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Abstract: A static output feedback model predictive control algorithm is proposedfor an uncertain linear continuous system.
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1 Introduction

Model predictive control (MPC) is an optimization-based
control technique which has attracted much attention be-
cause of its ability to handle constraints in an efficient man-
ner [1]. This strategy was originally formulated in the frame-
work of full-state feedback as described in [2] and references
therein. In practice, the state may not be fully accessible [4],
which can provide a theoretical and/or applications limita-
tion on MPC [3]. When a subset of the system state variables
are unknown, a static or dynamic output feedback paradigm
is often adopted based on the measured system output infor-
mation [5, 6]. The majority of the output based model pre-
dictive control approaches adopt dynamic output feedback
in the existing literature [7–9].

Compared with dynamic output feedback control, static
output feedback control is more straightforward both in
terms of design freedom and implementation [10, 11]. A
static output feedback sliding mode control strategy has been
developed which uses a particular canonical form for design
[12]. Necessary and sufficient conditions for solvability us-
ing a static output feedback control have been proposed for
linear systems [13], however, an explicit expression to de-
velop a static output feedback control law or optimise a de-
sign has not been developed. Sufficient conditions are pre-
sented in [14] to develop a stabilising robust static output
feedback control. The solution is posed in terms of a set of
linear matrix inequalities, but performance optimizationis
not considered within the problem formulation.

Optimal control is important for the control of industrial
processes[15] and MPC has found particular success in pro-
cess control where it has achieved improved control perfor-
mance. The purpose of this study is to design a static output
feedback model predictive control for a class of continuous
linear systems with uncertainties, which explicitly givesan
expression for the static output feedback model predictive
control law. Compared with the existing methods in [12–
14], the proposed method not only gives an explicit expres-
sion for the control law, but also incorporates an optimiza-
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tion problem to ensure that the required system performance
is maintained in the presence of constraints. The following
questions are considered in this paper:

• How to design an explicit expression for a static output
feedback model predictive control law according to the
necessary and sufficient conditions in [13].

• How to transform an infinite time optimization problem
into a problem that can be tractably solved.

After considering these two issues, a step by step control
algorithm is presented to facilitate practical design. Theef-
fectiveness and performance of the approach developed will
be validated using case studies.

The paper is organized as follows. In Section 2, the prob-
lem is formulated and related assumptions and lemmas are
given. In Section 3, a static output feedback model predictive
control algorithm is proposed. The case studies are presented
in Section 4 to validate the proposed approach. Finally, some
conclusions are drawn in Section 5.

2 Static output feedback control

Consider the following continuous-time linear system
which is subject to uncertainties:

ẋ(t) = (A+∆A)x(t) + (B +∆B)u(t)

y(t) = Cx(t) (1)

wherex(t) ⊆ n is the state vector,u(t) ∈ ⊆ m is the
control input andy(t) ∈ ⊆ p is the output vector. and

are polyhedral and polytopic constraint sets, respectively,
andA ∈ n×n, B ∈ n×m andC ∈ p×n define the nom-
inal state space description.∆A ∈ n×n and∆B ∈ n×m

distribute the uncertainty and have the following form:

[

∆A ∆B
]

= DF (t)
[

E1 E2

]

(2)

whereF (t) ∈ d×e is an unknown bounded function with
F (t)TF (t) ≤ I andD ∈ n×d, E1 ∈ e×n andE2 ∈

e×m are known constant matrices.C has full row rank and
B has full column rank.

CH = [ I 0 ] (3)



whereH ∈ n×p is invertible andI is the unit matrix. For
a given nominal triple(A,B,C), necessary and sufficient
conditions for the solvability of the constrained Lyapunov
problem have been given in [13]. The conditions of the fol-
lowing lemma are required if there is a static output feedback
gainK ∈ m×p, such that:

P (A+BKC) + (A+BKC)TP < 0 (4)

whereP ∈ n×n is a symmetric positive definite (SPD)
matrix and subject to the equality constraint:

BTP = NC (5)

whereN ∈ m×p, K, P , andF are variables.

Lemma 1 For system (1), the static output feedback gainK
exists if and only if:rank(CB) = m and no invariant zeros
of the triple(A;B;C) lie in C+ [13].

Remark 1 In [13], although necessary and sufficient con-
ditions are given for the solvability of the static output feed-
back control law, an explicit expression for the control law
has not been developed. In this paper, an explicit expression
of the control law is derived from (4) without equality con-
straints. In order to develop this expression, the projection
lemma in [16] will be used in the work which follows.

Based on Lemma 1, a static output feedback controller for
the following form can be established:

u(t) = Ky(t) (6)

Lemma 2 Suppose thatE is a positive definite matrix, the
following two expressions are equivalent [16]:

(1)Ψ+ S + ST < 0 is solvable

(2)

[

Ψ+ E − (W +W )
T

ST +WT

∗ −E

]

< 0 is solv-

able.

Theorem 1 Assume the conditions of Lemma 1 hold for the
system (1). If there exist positive definite matricesM =
[

M11 0
M21 M22

]

andL = [ L1 0 ] satisfying:





−GM − (GM)
T

∗
∗

(ATM +BL)
T
+ P−1 (GM)

T

−P−1 0
∗ −P−1



 < 0

then there is a static output feedback control lawu(t) =
L1M11

−1y(t) that makes the system (1) asymptotically sta-
ble.

Proof:
Applying Lemma 2 to (4) where the state matrices are as-

sumed to include the uncertainty from (1) yields

[

X −W −WT

∗

[(A+∆A) + (B +∆B)KC]
T
P +WT

−X

]

< 0
(7)

whereX is positive definite matrix. According to the Schur
Complement Lemma, (7) is equivalent to:





−W −WT [(A+∆A) + (B +∆B)KC]
T
P +WT

∗ −X
∗ ∗

I
0

−X−1



 < 0

(8)
Multiplying both sides of (8) by the diagonal matrix

diag{I, P−1, I} yields:





−W −WT [(A+∆A) + (B +∆B)KC]
T
+WTP−1

∗ −P−1XP−1

∗ ∗
I
0

−X−1



 < 0

(9)
Let X = P . Multiplying both sides, in turn, by diagonal

matricesdiag{W−T , I, I} anddiag{W−1, I, I} gives




−W−1 −W−T

∗
∗

W−T [A+∆A+ (B +∆B)KC]
T
+ P−1 W−T

−P−1 0
∗ −P−1



 < 0

(10)
LetW−1 = GM . Then:

[A+∆A+ (B +∆B)KC]W−1

= (A+∆A)GM + (B +∆B)KCGM
= (A+∆A)GM + (B +∆B)K[ I 0 ]M
= (A+∆A)GM + (B +∆B)K[ M11 0 ]
= (A+∆A)GM + (B +∆B)[ L1 0 ]

(11)

Hence, K = L1M11
−1 and u(t) = L1M11

−1y(t).
Q.E.D.

Remark 2 Inequality (4) prescribes asymptotic stability for
the system (1). The static output feedback gainK =
L1M11

−1 can be derived using Lemma 2 from (4). Hence,
the control lawu(t) = L1M11

−1y(t) renders the system (1)
asymptotically stable.

3 Static output feedback model predictive control

The purpose of this section is to design a static output
feedback model predictive control lawu(t) for the system
(1) so that the state of the system satisfies the following per-
formance index:

min
u(t)

J(k) (12)

s.t.
uimin ≤ ui(kT ) ≤ uimax, i = 1, 2, · · · ,m (13)

yjmin ≤ yj(kT ) ≤ yjmax, j = 1, 2, · · · , p (14)

where

J(k) =
∫ +∞

0
xT (kT + τ, kT )R1x(kT + τ, kT )dτ

+
∫ +∞

0
uT (kT + τ, kT )R2u(kT + τ, kT )dτ



andR1 andR2 are given real positive definite matrices,T is
the sampling period,{tk}k=0,1,... is the sampling time which
satisfiestk+1 − tk = T . x(kT ) = x(kT, kT ) is the state at
sampling timekT , x(kT + τ, kT ) is the predicted state at
kT + τ at timekT . u(kT + τ, kT ) is the predicted control
law for timekT + τ at timekT . It is assumed that there ex-
ists a quadratic functionV [x(t)] makingJ [x(t)] ≤ V [x(t)].
The infinite time domain optimization problem is then trans-
formed into a solvable finite time LMI problem. Consider
the following Lyapunov function:

V (t) =

∫ +∞

0

[xT (t)R1x(t) + uT (t)R2u(t)]dt+xT (t)Px(t)

(15)
It follows that

V̇ (t) =
∫ +∞

0
{xT (t)[R1 + (KC)

T
R2(KC)

+P [(A+∆A) + (B +∆B)KC]
+[(A+∆A) + (B +∆B)KC]TP ]x(t)}dt

(16)
if

R1 + (KC)TR2(KC)
+P [A+∆A+ (B +∆B)KC]
+[A+∆A+ (B +∆B)KC]TP < 0

(17)

the system (1) is stable.

Theorem 2 Assume the conditions of Lemma 1 hold for the
system (1), If there are positive definite matricesY > 0 and

M =

[

M11 0
M21 M22

]

with L = [ L1 0 ] satisfying:

















−GM − (GM)
T

[(A+∆A)GM + (B +∆B)L]
T
+ Y

∗ −Y
∗ ∗
∗ ∗
∗ ∗
∗ ∗

(GM)
T

(GM)
T

LT (GM + L)
T

0 0 0 0
−Y 0 0 0
∗ −R1

−1 0 0
∗ ∗ −R2

−1 0
∗ ∗ ∗ I

















< 0

(18)
s.t. (13), (14), then, there exists a static output feedback
control lawu(t) = L1M11

−1y(t) that makes the system (1)
asymptotically stable.

Proof:
According to Lemma 2, (17) is equivalent to:

[

R1 + (KC)
T
R2KC +X −W −WT

∗

[(A+∆A) +WT + ((B +∆B)KC)]
T
P

−X

]

< 0

(19)
whereX is positive definite matrix. According to the Schur

Complement Lemma, (19) is equivalent to:













−W −WT [(A+∆A) + ((B +∆B)KC)]
T
P +WT

∗ −X
∗ ∗
∗ ∗
∗ ∗

I I (KC)
T

0 0 0
−X−1 0 0

∗ −R−1
1 0

∗ ∗ −R−1
2













< 0

(20)
Multipling both sides by the diagonal matrix

diag{W−T , P−1, I, I, I} yields:












−W −WT Φ
∗ −P−1X
∗ ∗
∗ ∗
∗ ∗

W−T W−T W−T (KC)
T

0 0 0
−X−1 0 0

∗ −R−1
1 0

∗ ∗ −R−1
2













< 0

(21)

whereΦ = W−T [(A+∆A) + (B +∆B)KC]T + P−1.
DefineX = P , W−1 = GM , then,K = L1M11

−1 and
u(t) = L1M11

−1y(t). (18) is satisfied. Q.E.D.

Remark 3 Theorem 2 shows that the problem of static out-
put feedback MPC can be transformed into a “min” opti-
mization problem under a set of linear matrix inequality con-
straints. Inequality (18) can be solved using the LMI tool-
box.

The optimization problem (12) can be transformed into
the following LMI:

min
Y,M,L,K

V (t), s.t.(13), (14), (18) (22)

The design procedure can be described in the following
step by step algorithm.

Algorithm 1
Step 1 (Initialization): Choosetk and T which satisfy

tk = kT , setk = 0.
Step 2 (Updating): At the beginning of the control interval

(kT ), set the iterationl = 0 andK=K(l=0), wherel is the
iteration number.

Step 3 (Iterations): At time stepkT , solve the LMI (22)
to obtain the matricesY , L and M and feedback gain
K. Check the convergence for a specified error tolerance
e which is defined by the user. IfK(l) satisfies:

∥

∥

∥
K(l) −K(l−1)

∥

∥

∥
≤ e

then, go to step 4. Otherwise continue to iterate, exchange
the solutionK and setl = l + 1.

Step 4 (Implementation): Judge whether the constraints
are met. If the control gainK cannot meet the constraints



at time stepkT , thenK(kT ) = K(kT − 1) until the con-
straints are satisfied. IfK meets the constraints, apply the
control u(kT ) = K(kT )y(kT ) to the system. Go to the
control intervalkT = kT + 1, return to step 2 and repeat
the procedure.

Remark 4 For a given matrixC, the choice ofG is not

unique. In this paper, defineG =
[

CT (CCT )
−1

C†

]

whereC† is the orthogonal basis of the zero space of the
matrix C. G satisfiesCG = [ I 0 ] and guarantees the
feasibility of Step 3 in Algorithm 1.

4 Case Study

In this section, the proposed method is verified by case
studies. The first case seeks to verify the effectiveness of
the proposed approach to stabilise a given system; the sec-
ond case study verifies the effectiveness of the proposed ap-
proach in solving a tracking problem; the third case verifies
the effectiveness of the tracking performance in the presence
of uncertainty.

4.1 Stabilization Problem

Consider the following linear continuous system:

A =

[

1.1 −0.3
0 0.1

]

B =

[

−1.5
1

]

C =
[

1 0
]

R1 = I

R2 = 3I (23)

According to the static output feedback model predictive
control algorithm in this paper, matricesG, Y , M andL can
be obtained by themincx solver in the LMI Toolbox:

G =

[

1 0
0 1

]

Y =

[

1.0395 −0.0379
−0.0379 1.2662

]

M =

[

0.4272 0
−0.0036 0.4236

]

L =
[

0.8163 0
]

Select the initial state of the system asx0 =
[

2 1
]T

.
The states of the closed-loop system are shown in Figure 1,
the control input is shown in Figure 2, the output of the sys-
tem is shown in Figure 3 and the performance is shown in
Figure 4. Figure 1 shows that the two states of the system
can be rapidly stabilized. From Figure 2 to Figure 4, it can
be seen that the system has good performance. This vali-
dates the effectiveness of the proposed approach in solvinga
stabilization problem.

4.2 Tracking Problem

Consider the nominal system from (23). Select the refer-
ence output trajectory as0.1sin(πt/3) and the initial state

of the system asx0 =
[

0.05 0
]T

. The output of the
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Fig. 1: States of the closed-loop system (Case A).
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Fig. 2: Control input (Case A).
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Fig. 3: Output of the closed-loop system (Case A).
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Fig. 4: Performance of the closed-loop system (Case A).
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Fig. 5: Output of the closed-loop system (Case B).

closed-loop system is given in Figure 5 and the control in-
put is shown in Figure 6. In Figure 5, the solid line is the
reference output and the dashed line is the actual output. It
is seen that the output tracks the desired reference rapidly
and with high accuracy. The results show that the system
exhibits good tracking performance.

4.3 Tracking Performance in the Presence of Uncer-
tainties

For the system (23), consider now the presence of uncer-
tainties as described in (2) where

E1 =

[

1 0 0 0
1 0 0 0

]T

E2 =
[

0 1 0 0
]T

D =

[

0.1 0 0.1 1
0 1 0 0

]

F (t) = diag{f1, f2, f3, f4}

where|f1| ≤ 0.1, |f2| ≤ 0.1, |f3| ≤ 0.1, |f4| ≤ 0.1. Se-
lect the reference output trajectory ascos(πt) and the initial
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Fig. 6: Control input (Case B).
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Fig. 7: Output of the closed-loop system (Case C).

state of the system asx0 =
[

0 0
]T

. The output of the
closed-loop system is given in Figure 7, the control input is
given in Figure 8 and the tracking error is given in Figure 9.
Figure 7 shows that the output tracks the desired reference
rapidly. Figure 9 shows that the tracking error is bounded
and the method exhibits good robustness in the presence of
uncertainty.

5 Conclusion

A static output feedback model predictive control algo-
rithm is proposed in this paper for the case when the system
states are not measurable. The main contribution of this pa-
per can be summarized as: (1) An explicit expression for
the static output feedback control law is obtained using the
projection lemma. (2) The resulting infinite time domain op-
timization problem is transformed into a linear programming
problem using LMIs and the expression for the static output
feedback predictive control law is given. Case studies show
the feasibility of proposed approach. Future work will focus
on experimental trials of the proposed approach.
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