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A B S T R A C T 

We measure the 1D Ly α power spectrum P 1D 

from Keck Observatory Database of Ionized Absorption toward Quasars 
(KODIAQ), The Spectral Quasar Absorption Database (SQUAD), and XQ-100 quasars using the optimal quadratic estimator. We 
combine KODIAQ and SQUAD at the spectrum level, but perform a separate XQ-100 estimation to control its large resolution 

corrections in check. Our final analysis measures P 1D 

at scales k < 0.1 s km 

−1 between redshifts z = 2.0–4.6 using 538 quasars. 
This sample provides the largest number of high-resolution, high-S/N observations; and combined with the power of optimal 
estimator it pro vides e xceptional precision at small scales. These small-scale modes ( k � 0.02 s km 

−1 ), unavailable in Sloan 

Digital Sk y Surv e y and Dark Energy Spectroscopic Instrument analyses, are sensitive to the thermal state and reionization history 

of the intergalactic medium, as well as the nature of dark matter. As an example, a simple Fisher forecast analysis estimates that 
our results can impro v e small-scale cut-off sensitivity by more than a factor of 2. 

Key words: methods: data analysis – intergalactic medium – quasars: absorption lines. 
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 I N T RO D U C T I O N  

he Ly α forest technique can map out the matter distribution in vast
olumes and at small scales ( r � 1 Mpc) between 2 � z � 5. At
hese redshifts, the structure formation is mildly non-linear, but the
hysics of the Ly α forest is further enriched by the thermal state
nd reionization history of the intergalactic medium (IGM; Hui &
nedin 1997 ; Gnedin & Hui 1998 ). The line-of-sight flux power

pectrum P 1D has been at the frontier of constraining new physics
ncluding IGM thermal evolution (Boera et al. 2019 ; Walther et al.
019 ), neutrino masses (Croft, Hu & Dave’ 1999a ; Seljak et al.
006 ; Palanque-Delabrouille et al. 2015a , b ; Yeche et al. 2017 ) and
he nature of dark matter (Boyarsky et al. 2009 ; Viel et al. 2013 ; Baur
t al. 2016 ; Ir ̌si ̌c et al. 2017a ; Garzilli et al. 2019 ). 

Two categories of P 1D data sets have emerged o v er the years.
he first category contains thousands of low- to medium-resolution
 E-mail: naimgoksel.karacayli@yale.edu 
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pectra obtained by the Extended Baryon Oscillation Spectroscopic
urv e y (eBOSS; Da wson et al. 2016 ) and its predecessors; and

he corresponding P 1D estimates (McDonald et al. 2006 ; Palanque-
elabrouille et al. 2013 ; Chabanier et al. 2019 ). The upcoming Dark
nergy Spectroscopic Instrument (DESI; Levi et al. 2013 ; DESI
ollaboration 2016 ) aims to obtain approximately one million Ly α
uasar spectra. Such large sample sizes can probe large scales to
onstrain cosmology and neutrino masses, but these data sets are
imited by noise and resolution at small scales. The second category
ontains tens to hundreds of high-resolution, high-S/N spectra
btained by various spectrographs including the High-Resolution
chelle Spectrograph (HIRES; Vogt et al. 1994 ), the Ultraviolet
nd Visual Echelle Spectrograph (UVES; Dekker et al. 2000 ), and
-Shooter spectrograph (Vernet et al. 2011 ). P 1D estimates in this

ate gory often hav e been limited to their respectiv e data sets with
0–100 spectra (Croft et al. 1999b ; McDonald et al. 2000 ; Kim
t al. 2004 ; Viel et al. 2013 ; Walther et al. 2017 ; Ir ̌si ̌c et al. 2017b ;
eche et al. 2017 ; Boera et al. 2019 ; Day, Tytler & Kambalur 2019 ).
he large-scale modes ( ∼10 Mpc) are poorly measured due to large
© 2021 The Author(s) 
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ample variance from the small numbers of quasars in this category, 
ut these spectra can probe extremely small scales ( ∼100 kpc) that
re crucial to constrain thermal state of the IGM and non-standard 
ark matter models. 
In this work, we measure the small-scale P 1D from the largest 

ample of high-S/N quasars using a combination of three public 
eleases (L ́opez et al. 2016 ; O’Meara et al. 2017 ; Murphy et al. 2019 ).
his combined sample is seven times larger than Walther et al. ( 2017 ),
ut requires attention when combining the different data sets. We use 
he optimal quadratic estimator formalism and pipeline described in 
ara c ¸ayli, Font-Ribera & Padmanabhan ( 2020 ) to measure P 1D . This

pproach has a number of advantages: by working in pixel space, it
s unbiased by gaps in the spectra, allows weighting by both the
ix el-lev el pipeline noise as well as accounting for sample variance
rom intrinsic Ly α correlations, and naturally allows combining very 
ifferent data sets (with different pixel spacings, resolutions, etc.). 
s we demonstrate below, the large data set and pipeline result in

ignificant impro v ements to the precision with which we measure 
 1D . 
This paper is organized in seven sections. Section 2 describes 

he spectra and the preprocessing steps we take. Section 3 details 
ur method with a summary of the pipeline and mean flux mea-
urement. We also re vie w the quadratic estimator and validate the
ipeline on simulated data here. Our results and a discussion on 
ystematics of damped Ly α absorbers, continuum errors, and metal 
ontamination can be found in Section 4. We reflect on our results
nd their statistical power in Section 5. Finally, we summarize in 
ection 6. 

 DATA  

e use three publicly available data sets in this work: 

(i) K eck Observ atory Database of Ionized Absorption toward 
uasars (KODIAQ) Data Release 2 (DR2; Lehner et al. 2014 ; 
’Meara et al. 2015 , 2017 ) is observed by HIRES (Vogt et al. 1994 )
n the Keck I telescope. 
(ii) The Spectral Quasar Absorption Database (SQUAD) DR1 

Murphy et al. 2019 ) is observed by UVES (Dekker et al. 2000 ) on
he European Southern Observatory’s Very Large Telescope (VLT). 

(iii) XQ-100 is observed using the X-Shooter spectrograph (Ver- 
et et al. 2011 ) under the European Southern Observatory Large 
rogramme ‘Quasars and their absorption lines: a le gac y surv e y of

he high-redshift Universe with VLT/XSHOOTER’ (L ́opez et al. 
016 ). 

The availability of large, high-resolution, high-S/N spectra of 
ODIAQ and SQUAD also kindled analysis in two- and three-point 
orrelation functions of Ly α absorbers (Maitra, Srianand & Gaikwad 
021 ). 

.1 KODIAQ 

ODIAQ DR2 1 has 300 reduced, continuum-fitted, high-resolution 
uasar spectra at 0 < z < 5.3 with resolving power R � 36 000
Lehner et al. 2014 ; O’Meara et al. 2015 , 2017 ). The continuum is
tted by hand one echelle order at a time using Legendre polynomials. 
hese high-resolution spectra come in 1.3 or 2.6 km s −1 velocity 
pacing. We co-add and resample different observations on to a 
 https://koa.ipac.caltech.edu/workspace/TMP 939bFW 53591/kodiaq53591 
html 

2

3

1
4

ommon 3 km s −1 grid using exposure times as weight (Gaikwad
t al. 2021 ). While this resampling step is not required, it significantly
educes our computational cost while not affecting any of the scales
f interest. 

.2 SQUAD 

QUAD DR1 2 consists of 467 fully reduced, continuum-fitted high- 
esolution quasar spectra at redshifts 0 < z < 5 with resolving power
 � 40 000 (Murphy et al. 2019 ). The continuum fitting consists of an
utomatic phase and then a manual phase to eliminate the remaining
rtefacts. These spectra are sampled on to varying 1.3–3.0 km s −1 

paced grids in velocity units. As with KODIAQ, we resample these
n to a common 3 km s −1 grid. 
There are two further important corrections to the reduced spectra. 

irst, the median seeing is smaller than the slit width for some
bservations. This results in underestimated nominal resolution 
alues and consequently o v ercorrecting spectrograph resolution. We 
orrect the reported nominal resolution by approximating R cor = Rs / θ
nly when s > θ , where s is the slit width and θ is the median seeing,
oth in arc seconds. This yields 25 per cent correction on average
ith a maximum of 150 per cent. The net effect on P 1D is less than
 per cent even at k = 0.1 s km 

−1 since the resolution comes into
ffect at significantly smaller scales. 

Secondly, Murphy et al. ( 2019 ) note that their pipeline underes-
imates the errors in saturated absorption lines. They provide χ2 

ν

f each pixel about the weighted mean when combining multiple 
 xposures. F ollowing King et al. ( 2012 )’s correction, we apply a
edian filter of size 5 to χ2 

ν and multiply the error with 
√ 

median [ χ2 
ν ]

f it is greater than 1. 

.3 XQ-100 

Q-100 contains 100 quasars at redshifts 3.5 < z < 4.5 with resolving
ower ranging from R ∼ 4000–7000 and spectra from different arms 
ade available (L ́opez et al. 2016 ). These spectra are obtained from

he ESO database. 3 For each arm, the continuum is manually fit by
electing absorption free points. The Ly α forest falls into VIS and
VB arms. Spectra from VIS arm hav e a pix el spacing of 11 km s −1 ,
hereas UVB spectra are on 20 km s −1 velocity spaced grids. Given

he lower resolution compared with KODIAQ and SQUAD, we do not 
esample these spectra on to another grid. We also keep the spectra
rom different arms separate, which allows us to keep resolution 
orrection more accurate. For simplicity, we ignore any correlations 
etween o v erlapping re gions of these two arms. 

Because the seeing is smaller than the slit width for most observa-
ions, the nominal resolution is similarly underestimated for this set. 

e correct the resolution for this effect by interpolating the tabulated
alues 4 only when the seeing is smaller than the slit width (Yeche
t al. 2017 ). We do not extrapolate below the smallest provided slit
idth value. Even though this yields 30 per cent resolution correction
n average and doubles the resolution at maximum, the effect in
 1D is smaller. We see an average of 15 per cent correction for UVB
rm and 5 per cent for VIS arm in P 1D at k = 0.045 s km 

−1 , our
onfidence limit for XQ-100. 
 https:// doi.org/ 10.5281/ zenodo.1345974 
 ht tp://telbib.eso.org/det ail.php?bibcode = 2016A 

∼per ∼cent26A...594A..9 
L 

 https:// www.eso.org/ sci/ facilities/paranal/instruments/xshooter/ inst.html 
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Figure 1. Mean flux measurement of each data set when DLAs are masked. 
Solid transparent lines show best-fitted results. KODIAQ and SQUAD have 
de viations at lo w z. FG08 is extrapolated to lo wer redshifts. We address the 
discrepancies in Section 4. 

Table 1. Best-fitted parameters to our mean flux measurements of each data 
set when DLAs are masked. 

Set τ 0 β C 

FG08 0.675 3.92 0 
KODIAQ 0.373 5.13 0 .18 
SQUAD 0.377 5.54 0 .24 
XQ-100 2.000 1.00 − 1 .43 
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 M E T H O D  

.1 Summary of the pipeline 

efore processing the spectra, we need to correct the nominal
esolution values, identify duplicate quasar observations and mark
LAs. We do not mask metal lines, but subtract a statistical estimate
f the metal power using side band regions. First, the nominal
esolutions of XQ-100 and SQUAD spectra are corrected for seeings
hat are less than the slit width as described in their respective
ections. Secondly, assuming a data set does not contain duplicates
n itself, we identify quasars within 10 arcsec of each other from
ifferent sets as duplicates, and pick the spectrum that has the highest
/N per km s −1 . Thirdly, we visually identify and remo v e DLAs with

he help of a simple automated DLA finder and given catalogues (see
ection 4.3). 
We then process the spectra as follows 5 : 

(i) Our analysis region is limited to 1.7 < z < 4.7 and 1050 Å<λRF 

 1180 Å. We remo v e pix els that fall outside of these bounds. 
(ii) These spectra are still susceptible to reduction artefacts such

s spikes due to continuum normalization near an echelle order, sky
ubtraction or cosmic rays. We remo v e these outlier artefacts by
liminating pixels with flux values one median absolute deviation
MAD) outside 0 and 1, and by eliminating pixels with errors 3.5

AD abo v e the median error. In other w ords, we k eep pixels that
atisfy the following criteria: 

− MAD ( F ) < F ( λ) < 1 + MAD ( F ) (1) 

 < σ ( λ) < median ( σ ) + 3 . 5 × MAD ( σ ) , (2) 

here MAD is computed in the Ly α region. We prefer median
tatistics because they are robust against outliers. 

(iii) We co-add multiple KODIAQ observations, then resample
hese and SQUAD spectra on to a common 3 km s −1 spaced grid. We
eep XQ-100 data in its original spacing, and do not co-add UVB
nd VIS arms. 

(iv) We divide by the best-fitting mean flux of the corresponding
ata set to get δF = F / F − 1. 
(v) We divide the forest into three equal regions in the rest frame,

nd split all spectra into these chunks to speed up our calculation and
elp continuum marginalization. We remo v e chunks that are shorter
han 10 per cent of the entire forest. 

Combining KODIAQ and SQUAD with this process results in
276 spectral chunks from 464 quasars comprised 186 KODIAQ
nd 278 SQUAD quasars. We are then left with 74 unique XQ-100
uasars. UVB arm contributes 62 chunks, while VIS contributes 47.

.2 Mean flux 

e measure the mean flux of each data set independently and use
he respective best fits as mean flux to calculate δF = F / F − 1.
s we discuss in Section 4, this remo v es some systematic errors in

ontinuum fitting procedure. 
We add Ly α variance to the pipeline error on pix el lev el using a

ducial power from fitting equation (4) to previous measurements
nd the mean flux from Faucher-Gigu ̀ere et al. ( 2008 , FG08 ). We
ssign the square of the mean S/N per km s −1 of the Ly α region
 https:// bitbucket.org/ naimgk/qsotools . Our pipeline code is not well docu- 
ented, but we make it public for reference. 

n

6

NRAS 509, 2842–2855 (2022) 
s weight, then simply average pixel values. We do not use inverse
ariance at the pixel level because the pipeline noise and flux are
orrelated. Specifically, low flux regions almost al w ays have smaller
ipeline error estimates. Error for a given bin is the propagated value
f the modified pipeline errors that go into that bin. Note that we
o not account for systematics here and therefore underestimate the
rrors. We then fit Becker et al. ( 2013 ) form for F ( z) = exp ( −τ ( z))
o our measurements, where τ ( z) is given by 

( z) = C + τ0 

(
1 + z 

1 + z 0 

)β

, (3) 

nd z 0 = 3.5. Fig. 1 shows our mean flux measurements from each
ata set by using dz = 0.1 spaced bins. Table 1 has the corresponding
est-fitted parameters. 
Using the errors we obtain from this analysis, we plot the S/N

f each data set in Fig. 2 . Since the systematics are not included,
e o v erestimate the S/N, so this figure is for illustration purposes
nly. We assume signal mean flux to be from FG08 . XQ-100 equally
ontributes to S/N distribution between 3 � z � 4 even though
t has lower resolution. Additionally, we provide the total redshift
ath-length co v ered by our final data set in Table 2 . 

.3 Quadratic estimator 

ur primary method is the quadratic maximum likelihood estimator
QMLE; Hamilton 1997 ; Tegmark, Taylor & Heavens 1997 ; Seljak
998 ; Tegmark et al. 1998 ; McDonald et al. 2006 ). We refer the
eader to Kara c ¸ayli et al. ( 2020 ) for details and e xtensiv e tests. 6 We
lso implemented a simple FFT estimator that does not account for
oise or resolution as a rough cross-check for our results. 
 https:// bitbucket.org/ naimgk/lyspeq 

https://bitbucket.org/naimgk/qsotools
art/stab3201_f1.eps
https://bitbucket.org/naimgk/lyspeq
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Figure 2. S/N as a function of redshift for each data set, where we define 
S/N to be F ( z ) /σ ( z ). The signal mean flux is assumed to be from FG08 , 
F = F FG08 . The noise in a redshift bin σ ( z) is the propagated error when 
mean flux is estimated, i.e. the error bars in Fig. 1 . Note we do not account 
for systematics here, and therefore o v erestimate the S/N. 
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7 We note that using a fiducial power that is close to the truth yields better 
P 1D estimates than not using any fiducial (Kara c ¸ayli et al. 2020 ). 
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An important feature of our QMLE implementation is estimating 
eviations from a fiducial power spectrum such that P ( k , z) =
 fid ( k , z) + 

∑ 

m , n w ( mn ) ( k , z) θ ( mn ) , where we adopt top-hat k bands
ith k n as bin edges and linear interpolation for z bins with z m 

s bin centres (Font-Ribera, McDonald & Slosar 2018 ). Palanque- 
elabrouille et al. ( 2013 ) provide a fitting function with best-fitted
arameters. We further modify their fitting function with a Lorentzian 
ecay (Kara c ¸ayli et al. 2020 ): 

k P ( k , z) 

π
= A 

( k/k 0 ) 3 + n + α ln k/k 0 

1 + ( k/k 1 ) 2 

(
1 + z 

1 + z 0 

)B+ β ln k/k 0 

, (4) 

here k 0 = 0.009 s km 

−1 and z 0 = 3.0. Combined with Walther et al.
 2017 ) results, the best-fitted parameters are A = 0.066, n = −2.685,
= −0.22, B = 3.59, β = −0.16, and k 1 = 0.053 s km 

−1 . We note
hat this fit has bad χ2 and should not be used for scientific purposes,
ut it is sufficient for a baseline estimate. 

Given a collection of pixels representing normalized flux fluctua- 
ions δF , the quadratic estimator is formulated as follows: 

ˆ ( X+ 1) 
α = 

∑ 

α′ 

1 

2 
F 

−1 
αα′ ( d α′ − b α′ − t α′ ) , (5) 

here X is the iteration number and 

 α = δT 
F C 

−1 Q αC 

−1 δF , (6) 

 α = Tr 
(
C 

−1 Q αC 

−1 N 

)
, (7) 

 α = Tr 
(
C 

−1 Q αC 

−1 S fid 

)
, (8) 

here the covariance matrix C ≡ 〈 δF δ
T 
F 〉 is the sum of signal and

oise as usual, C = S fid + 

∑ 

α Q αθα + N , Q α = ∂ C /∂ θα and the
stimated Fisher matrix is 

 αα′ = 

1 

2 
Tr 

(
C 

−1 Q αC 

−1 Q α′ 
)
. (9) 

he covariance matrices in the right-hand side of equation (5) 
re computed using parameters from the previous iteration θ ( X) 

α . 
ssuming different quasar spectra are uncorrelated, the Fisher matrix 
 αα′ and the expression in parentheses in equation (5) can be 
omputed for each quasar, then accumulated, i.e. F = 

∑ 

q F q , etc. 
In order to adapt this to Ly α forest analysis, we first convert a
ix el’s wav elength to v elocity using logarithmic spacing as has been
he cosmology independent convention, 

 i = c ln ( λi /λLy α) (10) 

 i = e v i /c − 1 , (11) 

here λLy α = 1216 Å. 
Secondly, since the resolution matrix is not provided, we make the

pproximation that the resolution does not change with wavelength 
nd is Gaussian for the rest of the paper. Then, the signal is the power
pectrum multiplied with the spectrograph window function W ( k ) in
ourier space. 

 

fid 
ij = 

∫ ∞ 

0 

d k 

π
cos ( k v ij ) W 

2 ( k ) P fid ( k , z ij ) , (12) 

here v ij ≡ v i − v j and 1 + z ij ≡
√ 

(1 + z i )(1 + z j ) . The spectro-
raph window function is given by 

 ( k) = e −k 2 R 2 / 2 sinc ( k� v/ 2) , (13) 

here R is the 1 σ resolution and � v is the pixel width, both
n velocity units. The deri v ati ve matrix for redshift bin m and
avenumber bin n is 

 

( mn ) 
ij = I m 

( z ij ) 
∫ k n + 1 

k n 

d k 

π
cos ( kv ij ) W 

2 ( k) , (14) 

here I m ( z) is the interpolation kernel which is 1 when z = z m and
 when z = z m ± 1 . We compute these matrices for as many redshift
ins as necessary for a given spectrum. 
Finally, we assume that the noise of every pixel is independent. 

his results in a diagonal noise matrix with N ii = σ 2 
i , where σ i 

s the continuum normalized pipeline noise divided by the mean 
ormalized flux F ( z). We use the best-fitting mean flux of the
orresponding data set for F ( z). 

.4 Validation 

iven the resolution and S/N diversity of KODIAQ, SQUAD, and 
Q-100 data, it is crucial to verify the power spectrum estimates

re unbiased and the errors are correctly estimated in an ideal
tatistical limit. To validate our method in these both aspects, we
enerate 100 independent lognormal mock data sets with exact 
edshift distribution, resolution, and noise properties of the data 
sing the procedure described in Kara c ¸ayli et al. ( 2020 ). These
ynthetic spectra approximately produce expected mean flux redshift 
v olution (Faucher -Gigu ̀ere et al. 2008 ) and power spectrum similar
o Palanque-Delabrouille et al. ( 2013 ) and Walther et al. ( 2017 ). Even
hough these mocks cannot capture all the richness of data, they form
he baseline with which we validate QMLE. We use bootstrap error
stimates to partially capture effects not present in the mocks. We also 
iscuss some astrophysical and instrumental effects in Section 4.6. 
We use the true values for fiducial power spectrum and mean flux

o estimate P 1D with one iteration. 7 Fig. 3 shows a sample result from
ne mock set. From the average of these 100 estimates, we find that
ur results are unbiased in the range of interest k < 0.1 s km 

−1 , but
he y div erge from the truth for k � 0.2 s km 

−1 . We note that these
cales are noise-dominated, and further complicated by resolution 
ffects and narrow metal lines in real data. Therefore, they are
MNRAS 509, 2842–2855 (2022) 
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Table 2. Total redshift path-lengths co v ered by combined KODIAQ and SQUAD sample (KS) and remaining unique XQ-100 quasars in our 
analysis z bins. 

z bin 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 

Redshift KS 14.7 18.5 18.8 16.5 18.1 17.3 14.3 7.3 5.5 5.2 5.3 5.1 3.8 1.7 1.1 
path XQ-100 – – – – – – 3.0 7.0 9.0 7.1 6.3 4.0 1.5 – –
length Total 14.7 18.5 18.8 16.5 18.1 17.3 17.3 14.3 14.5 12.3 11.6 9.1 5.3 1.7 1.1 

Figure 3. Power spectrum measurement from one mock set (circles) com- 
pared to the truth (dotted lines). Error bars are replaced with bootstrap 
estimates. 
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Figure 4. To validate our method, we performed χ2 analysis on 100 mock 
sets using the Fisher matrices from QMLE and 25 000 bootstrap realizations 
from one set. We regularized the bootstrap Fisher matrix by exploiting its 
sparsity pattern and by flooring the eigenvalues to their Gaussian limits, which 
is noted as ‘Reg. Bootstrap’. This produces the expected χ2 distribution. 
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ignificantly hard to measure and have been absent in previous
tudies. 

We then investigate the accuracy of estimated errors by a χ2 

nalysis, and set the average of 100 results as the truth. First, we
alculate the χ2 of each result using the Fisher matrix from QMLE, 8 

hich yields larger values than expected. We identify the cause to
e the violation of QMLE Gaussianity assumption at small scales by
enerating Gaussian mocks, which yields the correct χ2 distribution.
herefore, we get another estimate of the covariance matrix by
enerating 25 000 bootstrap realizations from one set. We find that
he diagonals of the bootstrap covariance matrix converge rapidly,
ut the off-diagonal terms remain noisy (and probably correlated)
ven with 250 000 realizations. We believe our sample size of
pproximately 1500 chunks is not enough for the degrees of freedom
n the covariance matrix, which is a 315 × 315 matrix, or for its
ondition number O(10 11 ). To achieve a stable covariance matrix,
e apply a two-step regularization scheme. 
After generating bootstrap realizations with spectral chunks, our

nal algorithm is based only on data and as follows: 
 We note that for all sets QMLE gives the same Fisher matrix, and so the 
ame covariance matrix. 

t  

o  

e  

t  

o

NRAS 509, 2842–2855 (2022) 
(i) To prevent off-diagonal noise from leaking, we directly es-

imate the Fisher matrix element-wise, where 
∣∣∣r QMLE 

ij 

∣∣∣ > 0 . 01 and

 ij ≡ F ij / 
√ 

F ii F jj using the algorithm in Padmanabhan et al. ( 2016 ).
his algorithm further refines the element-wise estimate to the

closest’ positive-definite matrix. 
(ii) We then find the eigenvalues λi and eigenvectors e i of this

isher matrix. We calculate the precision of these eigenvectors under
aussianity: λQMLE 

i = e T i F 

QMLE e i . This is the theoretical maximum
minimum for the covariance), so we replace λi → min ( λi , λ

QMLE 
i )

nd rebuild the Fisher matrix (McDonald et al. 2006 ). 

We note that using the bootstrap eigenvectors as basis in step (ii)
aptures the non-Gaussian mode couplings. Ho we ver, bootstraps are
lso missing fluctuations in certain modes due to low statistics;
or example, there are only 5 chunks in the last redshift bin. This
igenvalue regularization scheme takes these modes to their Gaussian
imit, and is a slight modification of McDonald et al. ( 2006 ). 

Fig. 4 shows that the regularized bootstrap Fisher matrix produces
he expected χ2 distribution. These tests give us the confidence that
ur power spectrum estimates are unbiased, and the covariance can
e estimated using bootstrap method at the scales of interest. 
We tested our regularization scheme on the bootstrap covariance
atrix and observed a marginally worse performance. The element-
ise estimate is not positi ve-definite, but eigenv alue regularization
xes that problem. Ho we ver, the Fisher matrix has a simpler structure

han the covariance matrix. Furthermore, the χ2 calculation is a linear
peration with the Fisher matrix elements that further justifies the
lement-wise approximation, whereas inverting the covariance ma-
rix is highly non-linear. Therefore, we opted for a direct estimation
f the Fisher matrix in this paper. 
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Figure 5. The normalized bootstrap covariance matrix of data for k = 

0.013 s km 

−1 bin. Neighbouring redshift bins are anticorrelated because of 
assigning pixel pairs into two redshift bins. 
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9 We have a number of hypotheses for this discrepancy. First, the Ly α forest 
at low redshifts will be in the UV where the response of most spectrographs 
rapidly falls. Also, metal contamination would have the largest effect at these 
redshifts and is hard to measure for these samples. Ho we ver, we were not 
able to isolate a particular cause, which is why we exclude this redshift bin 
from our final results. 
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We also test our mean flux measurement process with one mock 
et. We find that we obtain the correct mean flux, but the propagated
rrors are notably underestimated even with added Ly α variance, 
hich can be suspected from Fig. 1 as well. We remind the reader that
e are not interested in a precise mean flux measurement, but only in
sing it to remo v e some continuum fitting systematics from spectra.
o we ver, we perform another test to quantify the underestimation of

hese errors. We resample the spectra on to a coarse grid (300 km s −1 )
sing inverse variance (note signal and errors are not correlated for
he mocks). We then estimate the standard deviation using these 
oarse pixels in a given redshift bin, and find that they are four times
he propagated errors. We also note that the correlations between 
ixels actually matter for the resolution and S/N of our data when
esampling (Slosar et al. 2013 ), but it is still unclear if they could yield
orrect error bars when propagated. We speculate that the systematics 
re most likely a significant source of error for the measurement from
ata ho we ver. 

 RESULTS  

e measure the power spectrum in 15 redshift bins from z = [1.8,
.6] with dz = 0.2 spacing for 21 k bins of which the first 4 are linearly
paced with � k lin = 0.0022 s km 

−1 and the rest are logarithmically
paced with � k log = 0.1. 

To remind the reader our pipeline, we mask DLAs by using
he accompanying catalogues and visually identifying remaining 
bsorbers with damping wings. We do not mask metal lines, but 
rovide a statistical estimate of the metal contamination using side 
and regions. Furthermore, we marginalize out the constant and the 
lope (ln λ) terms of the continuum errors. Because the continuum 

s fitted piece-wise and corrected manually, these are not the exact 
xpressions for the continuum errors, but the marginalization should 
till remo v e some or most of the contamination in the largest scales.
hese points and their contribution to systematic error budget are 

urther discussed below. 
We perform an initial run on the combined set with the fiducial

ower spectrum as described in Section 3. We fit the results for
 < 0.1 s km 

−1 to get a new estimate for the fiducial power, and
hen perform one iteration. The new parameters are A = 0.084, n =

2.655, α = −0.155, B = 3.64, β = 0.32, and k 1 = 0.048 s km 

−1 .
e showed this process yields better power spectrum estimates in 
ara c ¸ayli et al. ( 2020 ). 
The estimated errors from QMLE are under Gaussian assumption 

nd significantly underestimated at small scales and high redshifts. 
e estimate the error bars by generating bootstrap realizations and 

sing our regularization scheme as discussed in Section 3.4. Since our 
ethod divides pixel pairs into two redshift bins, the power spectrum 

stimates are correlated between these redshift bins. Fig. 5 shows an 
 xample normalized co variance matrix from bootstrap estimation for 
 = 1.3 × 10 −2 s km 

−1 bin. 

.1 Consistency between data sets 

ur aim in this work is to utilize the combined data for the best
/N, but first we compare individual power spectrum estimates to 
heck our treatment of the data and consistency between data sets.
ig. 6 lays out the ratios of individual power spectra to our raw
easurement from KODIAQ + SQUAD (KS). 
The first notable difference is between KODIAQ and SQUAD at 

 = 1.8, but they both still fall within the large errors of Walther
t al. ( 2017 ). Otherwise, these two sets agree with each other. To
uantify the agreement between them, we calculate χ2 from the 
o wer dif ference: 

2 = d T ( C 1 + C 2 ) 
−1 d , (15) 

here d = P 1 − P 2 . This yields χ2 = 218 for 180 degrees of
reedom (dof) while removing z = 1.8 and k > 0.1 s km 

−1 bins.
his value is 2 σ away from the mean; or in other words, probability
f getting χ2 > 218 is 3 per cent. This is a reasonable probability
hen comparing two data sets, so we conclude they are consistent

nd remo v e z = 1.8 from our conserv ati ve range. 9 

We find that our XQ-100 results agree with Ir ̌si ̌c et al. ( 2017b )
n their provided range. The largest inconsistency here most visibly 
omes from k > 0.06 s km 

−1 values. We remind the reader that we
orrected the resolution for seeing to the best of our knowledge, 
ut it can still carry some errors especially at this range given the
yquist frequency for XQ-100 is k ∼ 0.1 s km 

−1 . So, accurately
easuring these modes is an ambitious goal for XQ-100 alone. Given

ur limited understanding of the resolution, we assign a conserv ati ve
 < 0.045 s km 

−1 range for our XQ-100 measurement, where χ2 =
3 for 77 dof when systematic errors are included. Unfortunately, 
his makes combining XQ-100 at the chunk level complicated as 
MLE in its current form cannot account for systematic errors. We
efer how these systematic errors can be incorporated into QMLE 

o a future work. Instead, we provide a separate measurement and a
ovariance matrix for XQ-100 in this paper. 

.2 Final combined results 

et us start this section with a re vie w of the weighted average and its
rror propagation. Assume for a data set m , we have measurements

x m 

with respective errors C m 

. Using normalized weights W m 

, the
eighted average x W 

and resulting error C W 

are given by 

x W 

= 

∑ 

m 

W m 

x m 

, (16) 

 W 

= 

∑ 

m 

W m 

C m 

W 

T 
m 

+ 

∑ 

m 
= n W m 

C mn W 

T 
n , (17) 

here C mn is the cross-covariance between measurements m and 
 . These become the usual inverse variance weighted average ex-
MNRAS 509, 2842–2855 (2022) 
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Figure 6. The raw power spectrum measurements of KODIAQ, SQUAD, and XQ-100 divided by the raw power from KODIAQ + SQUAD ( P KS ) when DLAs 
are masked. Error bars are from bootstrap. We highlight the large-scale modes k � 4 × 10 −3 s km 

−1 that are susceptible to continuum errors in light blue, and 
small-scale modes k � 0.1 s km 

−1 that are affected by noise, metal contamination and resolution effects in light orange. Light pink region is excluded from our 
XQ-100 analysis. 
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ressions with W m 

∝ ( C m 

) −1 if the measurements are uncorrelated.
n our case, ho we ver, some systematic errors (DLAs, continuum 

nd metals) between KS and XQ-100 are data-independent and 
orrelated, whereas resolution systematics for example are not. Let 
s define � 

cor to be these data-independent, correlated systematics 
etween KS and XQ-100, and define � 

uncor 
m 

to be the data-dependent, 
ncorrelated systematics for measurement m . Then, we substitute 
 mn = � 

cor and C m 

= C 

stat 
m 

+ � 

uncor 
m 

+ � 

cor , and correlated system-
tic comes out since 

∑ 

m 

W m 

≡ 1 . 

 W 

= 

∑ 

m 

W m 

(
C 

stat 
m 

+ � 

uncor 
m 

)
W 

T 
m 

+ � 

cor . (18) 

n our case, � 

cor = � 

DLA + � 

Cont + � 

Metal and � 

uncor 
m 

is the res-
lution systematics. In short, uncorrelated systematics will become 
maller when different measurements are combined, while correlated 
ystematics stay the same. 

We now use the inverse variance weights with systematic errors, 
hich also prevents underestimated statistical errors from dominat- 

ng the average: 

 m 

∝ 

(
C 

stat 
m 

+ � 

uncor 
m 

+ � 

cor 
)−1 

. (19) 

e again generate 25 000 bootstrap realizations to calculate the sta-
istical Fisher matrix. Our systematic error budget is the same for KS
nd XQ-100 measurements except for the resolution (see Section 4.6) 
nd is added in quadrature to the diagonal. We also add large numbers
o the diagonal of XQ-100 covariance at k > 0.045 s km 

−1 to remo v e
hese modes from the av erage. F or both measurements, we also
ubtract the metal power and add its covariance first, so that the
eights have all the statistical and systematic errors in place. 
Our results from this weighted average are shown in Fig. 7 , which

s in good agreement with previous measurements even at the largest 
cales (Ir ̌si ̌c et al. 2017b ; Walther et al. 2017 ; Chabanier et al. 2019 ).
ote that we do not directly compare with Gaikwad et al. ( 2021 ) since

heir method involves forward modelling the spectra and does not 
ubtract noise nor deconvolve the spectrograph window function. 
e caution the reader that the number of quasars and different 

ontinuum treatments limit the accuracy of our measurement for 
 � 4 × 10 −3 s km 

−1 ; and refer the reader to eBOSS (Chabanier
t al. 2019 ) for a better measurement at these scales. Nevertheless,
e are encouraged by this agreement at the large scales. 

.3 Damped Ly α absorbers 

he net result of damped Ly α absorbers (DLA) on the power 
pectrum comprises three effects. The primary effect is the large 
mount of power added to the largest scales due to their damping
ings. The central region of complete absorption has two competing 

f fects: suppression of po wer and amplification because of lo wer
ean flux measurement (McDonald et al. 2005 ; Rogers et al. 2018 ).
hese high-column density absorbers are difficult to model and 
imulate, so they are often removed from spectra. We describe our 
LA identification and removal in this section. 
The SQUAD data set comes with a DLA catalogue; and the ones

n XQ-100 are identified in S ́anchez-Ram ́ırez et al. ( 2016 ). We mask
 reported DLA at z abs between [ λC − W /2, λC + W /2], where λC =
1 + z abs ) λLy α and W is the equi v alent width gi ven by the follo wing
quation (section 16.4.4 of Mo, van den Bosch & White 2010 ): 

 = 7 . 3(1 + z abs ) 

√ 

N H I 

10 20 cm 

−2 
Å. (20) 

We also apply a simple automated DLA finder which first finds
egions that are consecutively F ( λ) < F ( λ) + σ ( λ). If a region is
onger than the equi v alent width for an absorber with N H I = 10 19 

m 

−2 in equation (20) at the central redshift, we mark it as a DLA
andidate. We then visually inspect all these candidates for damping 
ings to remo v e from data. 
Our results in Fig. 7 are already without DLAs. We performed

 run where we kept in the DLAs as well. Fig. 8 shows the effect
escribed in the beginning of this section. The presence of DLAs
ignificantly affects the largest scales k � 3 × 10 −1 s km 

−1 , while
oosting the intermediate scales by few per cent because of lower
ean flux estimates. 

.4 Continuum 

he observed flux f ( λ) is divided by the quasar continuum C ( λ) and
he mean normalized flux F ( λ) to obtain the flux fluctuations δF ( λ).
ince C ( λ) is smooth, errors in this process propagate to mostly large
cales and are called the continuum errors. 

We start our discussion by considering a systematic scaling of 
he continuum in a given data set. In other words, we assume the
tted continuum of a quasar q is the true continuum times a constant,
 

∗
q ( λ) = aC q ( λ), for all quasars in the set. This inevitably scales

he normalized flux by the same factor, F 

∗
q = f q /C 

∗
q = F q /a, and

ence the measured mean flux F 

∗ = F /a since a does not depend
n q . Therefore, using the measured mean flux F 

∗
of a given data set

emo v es this systematic bias from the fluctuations δ∗
F,q = F 

∗
q / F 

∗ −
 = δF,q . In fact, we see this type of measured mean flux scaling
cross data sets, where KODIAQ has 6 per cent and XQ-100 has
5 per cent excess mean flux on average compared to SQUAD. We
re further encouraged by the agreement of P 1D without any scaling
etween data sets. Finally, note that this multiplicative scaling would 
ancel even if it depended on observed wavelength a = a ( λ) as long
s a does not change from quasar to quasar. 

Now, let us introduce a quasar dependent error ηq ( λ) that remains
fter this systematic scaling, i.e. C 

∗
q ( λ) = aC q ( λ)[1 + ηq ( λ)]. Since

he continuum itself is smooth, ηq ( λ) will also be smooth and slowly
hanging given a well-behaving continuum fitting procedure. The 
ffect of this quasar dependent error will propagate to the mean flux
easurement by some average. 

 

∗ = 

F 
a 

〈 

1 
1 + ηq 

〉 

q 
≈ F 

a 
( 1 − η̄) , (21) 

here we have assumed ηq is small and not correlated with F q . Then,

∗
F,q = 

F 

∗
q 

F 

∗ − 1 = 

F q / F 

(1 + ηq ) ( 1 − η̄) 
− 1 (22) 

= (1 + δF,q )(1 − �ηq ) − 1 . (23) 

inally, 

∗
F,q ( λ) = δF,q ( λ)[1 − �ηq ( λ)] − �ηq ( λ) , (24) 

here we have defined �ηq ( λ) ≡ ηq ( λ) − η̄( λ). Unfortunately, this
rror does not fully cancel, but it is possible to partially marginalize
ut the additive term �ηq ( λ) by approximating its form. This error
s described by a constant shift and a slope in eBOSS pipeline,
ηq ( λ) = a q + b q ln λ. We marginalize out these modes in this
ork as well, even though they are not the e xact e xpressions for

he continuum errors because the continuum is fitted piece-wise and 
hen corrected manually. Dividing the forest into three chunks also 
elps by limiting the wavelength range of �ηq ( λ) that needs to be
escribed. Note that since �ηq ( λ) is smooth, this error affects mostly
arge scales even when uncorrected. We ignore the multiplicative 
erm within our approximation. Its major complication would stem 
MNRAS 509, 2842–2855 (2022) 
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Figure 7. Our final raw and side band subtracted power spectrum measurements when DLAs are masked, where all three sets are combined as described in 
Section 4.2. The error bars are from bootstraps; and systematic error budget is added in quadrature. We highlight the large-scale modes k � 4 × 10 −3 s km 

−1 that 
are susceptible to continuum errors in light blue, and small-scale modes k � 0.1 s km 

−1 that are affected by noise, metal contamination and resolution effects in 
light orange. We remind the reader that the last two z bins have low statistics as well as further continuum fitting complications. 
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Figure 8. The ratio of the measured power spectrum from the combined 
data set between DLAs kept P Kept and DLAs masked P Masked . The damping 
wings add power to large scales, and the lower mean flux o v ercomes the 
full absorption suppression from medium to small scales by changing it 
≈ 5 per cent . 

Figure 9. The ratio of the measured power spectrum without continuum 

marginalization P No Mar with marginalization P Mar . Continuum errors sig- 
nificantly contaminate the largest scales; the rest fluctuates around less than 
one per cent. 
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Figure 10. The power spectra measured from the two side bands at z = 3.0. 
The C IV doublet causes the oscillation peaks at k = 1.3 × 10 −2 s km 

−1 and 
2.5 × 10 −2 s km 

−1 . This doublet and others are apparent in the correlation 
function (see Fig. 11 ). 
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rom the correlations between ηq ( λ) − F q ( λ) and ηq ( λ) − ηq ( λ
′ 
),

hich can ultimately be treated by smaller errors or by more uniform
ontinuum fitting procedures. 

We performed another run where we turned off the continuum 

arginalization to show its effect. Fig. 9 shows the largest scales k �
 × 10 −3 s km 

−1 are again significantly affected by the continuum. 
o we ver, the intermediate scales deviate by less than one per cent. 

.5 Side band power 

he red side of the Ly α line in the spectrum is free from H I

bsorption, so this region is used to estimate the power from metals
nd other systematics (McDonald et al. 2006 ; Palanque-Delabrouille 
t al. 2013 ; Chabanier et al. 2019 ). We define the first side band
SB 1) region to be between 1268–1380 Å, below the Si IV line, in
uasar’s rest frame, and the second side band region to be between
409–1524 Å, below the C IV line. We use F ( z) = 1, and estimate the
ower on the same k bins. We note that this only remo v es power due
o metals with λRF � 1400 Å, and hence some metal contamination 
till remains and produces oscillatory features such as Si III -Ly α
ross-correlation (McDonald et al. 2006 ; Palanque-Delabrouille et al. 
013 ). 
We limit the side band power estimate to KODIAQ and SQUAD

ata sets to not further complicate analysis. The final metal power is
stimated from the Si IV region (SB 1), and uses 1391 chunks with
21 KODIAQ and 271 SQUAD quasars. 
The initial runs for both side band regions use 10 per cent of

he fiducial power in Section 3. We then switch to the best-fitted
arameters for k < 0.1 s km 

−1 as the new fiducial and estimate side
and powers with one iteration. These new parameters are A =
.0027, n = −2.92, α = −0.174, B = 0.236, β = −0.01 where
he Lorentzian term can be ignored as k 1 ∼ 10 10 s km 

−1 . We again
stimate the covariance matrix using 25 000 bootstrap realizations 
nd use these instead of QMLE errors. We find that the two side
and powers mostly agree with each other with some offset at z =
.0, 3.2, and 3.6 bins, while z = 2.2 has a larger offset. Fig. 10 shows
nd compares the side band powers to the Ly α power at z = 3.0. 

Noteworthy features in both side band powers are the two visible
eaks due to oscillations in all redshift bins at k = 1.3 × 10 −2 s km 

−1 

nd 2.5 × 10 −2 s km 

−1 . While bootstrap method shows that the
MLE errors are underestimated for z < 3 and o v erestimated for z >
, these peaks remain visible in QMLE error to bootstrap error ratio.
e find these oscillations are due to C IV doublet, which is manifested

s a peak in the 1D correlation function at v ≈ 500 km s −1 separation.
oreo v er, we identified more doublet features in the 1D correlation

unction with a simple model. First, we estimate the correlation 
unction by inverse FFTing the power spectrum before binning into 
 bins. This yields the correlation function on the full-resolution 
rid, which we then bin into v bins. Doublets of the same absorber
anifest as peaks in this correlation function. To increase S/N, we

verage all redshift bins. 
We found that the correlation function has a smooth component, 

hich we model as follows: 

smooth ( v) = C + 

x 0 

1 + ( v/v 0 ) γ
, (25) 

here C , x 0 , v 0 , and γ are fitting parameters. We then model the
eaks as Gaussian functions: 

p ( v) = A p e 
−( v−μp ) 2 / 2 σ 2 

p , (26) 

here A p and σ p are free parameters, and the doublet separation 
s fixed to tabulated values: μp = c ln ( λp 

2 /λ
p 

1 ). We fit for known
etal doublets in Table 3 by summing these functions: ξ = ξ smooth 
MNRAS 509, 2842–2855 (2022) 
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Table 3. Doublets used in SB correlation function analysis. 

Doublet λ1 − λ2 [ Å] v [ km s −1 ] 

C IV 1548.20 − 1550.77 497 .2 
Mg II 2796.35 − 2803.53 768 .7 
Fe II 2374.46 − 2382.76 1046 .6 
Fe II ’ 2586.65 − 2600.17 1563 .2 
Al III 1854.72 − 1862.79 1302 .2 
Si IV 1393.76 − 1402.77 1932 .8 

Figure 11. The residual correlation functions for SB 1 (green squares) and 
SB 2 (brown triangles). Curves with solid lines are our fitting model for 
known metal doublets. Our simple fitting function captures the important 
features. Note again that Si IV line is outside of SB 2, so there is no peak at v 
≈ 2000 km s −1 . 
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 p ξ p . The residuals and their respective fits are in Fig. 11 . This
imple model accurately describes the important features in both
orrelation functions. 

.6 Systematic error budget 

e identified four possible sources of systematic errors in our
nalysis, which are difficult to rectify by models. The continuum is
tted by hand and hard to reproduce. DLA removal is also partly
anual in our measurement. For metals, no model at sufficient

esolution exists. Our systematic error budget is similar to Chabanier
t al. ( 2019 ) and based on the fiducial power parameters given
n Section 4. We provide each systematic error separately in our
les, so that they can be scaled to other values readers see fit.
o we ver, we recommend that these numbers are not modified for

mmediate cosmological fits. Our intention is to leave room for
ocused studies of each contaminant such as sub-DLAs, Lyman-
imit systems (LLS), resolution modelling, and metal line blending.
hese require dedicated studies; and the reader can adjust the error
udget according to their findings. 

(i) Resolution: As we have discussed in Section 2, seeing condi-
ions alter the resolution. Due to this correction, we expect resolution
ccuracy to be smaller than normal. XQ-100 reports seeings with an
verage of 10 per cent precision. SQUAD, ho we ver, is much worse at
0 per cent. We then assign corresponding inaccuracies to R values. 

Res = r m 

× P fid ( k) × 2 k 2 R 

2 
, (27) 

here R is the average resolution in a given redshift bin and r m 
s 0.1 for XQ-100 and 0.4 for KS. Note that even an undesirable
0 per cent change in resolution for SQ UAD-lik e spectrum results
n only 1–3 per cent change in P 1D at k = 0.1 s km 

−1 . Our reported
NRAS 509, 2842–2855 (2022) 
recision at this value is at least twice as large. Here, we assumed the
esolving power is provided with perfect precision by the data sets,
nd ignored its contribution to the budget. 

(ii) Metal: There are two reasons to include a systematic error
udget for metals: (1) Our statistical estimate of the metal power
ight be off. (2) Bootstrap error estimates might not reflect the truth.
ssuming metal power is nearly constant with k and z, we compared

he fluctuations between redshifts and bootstrap error estimates. We
ound on average fluctuations between redshift bins are 6 per cent
arger than the bootstrap error estimates. Leaving room for the
lending of metal lines we pick 10 per cent for our budget (Day
t al. 2019 ). Using the fiducial power of the side band estimates, the
ystematic error is given by 

(Syst) 
Metal = 0 . 10 × P 

(SB1) 
fid ( k) . (28) 

(iii) Incomplete DLA remo v al: Even though we used visual
dentification and catalogues, we leave room for missed DLAs or
ther high-density absorbers by assigning 1 per cent incompleteness
o this possibility. We multiply the fiducial power estimate with
edshift average of the absolute ratio of P Kept / P Masked − 1 in Fig. 8
nd DLA incompleteness ratio. 

DLA = 0 . 01 × P fid ( k) × 〈| P Kept /P Masked − 1 | 〉
z 

(29) 

e note that the effects of sub-DLAs and LLS that are absent in
atalogues can be larger than 1 per cent (Rogers et al. 2018 ). 

(iv) Continuum: We assign 10 per cent inefficiency to continuum
arginalization and use the redshift average of the absolute ratio of
 NoMar / P Mar − 1 in Fig. 9 . This error is also scaled with the fiducial
ower. 

Cont = 0 . 10 × P fid ( k) × 〈 | P NoMar /P Mar − 1 | 〉 z (30) 

ote that continuum errors themselves could be larger than
0 per cent. Our method, ho we ver, pre vents these errors from
ontaminating P 1D measurements by marginalizing out bulk of them,
amely a constant and a slope per chunk (not spectrum). Here, our
ystematic budget really comes from the efficiency of this removal,
hich we assume to be 90 per cent ef fecti ve. Furthermore, the modes

hat are most affected are not in our conservative range. 

The results are summarized in Fig. 12 . DLA and continuum
ystematics affect the largest scales as expected, but DLA systematics
re an order of magnitude smaller. Errors due to resolution inaccuracy
ecome rele v ant near k = 0.1 s km 

−1 , but the y do not o v ercome
tatistical errors. Metal systematics are rele v ant at low redshifts. In
ur conserv ati ve 0.004 s km 

−1 < k < 0.1 s km 

−1 and z > 1.8 range,
ystematic errors are 19 per cent of the statistical errors on average. 

 DI SCUSSI ON  

.1 Statistical power of our results 

e would like to compare the statistical power of our results
o the existing measurements. In order to do so, we come up
ith a crude Fisher forecasting analysis, which replaces the actual
 1D measurement with a fiducial power spectrum and only takes

he covariance matrix into account. Our model is unquestionably
rimitive and ignores many complications including thermal state of
he IGM. But it will serve as an adequate frame of reference. 

We limit our simple forecast to a single parameter: the cut-off
cale k cut . We assume a fiducial model as the ‘truth’ for all data sets.

art/stab3201_f11.eps
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Figure 12. Systematic error estimates divided by the SB 1 subtracted 
bootstrap estimates. Continuum systematics affect the largest scales that are 
outside our conserv ati ve range. DLA systematics behave similarly, but they 
are an order of magnitude smaller. Metal systematics are rele v ant at lo w 

redshifts or high k . 
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Table 4. Comparison of different data sets’ statistical cut-off scale constrain- 
ing power in terms of estimated errors, σ cut , for fiducial k cut = 100 h Mpc −1 . 
Without systematic error budget, our results can impro v e cut-off scale 
sensitivity by a factor of 3. Additional error budget decreases this factor 
to 2.4. 

σ cut [ h Mpc −1 ] 

This work (stat. only) 6 .4 
This work (stat. + syst.) 7 .8 
Walther et al. ( 2017 ) 19 .0 
Chabanier et al. ( 2019 ) 20 .1 
Ir ̌si ̌c et al. ( 2017b ) 32 .9 
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hen, the error on k cut is given by 

1 

σ 2 
cut 

= 

∂ 2 L 

∂k 2 cut 
= P 

T 
,k cut 

F P ,k cut , (31) 

here P ,k cut is analytically calculated and the Fisher matrix F is 
aken from actual measurements. We assume the following relative 
uppression transfer function for the 3D power spectrum. 

 

2 ( k) = [1 + ( k/k cut ) 
2 ] −10 . (32) 

his expression comes from warm dark matter models as a fitting 
unction (Bode, Ostriker & Turok 2001 ; Viel et al. 2005 ). We
ick k cut = 100 h Mpc −1 as our fiducial cut-off scale. We keep the
odelling of Ly α forest P 3D out of scope of this estimation, but note
hat P 1D is highly sensitive to small-scale physics including Jeans 
moothing, reionization history (Hui & Gnedin 1997 ; Gnedin & Hui
998 ) and redshift space distortions. Instead, we use our fiducial fit
n equation (4), and integrate by parts to find the suppression on P 1D .

 1D ( k; k cut ) = 

∫ ∞ 

k 

qd q 
2 π P 3D ( q) T 2 ( k; k cut ) (33) 

 3D ( k) = − 2 π
k 

d P fit 
d k (34) 

inally, we use Planck 2018 as our fiducial cosmology (Planck 
ollaboration I 2020 ), and convert from distance units in Mpc h −1 to
elocity units in Ly α forest using k Ly α = k Mpc (1 + z )/ H ( z ), which
oughly corresponds to a factor of 0.01. 

For Ir ̌si ̌c et al. ( 2017b ), we add systematic errors in quadrature
o the diagonal of the covariance matrix and use all P 1D points.
his yields σ cut = 32.9 h Mpc −1 . The same process yields σ cut =
0.1 h Mpc −1 for Chabanier et al. ( 2019 ). We use metal subtracted
esult from Walther et al. ( 2017 ) and limit to k < 0.1 s km 

−1 range.
hey do not provide a separate systematic error budget, so the
ovariance matrix is not modified. This yields σ cut = 19.0 h Mpc −1 .
hese numbers are also listed in Table 4 . 
For the statistical power of our measurement, we limit ourselves 

o a conserv ati ve 0.004 s km 

−1 < k < 0.1 s km 

−1 and z > 1.8 range.
his analysis with only statistical errors from bootstrap yields σ cut = 

.4 h Mpc −1 for our results. We then add our systematic error budget
n quadrature to the diagonal of the covariance matrix, which 
ncreases the final error on k cut to σ cut = 7.8 h Mpc −1 . Adding
he largest scales k < 0.004 s km 

−1 does not impro v e this number
s expected. Ho we ver, z = 1.8 bin brings this value down to
.8 h Mpc −1 . To summarize, we expect our results in conserv ati ve
ange to impro v e the cut-off scale sensitivity by a factor of 2.4. 

Interestingly, including XQ-100 at the chunk level actually yields 
igher σ cut = 7.7 h Mpc −1 with only statistical errors from bootstrap.
his increased error from the bootstrap realizations reflects the 

esolution disparity between data sets. 

.2 Remaining challenges 

e assumed the noise is uncorrelated throughout, even though 
MLE is capable of including pixel level correlations. Correlated 
oise has two effects. First, it changes the weighting in QMLE.
his is not a big effect, since these weights roughly stay constant
cross k bins. A second effect is the uncorrected spurious power.
his is remo v ed through the side band power subtraction, though
ot exactly because we combine data from different instruments. 
urthermore, if the noise is correlated, it should be correlated at the
ix el lev el, which corresponds to v ery small scales that are outside
ur conserv ati v e range. F or e xample, k = 0.1 s km 

−1 corresponds to
pproximately 20 pixels for KODIAQ and SQUAD. Finally, our error 
MNRAS 509, 2842–2855 (2022) 
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stimates are from bootstraps, which will account for the correlated
oise in the error bars. Therefore, we expect our P 1D estimates not to
e biased due to correlated noise. Ho we ver, the impact of correlated
oise should be revisited as the precision of P 1D increases in the
uture. 

One shortcoming of high-resolution quasar observations is that
hey are targeted for specific studies of e.g. strong absorbers or

etallicity distribution. Murphy et al. ( 2019 ) note that some UVES
uasars were specifically targeted due to known DLAs. The original
oal of the KODIAQ surv e y was to study O VI absorption at z >
.2 (O’Meara et al. 2017 ). Even though we mask or subtract con-
aminants, their cross-correlations with the IGM remain. Therefore,
nbiased high-resolution quasar observations are crucial to remedy
he effect of this sampling bias. 

The continuum errors remain a big challenge for
 1D measurements at large scales in general, but especially

or these types of quasar spectra. Our marginalization limits
he shape of the errors to a constant and a slope, and is not
ully descriptive given hand-fitted continua. One could imagine
arginalizing out higher order terms and trying to find convergence.
o we ver, it is possible that this recipe is not convergent and extra
egrees of freedom will eventually wipe out all information. We
efer a dedicated analysis to future work. Another option would
e finding and marginalizing out dominant terms in continuum by
 PCA analysis. Although such templates e xist, the y come with
on-negligible errors with a range of 3–30 per cent (Suzuki et al.
005 ). This would further require an analytically well-defined,
niform continuum fitting procedure. In short, accurately describing
he quasar continuum remains a much-needed but difficult task. 

A challenge for P 1D analyses is estimating systematic error budget
or DLAs and continuum errors. Our data is inhomogeneous, so it is
dditionally difficult to gauge. Our best understanding showed these
rrors contaminate low k values. We decided to remo v e these most
ontaminated bins from our measurement. As precision increases
ith future surv e ys, rigorous description of DLA and continuum

ystematics (as well as their careful treatments) will be needed. It is
est if future surv e ys build these into their pipeline. 

 SUMMARY  

igh-resolution, high-S/N quasar spectra can measure 1D Ly α forest
ower spectrum at smaller scales compared to large-scale structure
urv e ys. At these scales, P 1D is able to constrain the thermal state of
he IGM and different dark matter models. 

We applied the optimal quadratic estimator to the largest such
ata set by combining two publicly available data releases (KO-
IAQ + SQUAD) at the spectrum level, and performed a sepa-

ate analysis for another publicly available data set XQ-100. We
hen presented the weighted average of these two as our final
 1D measurement, and found that it agreed with previous studies
ith reduced error bars. We identified four systematic error sources

or our analysis: incomplete DLA remov al, inef ficient continuum
arginalization, resolution errors, and metals. As an advantage of the

uadratic estimator, our method is not biased due to gaps and hence
ree from the respective systematic error. These four systematics
re scale and redshift dependent, but smaller than the statistical 
rrors. 

Finally, to demonstrate the constraining power of this work, we
erformed a crude, single-parameter Fisher forecast analysis for the
ut-off scale. We estimate that our results are more sensitive to this
ut-off scale by a factor of 2.4 than the previous measurements. 
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