are delivered to 

following steps to calculate the four key components, en-

hancement maps ,E EC P  and the mask maps , 
M MC P . 

 

tanh( )E AC C                                   (3) 
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Fig 3: The sample graph using neighbor focused matrix M to 
strengthen surrounding pixel values of the PMM
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MP . The black 

color represents zero. Better view with zoom in. 
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Fig 4: The detailed structure and example diagram of information 
fusion block 

MP . The one above is the fusion process between 
PEM and CMM. The PEM brings in the abandoned information 
of CMM and supplies the position information to channel branch. 
The one below shares a similar principle for information fusion. 
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where ,   are hyperparameters which control the thresh-

old value. The larger ,   imply the more channels and 

positions will be included as the mask map. We employ 

tanh activation function here as the large slopes provide 

more significant differences, and then the discriminative 

regions are more highlighted compared to other places. 

Neighbor Focused Matrix 

The neighbor focused matrix is an auxiliary tool to ration-

alize the PMM
 

MP , which utilize the principle that pixels 

of one object are neighbors. As seen in Fig. 3, the matrix 

strengthens the weights surrounding the mask regions. 

Suppose the mask regions are ( , )i j Mask , The computa-

tion process of the matrix M is as follows. 
 

,( [ 1, 1]; [ 1, 1])s kP s i i k j j        M          (7) 
            

where   notes the weights of the neighbor focused matrix. 

The value of   cannot be too large in case the subsidiary 

attention in the following steps tightly locate the most dis-

criminative regions. For instance, if the most discrimina-

tive region for an alligator image is its head, the subsidiary 

attention hardly reaches the tail when   is set too large. 

Of course, the   should not be too tiny to lose its func-

tion. For each mask position in 
MP , the surrounding pixels 

values are then strengthened as follows. 
 

  M MP P M                                  (8)            
 

MP  is the strengthened mask map which highlights the 

surrounding pixels of mask regions to some degree. This 

helps avoid the following attention scatter and transfer, 

thereby improve the classification and localization perfor-

mance. 

Information Fusion 

We complete the information fusion with the enhancement 

maps ,E EC P  and the mask maps ,M MC P , as shown in Fig. 

4. As we mentioned in the Introduction, the mask maps 

,E EC P directly delete all the selected regions information, 

thereby losing all the implicit reference for the rest parts 

detection of the object. This issue is extremely aggravated 

when the rest parts of object are not informative as we 

suppose. In this case, the subsidiary attention map will be 

scattershot and easily transfer to the background, which 

absolutely declines classification and localization accuracy. 

To solve this problem, we consider supplementing the 

implicit information to mask maps to some degree. And we 

found the enhancement maps ,E EC P  are the preferred can-

didates for this task. Firstly, ,E EC P  have the abandoned 

regions or channels information of ,M MC P , so they are 

capable to alleviate attention map scattershot problem. Se-

cond, the ,E EC P  themselves contain the important infor-

mation in channel and position, which enhance the classifi-

cation and localization accuracy additionally. We firstly 

align the dimensions of the four key maps. 



Table 1: The ablation experiments of DFM components, dual branch, fusion strategy, and focused matrix. The baseline is ResNet50 and the 
contents in subscript brackets represent the differences compared with CAM results. The positive value indicates improvement and nega-
tive implies decay. The bold mark shows the largest value in this column. As we follow the final CAM generation as (Zhou et al. 2016), we 
tick the blank all the time except for the baseline.  
 

Components  

 

 ILSVRC 2016 CUB-200-2011 
  

CAM Channel Position Fusion Strategy Focused matrix 

DFM 

 Top-1 Clas Top-1 Loc Top-1 Clas Top-1 Loc 

           76.87 - 79.76 - 

√      76.06 45.35 78.49 41.17 

√ √     76.94(+0.88) 45.92(+0.57) 80.53(+2.04) 46.73(+5.56) 

√  √    75.61(-0.45) 47.37(+2.02) 77.97(-0.52) 50.04(+8.87) 

√ √ √    76.22(+0.16) 46.09(+0.74) 78.67(+0.18) 48.50(+7.33) 

√ √ √ √   77.13(+1.07) 48.82(+3.47) 81.22(+2.73) 55.42(+14.25) 

√ √ √ √ √  77.76(+1.70) 49.61(+4.26) 81.06(+2.57) 56.14(+14.97) 

 

, ,[ [1, ]; [1, ]]i j i h j w    E E EC C C                 (9) 

 

, ,[ [1, ]; [1, ]]i j i h j w    M M MC C C             (10) 

 

,[ [1, ]]k k c   E E EP P P                               (11)  

  

,[ [1, ]]k k c   M M MP P P                             (12) 

 
After dimension expanding, the four maps have coinci-

dent dimensions , c h w C P . We conduct the information 

communication between channel branch and position 

branch as follows. 
 

  ME E MC P C                                 (13) 
 

  ME E MP C P                                  (14) 
 

where MEC represents a combination between the CMM 

MC and the PEM EP . MEP defines a fusion between the 

CMM MP  and the CEM EC . The two hyperparameters   

and   are utilized to adjust a reasonable ratio between the 

two fusion components. Considering the advantages of 

employing EP  instead of EC in formula (13), the intuitive 

difference in the process is shown in Fig. 4. The EP
 
brings 

in the position importance information while EC just decay 

the mask map MC  function in proportion. It is the same in 

formula (14). 

After the information fusion, the two combined map 

MEC  and MEP  are randomly fed back to the input feature 

maps. This is the final step of DFM to complete the WSOL 

task. The random mechanism avoids the simultaneous ap-

pearance of the enhancement map and the mask map which 

are from the same branch. If it happens, the functions of 

enhancement map will be eliminated by the mask map, as 

there are troughs in mask regions to flatten the highlight 

regions in enhancement map. And the information from 

channel and position could not be fused to improve WSOL 

performance. 

random( , , )Module ME MEF C P                   (15) 
 

 out in ModuleF F F                            (16) 

 

where the ModuleF represents the output of our proposed 

DFM,   is the selection probability of MEP , and the outF is 

the revised feature maps which is delivered to the next lay-

er computation. With the two branches, neighbor focused 

matrix, and information fusion strategy, the missing infor-

mation of mask maps is compensated in a simple but effec-

tive way. The enhancement map from one branch offers 

the other branch abundant information, including the im-

plicit hint of the most discriminative part and importance 

information for better classification and localization per-

formance.  

Experiment 

Experiment setups 

Datasets: We complete experiments on the two public 

datasets ILSVRC 2016 (Russakovsky et al. 2015) and 

CUB-200-2011 (Wah et al. 2011) to evaluate the DFM 

performance in WSOL task. There are about 1.2 million 

images in ILSVRC 2016 for training and 50,000 images 

for testing, which contains 1,000 categories. CUB-200-

2011 has 5,994 images for training and 5,794 for testing, 

which consists of 200 kinds of birds. The challenging for 

ILSVRC WSOL is the variety and the complex back-

ground, and the difficulty in CUB-200-2011 relies on the 

elusive difference and various attitudes of the birds.  

Metrics: According to the recommendation in (Russa-

kovsky et al. 2015) and state-of-the-art methods (Wei et al. 

2018; Zhang et al. 2018; Zhang et al. 2018; Choe and Shim 

2019), we utilized the Top-1 classification accuracy (Top-1 

Clas) and Top-1 localization accuracy (Top-1 Loc) as the 

evaluation metrics. Top-1 Clas represents the ratio of cor-

rect classification prediction. Top-1 Loc is ratio of accurate  



Table 3: Comparison between DFM with state-of-the-art WSOL method.  The experiment utilizes the VGG16, ResNet50, ResNet101, and 
MobileNetV1 as the baseline. The bold mark means the largest value in this column. We also calculate the difference value between our 
DFM and the highest value in other state-of-the-art methods. The value is listed in the subscript brackets.  
 

 ILSVRC 2016 CUB-200-2011 

Backbone Method Top-1 Clas Top-1 Loc Top-1 Clas Top-1 Loc 

ResNet50 
CAM (2016)      76.06    45.35      78.49       41.17 

DFM      77.76(+1.70)    49.61(+4.26)      81.06(+2.57)       56.14(+14.97) 

ResNet101 
CAM (2016)      76.93    46.16      78.26       40.02 

DFM      77.52(+0.59)    50.65(+4.49)      81.52(+3.26)       54.68(+14.66) 

VGG16 

CAM (2016)      66.65    42.76      67.79       34.56 

ACoL (2018)      67.50    45.83      71.90       45.92 

ADL (2019)      69.48    44.92      65.27       52.36 

DFM      68.60(-0.88)    47.41(+1.58)      72.52(+0.62)       55.84(+3.48) 

MobleNetV1 

CAM (2016)      68.38    41.66      71.94       43.70 

HaS (2017)      67.48    41.87      66.64       44.67 

ADL (2019)      67.77    43.01      70.43       47.74 

DFM      68.63(+0.25)    44.19(+1.18)      72.37(+0.43)       49.13(+1.39) 

 

classification and correct object localization when the in-

tersection over union (IoU) is not less than 50%. 

Implementation: We evaluated the DFM capability with 

the baselines VGG16 (Simonyan and Zisserman 2015), 

Resnet50, Resnet101 (He et al. 2016), and MobileNetV1 

(Howard et al. 2017). We also plug our module in the bot-

tleneck between stages (Choe and Shim 2019. The CAM 

and bounding box are obtained as the same as the previous 

work (Zhou et al. 2016). We employ the ILSVRC pre-

trained models and fine-tune them after adding in our 

module. The hyperparameters in our work is tested for 

good results. During the two branches computation of 

ResNet50, the mask thresholds are set as 0.85  , 0.95 

, and strengthen ratio 0.15  . In the information fusion, 

0.6 
 
and 0.4  . For maps selection, 0.70  , i.e., 

there is 70% probability to choose MEP . The DFMs in 

ResNet50 are inserted following the conv5_3 and conv4_1. 

We adopt the PyTorch as framework and train our model 

on NVIDIA GeForce TITAN V GPU.  

Ablation Study 

We detail to evaluate the importance of each branch, in-

formation fusion, and neighbor focused matrix. Additional-

ly, we test the model performance under various hyperpa-

rameters setting. Here we take the ResNet50 as the net-

work baseline. 

 First, the importance of each component is listed in Ta-

ble 1. The classification result of CAM is slightly lower 

than baseline as the final layers have been replaced, and 

the localization accuracy is limited as only the most dis-

criminative regions are detected. The position branch con-

tributes a lot to the localization accuracy while the channel 

branch increases the classification accuracy. We set a nor- 

Table 2: Hyperparameters adjustment in information fusion. 
Backbone is ResNet50 and test on CUB-200-2011. Results are 
Top-1 Loc. The other hyperparameters are set as Implementation. 

 

   

0.9 

0.5 

0.4 

0.1 
  

 0.9 0.5 0.4 0.1 

0.9 48.77 52.13 53.06 49.11 

0.7 52.61 55.09 55.75 50.40 

0.6 51.90 55.26 56.14 50.32 

0.1 49.45 51.94 52.38 48.76 

 
mal fusion group ( MC

 
with EC , MP

 
with EP ) to compare 

with the proposed strategy. The dual-attention module 

achieves superior performance in Top-1 Loc and Top-1 

Clas. The experiment effect of neighbor focused matrix 

varies in a different situation. Basically, it leads to floating 

improvement in localization.  

    After analyzing the significance of DFM components, 

we evaluate the fusion parameters in WSOL task. Accord-

ing to the results in Table 2, the value of the compensation 

information from the enhancement maps should be dis-

counted. Otherwise, the estimated object region would be 

small as it loses the idea of the most discriminative regions 

erasing. 

Comparing with State-of-the-art Work 

We compare the proposed DFM with the state-of-the-art 

WSOL methods including CAM (Zhou et al. 2016), ACoL 

(Zhang et al. 2018), HaS (Singh and Lee, 2017), ADL 

(Choe and Shim 2019). In addition, we also take strongly 

supervised methods into consideration, such as CBAM 

(Woo et al. 2018) and ABN (Fukui et al. 2019).  



 
 

Fig 5: Some exemplar visualization results of ADL and DFM 
methods. Red boxes represent ground truths and green ones are 
estimated results. Our DFM results are in the third row. 
 

 
 

Fig 6: The comparison between CAM and DFM methods. 
 
WSOL: The quantitative comparison result in WSOL is 

shown in Table 3. DFM achieves outperforming perfor-

mance in both Top-1 Loc and Top-1 Clas with different 

backbones. In the localization task, DFM improves the 

accuracy by 1.58%, 3.48%, 1.18%, and 1.39% compared 

with the highest Top-1 Loc values using VGG16 and Mo-

bleNetV1 respectively, which also verify the generality of 

DFM. For ResNet50 and ResNet101, the hyperparameters 

are shared which also obtain more than 4% and 14% Top-1 

Loc enhancement in ILSVRC2016 and CUB-200-2011 

respectively. We also acquire a satisfactory Top-1 Clas in 

the experiment, especially with the ResNet. The visualiza-

tion results are shown in Fig. 5 and Fig. 6. We intuitively 

learn the DFM promote the entire object detection and 

avoid the attention regions being rambling. 

Strongly Supervised Classification: We also compare 

our results with some strong supervised methods, CBAM  

Table 4: Top-1 Clas comparison between our DFM with state-of-
the-art strong supervised methods which utilize the attention in-
formation. Bold means the highest value and the difference value 
is contained in the subscript brackets. In the task, ssol represents 
strongly supervised object localization, wsol indicates weakly 
supervised object localization, and ssc means strongly supervised 
classification. 
 

  ILSVRC 2016 

Backbone Method task Top-1 Clas 

ResNet50 
CBAM (2018) ssol      77.34 

DFM wsol      77.76(+0.33) 

ResNet101 
CBAM (2018) ssol      78.49 

DFM wsol     77.52(-0.97) 

VGG16 
ABN (2019) ssc      68.80 

DFM wsol      68.60 (-0.20) 

MobleNetV1 
CBAM (2018) ssol      70.99 

DFM wsol     68.63(-2.36) 

 
(Woo et al. 2018) and ABN (Fukui et al. 2019). The results 

are listed in Table 4. 

CBAM is a strongly supervised object localization 

method, so it has position annotation to provide abundant 

information for localization and classification, so it be-

haves better with MobleNetV1 and ResNet101. However, 

DFM result using ResNet50 is a little higher than CBAM. 

ABN is designed for strongly supervised classification, 

which requires abundant overheads parameters. The accu-

racy between ABN and DFM are approximately the same. 

Based on these results, the DFM has shown considerable 

capability and potential in object classification compared 

with the strongly supervised learning algorithms. 

    Verified by the experiment results, we are capable to 

know the classification and localization accuracies of DFM 

outperform the state-of-the-art WSOL methods, which also 

closes to the strongly supervised level. Considering that 

DFM structure is concise but effective, its variants with the 

structural reinforcement are supposed to be researched for 

further WSOL performance enhancement. 

Conclusion 

In this work, we have proposed a dual-attention focused 

module to enhance the classification and localization accu-

racy in WSOL task. We analyzed the two drawbacks of the 

most discriminative regions erasing strategy at the present. 

To address this problem, the channel branch and position 

branch are introduced to extract self-attention maps which 

cover the comprehensive information in channel and posi-

tion. We devise a maps fusion policy, integrating the en-

hancement map with mask map, to compensate the erased 

information, thereby offering implicit hint and importance 

information from the other branch for following attention 



regions detection and object classification. Additionally, 

the neighbor focused matrix is proposed to highlight the 

surrounding pixels of erased regions to prevent attention 

from transferring to the non-object region. The proposed 

DFM needs no extra overheads parameters and easily plugs 

into various backbones. The experiments verify DFM en-

hances the performance in WSOL, both in the classifica-

tion and localization, which outperforms the state-of-the-

art methods. 
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