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Abstract 

Weighted burden analysis can incorporate variants with different frequencies and annotations into a 
combined test for association between a gene and a phenotype. However there has not been a 
systematic exploration of which weighting schemes provide maximum power to detect association. 
Here we assess different weighting schemes using a number of genes for which exome-wide 
evidence of association with common phenotypes was obtained in 200,000 exome-sequenced UK 
Biobank participants. We find that there are marked differences in optimal weighting schemes 
between genes, both with respect to allele frequency and to annotation, implying that there is no 
“one-size-fits-all” scheme which is generally optimal. It seems helpful to weight rare variants more 
highly than common ones, to give loss of function variants higher weights than protein-altering 
variants and to assign higher weights to protein-altering variants predicted to have more severe 
effects. However with the data currently available it does not seem possible to make more specific 
recommendations. This research has been conducted using the UK Biobank Resource. 
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Introduction 

Weighted burden analysis can be used in large samples to detect gene-level association between 
rare DNA variants and a phenotype (Curtis, 2016). It is applied to variants which are too rare to 
individually generate a statistically significant effect and hence need to be analysed jointly. It is 
expected that many variants, such as synonymous and intronic variants, will often have little or no 
effect and so broadly speaking it makes sense to either restrict attention to a particular category of 
variant, such as loss of function (LOF) variants, or to include other types of variant but provide higher 
weights to variants thought more likely a priori to exert an effect. We have applied weighting 
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schemes which incorporate both annotation and allele frequency to test for association with a 
variety of different phenotypes (Curtis, 2020; Curtis et al., 2019, 2018). However an obvious problem 
is how to choose a weighting scheme which will have maximal power to detect association, this 
being the scheme which most accurately mirrors the different biological effects of different types of 
variant. The availability of large exome-sequenced samples which have been characterised for 
multiple phenotypes allows the empirical investigation of the contribution which different categories 
of variant make to the observed gene-phenotype associations and hence could be used to inform 
choice of weighting scheme (Szustakowski et al., 2020). 

It is worth addressing some of the issues involved in greater depth. Firstly, it can be stated explicitly 
that weighted burden analysis models the situation where all variants have the same direction of 
effect, which broadly speaking is to impair the function of the gene. LOF variants (comprising stop-
gained, frame shift and essential splice site variants) produce haploinsufficiency and may be 
expected to result in less protein product while other rare variants having an effect are expected to 
be more likely to yield a product which in some way or another works less effectively. Of course, this 
does not reflect the real situation since some nonsynonymous variants may in fact produce a gain of 
function but if variants are too rare to be considered individually then it is necessary to group them 
together and assume a shared effect. It is then reasonable to assume that a variant occurring at 
random within a gene is more likely to impair its function than to enhance it. The method also 
assumes that all variants within a category share a similar magnitude of effect. Again this is clearly 
not correct for the category of nonsynonymous variants, where effects may vary dramatically 
between variants, and even for LOF variants there may be important differences, for example 
depending on which transcripts are impacted. The fact that it is assumed that the variant burden 
acts to reduce gene functioning does not imply that a direction of effect on the phenotype is also 
assumed. The method is agnostic as to whether impaired function of a gene increases or decreases a 
quantitative phenotype or risk of disease. 

The approach that we use incorporates both a weight related to the predicted functional impact of 
the variant and a weight related to its rarity. In the original conception, the approach was proposed 
as a method to analyse common and rare variants jointly, taking as its example phenotype Crohn’s 
disease, in which both common and rare variants had been shown to contribute to risk (Curtis, 
2012). A previous study had proposed weighting variants according to their frequency in controls but 
had a number of disadvantages, including that the weights depended on sample size and that the 
null hypothesis distribution was unknown, necessitating permutation testing (Madsen and Browning, 
2009). To address these issues, a parabolic weighting function was implemented, with variants 
having minor allele frequency (MAF) = 0.5 given a weight of 1 while very rare variants were assigned 
a higher weight, typically 10. The weight assigned for functional annotation was then multiplied by 
the weight assigned for MAF to produce a combined weight for each variant. Subsequently, as it 
became clear that common variants generally do not have large effects on phenotype, attention was 
restricted to variants with MAF <= 0.01 and the weighting scheme was modified to give a weight of 1 
to variants with MAF = 0.01, again increasing to 10 for very rare variants. However until now there 
has been little empirical exploration of the optimal values to use to weight by allele frequency. 

Broadly speaking, it seems reasonable to begin from a position that most LOF variants will have a 
similar effect whereas most intronic and intergenic variants will have little effect but it is clear that 
the effects of different nonsynonymous variants can vary greatly. As a consequence, considerable 
effort has been devoted to developing methods which seek to predict the likely impact of 
nonsynonymous variants. These methods can utilise a variety of different approaches. Some may 
use information about the nature of the amino acid change within its local context. Others may take 
account of conservation of the DNA sequence and/or amino acid sequence between species. Since 
the different methods produce different results there are also different approaches to developing 



predictions based on combining their outputs. The database dbNSFP contains annotations for all 
potential nonsynonymous and splice site single nucleotide variants using 37 different prediction 
algorithms (Liu et al., 2020). In previous analyses we have incorporated predictions from both SIFT 
and PolyPhen to contribute to weighting schemes (Adzhubei et al., 2013; Kumar et al., 2009).  

Naturally, attempts have been made to compare the performance of these methods on real world 
data (Hassan et al., 2019; Liu et al., 2020). However one can argue that such comparisons are in 
some ways limited. They have tended to rely on the ability of a method to classify a known 
pathogenic variant as being pathogenic but the results obtained will depend on which known 
pathogenic variants are tested and these tend to be variants identified as causing severe disorders. 
Typically the identification of a pathogenic variant in a clinical setting will utilise at least some of the 
criteria which are implemented in the prediction tools, meaning that “known” pathogenic variants 
entered into databases such as ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/) will tend to have 
characteristics similar to those used by prediction tools even if steps are taken to avoid explicit 
circularity. In clinical situations a substantial number of cases fail to yield a genetic diagnosis and this 
may be because the causative variant matches poorly to the usual criteria for identifying 
pathogenicity. Such a variant will not then become identified as a “known” pathogenic variant. Thus, 
to some extent we may be in the position that we are unaware of the failure of predictive tools to 
identify pathogenic variants because variants failing to match the expect profile are absent from 
testing and training datasets. A somewhat separate consideration is that there may be differences 
between the kinds of variant which cause a severe genetic condition in an individual, which the 
prediction tools are designed to detect, and the kinds of variant which have a more moderate impact 
on a common phenotype and which might be helpful to incorporate in weighted burden analyses. 
This issue has been addressed explicitly regarding the application of PolyPhen-2, where it is 
recommended that the version trained on HumVar be used to assist the diagnosis of Mendelian 
disorders while the version trained on HumDiv should be used to evaluate rare alleles for complex 
genotypes (Adzhubei et al., 2010). 

The availability of large, exome-sequenced samples means that it has become possible to empirically 
investigate the distribution of variants within a gene known to affect a phenotype and to see which 
types of variant are most strongly associated with the phenotype. We have identified a number of 
genes demonstrating statistically significant association with common phenotypes within the UK 
Biobank (Szustakowski et al., 2020). Here, we study how changing the weightings assigned on the 
basis for allele frequency and variant annotation impacts the results of weighted burden analysis. 

Methods 

As previously described, the UK Biobank dataset was downloaded along with the variant call files for 
200,632 subjects who had undergone exome-sequencing and genotyping by the UK Biobank Exome 
Sequencing Consortium using the GRCh38 assembly with coverage 20X at 95.6% of sites on average 
(Szustakowski et al., 2020). UK Biobank had obtained ethics approval from the North West Multi-
centre Research Ethics Committee which covers the UK (approval number: 11/NW/0382) and had 
obtained informed consent from all participants. The UK Biobank approved an application for use of 
the data (ID 51119) and ethics approval for the analyses was obtained from the UCL Research Ethics 
Committee (11527/001). To obtain population principal components reflecting ancestry, version 2.0 
of plink (https://www.cog-genomics.org/plink/2.0/) was run with the options --maf 0.1 --pca 20 
approx  (Chang et al., 2015; Galinsky et al., 2016). 

Weighted burden analyses were carried out using the SCOREASSOC and GENEVARASSOC programs 

(Curtis, 2016). Attention was restricted to rare variants with minor allele frequency (MAF) <= 0.01 in 

both cases and controls. As previously described, variants were weighted by overall MAF so that 



variants with MAF=0.01 were given a weight of 1 while very rare variants with MAF close to zero 

were given a weight equal to a weighting factor, WF, with a parabolic function used to assign 

weights with intermediate MAFs (Curtis, 2020). Additionally each variant has a weight assigned 

according to annotation and the overall weight for each variant consists of the frequency weight 

multiplied by the annotation weight. For each subject and each gene, the weights for the variants 

carried by the subject are summed to provide an overall weighted burden score. Regression 

modelling is done to calculate the likelihood for the phenotype data given covariates consisting of 

sex and the first 20 principal components and then the likelihood is recalculated for the model 

additionally incorporating the weighted burden score. Twice the natural log of the ratio of these 

likelihoods is a likelihood ratio statistic taken to be distributed as a chi-squared statistic with 1 

degree of freedom. The evidence for association is summarised as the signed log p value (SLP) taken 

as the log base 10 of the p value and given a positive sign if there is a positive correlation between 

the weighted burden score and the phenotype. For the current analysis, the programs were 

modified to allow the specification of multiple annotation weights to be considered simultaneously, 

as detailed below. 

Variant annotation was performed in two stages. First, a primary categorisation was made using 

Variant Effect Predictor (VEP), which uses information based on the reference sequence and 

coordinates of known transcripts to report findings such as whether variants occur within exons, if 

so whether they change amino acid sequence, etc (McLaren et al., 2016). For purposes of the 

present analyses, variants predicted to have a similar kind of effect were grouped together so that, 

for example, stop gained, frameshift and essential splice site variants were all treated as LOF. The 

full list of annotations as reported by VEP and the category they were assigned to is shown in Table 

1, along with the weights which were used for the original weighted burden analyses, which had 

been arbitrarily assigned based on expectations of the likely biological importance of each 

annotation. Each of the annotation categories was used to generate a separate burden score, so that 

for example the burden score relating to the category LOF for a subject would consist of the number 

of LOF variants carried by that subject. 

For the nonsynonymous and splice site variants listed in dbNSFP v4, secondary annotation scores 

were obtained consisting of the rank scores for the different prediction and conservation methods 

(Liu et al., 2020). Thus, a subject’s secondary score for the SIFT annotation would consist of the sum 

of all the SIFT rank scores of the variants carried by that subject. For ease of processing, special 

characters in dbNSFP annotations were replaced, for example GERP++ was changed to GERPPP. A 

total of 43 such scores were used, as presented below.  

The genes selected for this study consisted of those which had previously produced exome-wide 
significant results in weighted burden analyses using a number of common phenotypes and for 
which there was additional, independent evidence to support their involvement. These genes and 
phenotypes are listed in Table 2. The BMI phenotype was calculated directly from the fields for 
height and weight whereas the case definitions for hyperlipidaemia, hypertension and type 2 
diabetes were derived from a mixture of self-report, recorded diagnoses and medication reports 
(Curtis, 2021a, 2021b, 2021c, 2020). In the case of PCSK9 and ANGPTL3 the original SLPs obtained 
were negative, indicating that variants impairing the function of these genes were protective and 
were associated with lower risk of developing hyperlipidaemia. For the purpose of the current study, 
in order to make it easier to interpret the results for these genes alongside the others, the 
phenotype of interest for these two genes is taken to be “not having hyperlipidaemia”, meaning that 
all associated variants will tend to generate positive SLPs. Each of the genes selected contains 
hundreds of variants across different categories, providing empirical data to assess the ability of 
different variant annotations to inform tests for association.  



In order to assess the impact of varying the allele frequency weighting factor, WF, a range of values 

were generated by having log10(WF) range from 0 to 2, generating values for WF from 1 to 100, and 

these were then used to derive a frequency weight for each variant. For each value of WF, these 

frequency weights were summed for each variant category to produce a category-specific burden 

score for each subject. The association of each of these scores with the phenotype was tested to 

produce an SLP based on the Wald statistic for each category and these SLPs were compared across 

the different values for WF. 

The results from these analyses suggested that there was some benefit in weighting variants 

according to MAF and that a reasonable weighting scheme was obtained with log10(WF)=1.4, 

WF=25.12. Using this value, the SLPs produced by the different variant categories for each gene 

were tabulated and compared.  

Similar analyses were performed for secondary annotations obtained from dbNSFP, except that for 

these analyses the weighted burden score produced by the ProteinAltering category was included as 

an additional covariate. This is because the overall burden for each dbNSFP annotation to some 

extent reflects the number of ProteinAltering variants each subject carries. The SLPs produced for 

each annotation were tabulated and compared. The results of these analyses were used to select a 

small group of different annotations which each produced a signal close to maximal in at least one of 

the genes and including an annotation based on conservation rather than predicted effect on the 

product. These annotations were then entered jointly into a regression models and the strength of 

evidence obtained for association was compared to that obtained for the analyses using the 

annotations individually. 

Finally, the variant categories and secondary annotations were included jointly in a multivariate 

analysis along with the principal components and sex as covariates and for each gene a likelihood 

ratio test was performed to compare the likelihoods of the models with and without these predictor 

variables. The SLPs produced from these tests were compared with those previously reported in the 

original analyses. 

 

Results 

The only variant categories to generate SLPs of a large magnitude were LOF and ProteinAltering and 

the SLPs generated using different values of log10(WF) are shown in Table 3. The results for all 

categories are presented in Supplementary Table S1. What can be seen from Table 3 is that varying 

the value of WF has a negligible effect on the results obtained for the LOF variants but that large 

differences can be seen with some genes for the ProteinAltering variants, in particular for MC4R, 

PCSK1 and LDLR. The results for these genes are plotted in Figure 1. This shows that the SLP for 

MC4R is strongly negative for small values of WF but increases steeply at first and then more 

gradually until it reaches a value of 5.92 at WF=100. For PCSK1 the SLP is 6.52 at WF=1, rises to a 

maximum of 9.87 at WF=10 and then gradually falls back to 6.00 at WF=100. For LDLR the SLP 

rapidly rises from 21.03 at WF=1 to 30.43 at WF=4 and then stays almost unchanged. These results 

clearly demonstrate that if the goal is to choose a value for WF which will maximise the SLP then 

there is no single value which is optimal for every gene and phenotype combination. There does 

seem to be an advantage in setting WF to be greater than 1, that is to accord greater weight to rarer 

variants, and the default value of WF=10 performs reasonably well over these few examples. 

However MC4R does produce higher SLPs with somewhat higher values of WF and so 



log10(WF)=1.4, WF=25.12, was chosen as a reasonable compromise and was used in the subsequent 

analyses to explore the contributions of different variant annotations.  

Table 4 shows the SLPs produced by each variant category for each gene using WF=25.12. The same 

information is displayed graphically by the heatmap shown in Figure 2, in which the sizes of the dots 

for each gene are proportional to the SLP for each variant category relative to the maximum SLP 

obtained by any category for that gene. This clearly shows the way that different categories of 

variant make different contributions to the evidence for association for each gene. Thus, for HNF4A 

and to a lesser extent PCSK1 and LDLR there is a high relative contribution from ProteinAltering 

rather than LOF variants but this situation is reversed for GIGFY1 and to a lesser extent for PCSK9, 

FES and GCK. For ANGPTL3 there is an additional contribution from SpliceRegion variants but this is 

not the case for the other genes. Detailed inspection of the results for ANGPTL3 revealed that the 

contribution for the SpliceRegion category was driven by a single variant, 1:62598067T>C 

(rs372257803) which had frequency 0.0011 in controls and 0.00064 in cases. Again, these results 

suggest that there is no single weighting scheme which would be optimal for every gene considered 

individually. 

Figure 3 illustrates the pattern of correlations between the different annotations obtained from 

dbNSFP for the variants used in this study. It can be seen that some annotations are strongly 

positively correlated with each other while others are not and that there are even pairs of 

annotations which are negatively correlated. This is reflected in the fact that different variant 

annotations make different contributions to evidence for association, as presented in Table 5 and 

Figure 4. Table 5 presents the SLP produced by each annotation individually while Figure 4 presents 

the same information graphically, again with the dot size indicating the SLP relative to the maximum 

SLP obtained by any annotation for the gene in question. It can be seen that both the absolute and 

relative magnitudes of the SLPs obtained vary between genes. For PCSK1, ANGPLT3 and GIGFY1 no 

annotation produces an SLP greater than 3 so the relative magnitudes may not be very meaningful 

but for the other genes there are clear differences in terms of which annotations produce the 

strongest evidence for association. For example, if we compare the results produced by 

MutationTaster and MutationAssessor we can see that the PCSK9, DNMT3A and GCK produce 

relatively large SLPs with MutationTaster and much smaller ones with MutationAssessor but for 

MC4R, LDLR and HNF4A the situation is reversed (Reva et al., 2011; Schwarz et al., 2014). No 

annotation produces consistently high SLPs across all genes. 

Based on the information in Table 5 and Figure 4, a small group of annotations was selected to be 

incorporated jointly into multivariate analyses. These were the annotations producing the maximum 

SLP for each of the genes apart from PCSK1, ANGPLT3 and GIGFY1 (which were minimally 

informative), and consisted of VEST4, MutationTaster, Polyphen2_HVAR, MutationAssessor and 

PROVEAN (Adzhubei et al., 2013; Carter et al., 2013; Choi et al., 2012; Reva et al., 2011; Schwarz et 

al., 2014). In order to incorporate an annotation based on conservation, 

phastCons30way_mammalian was also selected since it produced moderately positive SLPs for a 

number of genes (Siepel et al., 2005). The scores for these annotations were incorporated along with 

the scores for the categories SpliceRegion, ProteinAltering and LOF in a multivariate analysis. The 

scores for these categories and annotations were treated as predictor variables and included along 

with sex and principal components as covariates. The Wald statistic was used to produce an SLP for 

each of these predictor variables and in order to assess the overall evidence for association a 

likelihood ratio test was performed to compare the likelihoods of the models which did and did not 

include the predictor variables. Since a total of 8 predictor variables were used, twice the difference 

in log likelihoods was taken to be a chi-squared statistic with 8 degrees of freedom. The SLPs for 



individual predictors and for the overall analysis are shown in Table 6. Once more, it can be seen 

that the different annotation scores make different contributions to the evidence for association for 

different genes. For each gene, the multivariate model achieved a higher log likelihood maximised 

over the different predictor variables than the log likelihood achieved by maximising over a single 

weighted burden score. However, the fact that the multivariate model had more degrees of freedom 

meant that the likelihood ratio test using multiple predictors produced higher SLPs for some genes 

and lower SLPs for others. The overall results for the combined multivariate analysis can be 

compared to those previously reported for the original weighted burden tests which were shown in 

Table 2. It can be seen that for PCSK1, LDLR and PCSK9 the evidence for association is substantially 

stronger using the multivariate analysis including the selected categories and annotations whereas 

for DNMT3A, FES and HNF4A the original weighted burden analysis using a single combined score 

produced substantially higher SLPs. 

Discussion 

If one knew in advance the effect size of every variant then a model which pre-specified these 

relative effects would have maximal power to detect association. However these simple exploratory 

analyses are sufficient to demonstrate that there is no single frequency-based weighting factor, 

selection of variant categories or group of secondary annotations which will consistently maximise 

the power to detect association for every gene. Armed with this knowledge, a number of 

approaches are available to the investigator. One is to choose a single weighting scheme which is 

hoped to be “good enough”. Another is to perform repeated analyses with different choices of 

frequency weighting factors, annotation weights and variant selections and then to apply some kind 

of correction for multiple testing, for example by combining p values to yield a test statistic with a 

known null hypothesis distribution (Liu et al., 2019). A third is to perform likelihood maximisation 

over a multivariate model which includes a number of different annotations in order to produce a 

test statistic with a larger number of degrees of freedom. All of these approaches are sub-optimal in 

one way or another and there is not currently sufficient information available to make any firm 

recommendation. As further knowledge accrues as to which types of variant affect susceptibility to 

which types of phenotype in which types of gene then it is possible that the situation may change in 

the future. At present all we might say that it seems sensible to include both ProteinAltering and LOF 

variants, that the latter should be given more weight and that some kind of secondary annotations 

should be used to distinguish which ProteinAltering variants are more or less likely to be relevant. 

Also, some kind of weighting for MAF should be included so that rare variants are given higher 

weights than common ones. 

It is worth stating a number of points explicitly. This study aims to investigate which types of variant 

most strongly support association in the context of attempting to identify genes affecting 

susceptibility to complex, common phenotypes. This differs from the problem of attempting to 

decide whether a given variant is “pathogenic” and might be responsible for a phenotype in an 

individual patient for whom one is attempting to make a genetic diagnosis. The models tested are 

simple linear combinations of rank scores and of course it is possible that more sophisticated models 

would have improved performance in particular situations. However we believe that the results 

obtained suggest that a complex model which performed well in one situation would likely perform 

less well in another. Given the heterogeneity of results we obtain across just a small number of 

genes it seems doubtful that applying more sophisticated approaches would produce a worthwhile 

benefit. Another point to emphasise is that the task addressed here is simply to establish that 

association exists between a phenotype and overall impairment of function of a particular gene. 

Once such an association is established then follow-up analyses might explore in more detail the 



contribution of different variants and in this context the analysis of different annotations might well 

yield useful additional insights. 

Conclusion 

Given all the above considerations, we make no firm recommendations as to what weighting scheme 

should be used for weighted burden analysis. Hopefully the results presented here will be useful for 

investigators in order to inform a thoughtful approach to devising the analytic schemes which they 

feel are most appropriate for the situations they face. 
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Table 1. Table showing annotations produced by VEP, the weights assigned to them for weighted 

burden analysis and the categories they were assigned to for the current analyses. Annotations 

marked as unused were not applied to any of the variants in the genes studied. 

VEP annotation Weight Category 

intergenic_variant 0 Unused 

feature_truncation 0 IntronicEtc 

regulatory_region_variant 0 IntronicEtc 

feature_elongation 0 IntronicEtc 

regulatory_region_amplification 1 IntronicEtc 

regulatory_region_ablation 1 IntronicEtc 

TF_binding_site_variant 1 IntronicEtc 

TFBS_amplification 1 IntronicEtc 

TFBS_ablation 1 IntronicEtc 

downstream_gene_variant 0 IntronicEtc 

upstream_gene_variant 0 IntronicEtc 

non_coding_transcript_variant 0 IntronicEtc 

NMD_transcript_variant 0 IntronicEtc 

intron_variant 0 IntronicEtc 

non_coding_transcript_exon_variant 0 IntronicEtc 

3_prime_UTR_variant 1 ThreePrime 

5_prime_UTR_variant 1 FivePrime 

mature_miRNA_variant 5 Unused 

coding_sequence_variant 0 Unused 

synonymous_variant 0 Synonymous 

stop_retained_variant 5 Synonymous 

incomplete_terminal_codon_variant 5 Unused 

splice_region_variant 1 SpliceRegion 

protein_altering_variant 5 ProteinAltering 

missense_variant 5 ProteinAltering 

inframe_deletion 10 InDelEtc 

inframe_insertion 10 InDelEtc 

transcript_amplification 10 InDelEtc 

start_lost 10 ProteinAltering 

stop_lost 10 ProteinAltering 

frameshift_variant 100 LOF 

stop_gained 100 LOF 

splice_donor_variant 100 LOF 

splice_acceptor_variant 100 LOF 

transcript_ablation 100 LOF 

  



Table 2. List of genes used for these analyses along with the SLP obtained in the original analysis 
with the corresponding phenotype. Variants which impaired functioning of PCSK9 and ANGPTL3 
were found to be protective against hyperlipidaemia so for convenience the phenotype of interest is 
stated to be “Not hyperlipidaemia”. 

Phenotype Gene symbol Gene name SLP 

BMI MC4R Melanocortin 4 Receptor 15.79 

BMI PCSK1 Proprotein Convertase Subtilisin/Kexin Type 1 6.61 

Hyperlipidaemia LDLR Low Density Lipoprotein Receptor 50.08 

Not hyperlipidaemia PCSK9 Proprotein Convertase Subtilisin/Kexin Type 9 10.42 

Not hyperlipidaemia ANGPTL3 Angiopoietin Like 3 5.67 

Hypertension DNMT3A DNA Methyltransferase 3 Alpha 8.21 

Hypertension FES FES Proto-Oncogene, Tyrosine Kinase 6.10 

Type 2 diabetes GCK Glucokinase 22.25 

Type 2 diabetes HNF4A Hepatocyte Nuclear Factor 4 Alpha 6.82 

Type 2 diabetes GIGYF1 GRB10 Interacting GYF Protein 1 6.22 

 

 

  



Table 3. SLPs for weighted burden tests for the studied genes generated individually by variant 

categories ProteinAltering and LOF using different values for WF, the weighting function based on 

MAF. Values of log10(WF) range from 0 (WF=1) to 2 (WF=100). Sex and principal components were 

included as covariates. 

 

Table 3A. SLPs for LOF variants. 

log10(WF) MC4R PCSK1 LDLR PCSK9 ANGPTL3 DNMT3A FES GCK HNF4A GIGYF1 

0.0 6.60 3.63 12.79 7.52 3.50 5.38 3.26 13.61 -0.06 11.16 

0.2 6.61 3.63 12.74 7.50 3.49 5.38 3.26 13.61 -0.06 11.16 

0.4 6.61 3.62 12.71 7.49 3.49 5.38 3.26 13.61 -0.06 11.16 

0.6 6.61 3.62 12.69 7.48 3.48 5.38 3.26 13.61 -0.06 11.16 

0.8 6.62 3.61 12.69 7.48 3.47 5.38 3.26 13.61 -0.06 11.16 

1.0 6.62 3.61 12.68 7.48 3.47 5.38 3.26 13.61 -0.06 11.16 

1.2 6.62 3.60 12.68 7.47 3.47 5.38 3.26 13.61 -0.06 11.16 

1.4 6.62 3.60 12.68 7.47 3.47 5.38 3.26 13.61 -0.06 11.16 

1.6 6.62 3.59 12.68 7.47 3.47 5.38 3.26 13.61 -0.06 11.16 

1.8 6.62 3.60 12.68 7.47 3.47 5.38 3.26 13.61 -0.06 11.16 

2.0 6.62 3.60 12.68 7.47 3.47 5.38 3.26 13.61 -0.06 11.16 

 

Table 3B. SLPs for ProteinAltering variants. 

log10(WF) MC4R PCSK1 LDLR PCSK9 ANGPTL3 DNMT3A FES GCK HNF4A GIGYF1 

0.0 -11.32 6.52 21.03 4.24 1.99 2.32 -0.01 3.99 2.74 0.98 

0.2 -7.78 6.90 26.21 4.13 2.06 2.58 0.23 4.11 2.80 0.92 

0.4 -3.78 7.46 29.23 4.03 2.03 2.75 0.50 4.18 2.83 0.87 

0.6 -0.89 8.24 30.43 3.97 1.93 2.87 0.72 4.23 2.85 0.82 

0.8 0.26 9.17 30.73 3.92 1.83 2.95 0.89 4.26 2.86 0.79 

1.0 1.56 9.87 30.69 3.89 1.74 2.99 1.01 4.28 2.87 0.77 

1.2 3.00 9.81 30.57 3.87 1.68 3.02 1.09 4.29 2.88 0.76 

1.4 4.17 8.91 30.45 3.86 1.64 3.04 1.14 4.30 2.88 0.75 

1.6 5.00 7.73 30.37 3.85 1.62 3.05 1.17 4.31 2.88 0.74 

1.8 5.56 6.72 30.30 3.84 1.60 3.06 1.19 4.31 2.88 0.74 

2.0 5.92 6.00 30.26 3.84 1.59 3.07 1.21 4.31 2.88 0.74 

 

  



Table 4 SLPs produced individually by each variant category for each gene using WF=25.12, including 

sex and principal components as covariates. 

 

Variant 
category 

MC4R PCSK1 LDLR PCSK9 ANGPTL3 DNMT3A FES GCK HNF4A GIGYF1 

FivePrime 1.00 -0.11 0.78 -0.18 -0.01 -0.22 0.00 0.66 -0.30 0.02 

InDelEtc 0.32 -0.15 0.12 -0.35 0.02 0.59 0.37 1.63 -0.06 0.24 

IntronicEtc 0.00 1.37 -0.40 -0.33 -0.31 -0.75 -0.13 0.29 0.05 -0.13 

LOF 6.62 3.60 12.68 7.47 3.47 5.38 3.26 13.61 -0.06 11.16 

ProteinAltering 4.17 8.91 30.45 3.86 1.64 3.04 1.14 4.30 2.88 0.75 

SpliceRegion 0.00 0.53 0.27 -0.20 3.02 0.50 -0.32 0.10 -0.94 0.09 

Synonymous -0.59 0.76 -1.13 -0.99 0.18 0.40 -0.37 -0.17 -0.53 -0.07 

ThreePrime 0.12 -0.08 0.00 0.43 0.10 -0.97 -0.18 -0.25 -0.02 -0.41 

 

  



Table 5 SLPs produced individually by each secondary annotation from dbNSFP for each gene using 

WF=25.12, including sex and principal components as covariates. 

 

Annotation MC4R PCSK1 LDLR PCSK9 ANGPTL3 DNMT3A FES GCK HNF4A GIGYF1 

Polyphen2_HDIV_rankscore 9.56 -0.73 17.12 1.95 0.39 1.36 4.32 5.12 3.40 0.11 

SIFT_converted_rankscore 6.21 -0.14 10.15 5.08 0.83 0.42 2.41 5.36 3.97 0.05 

SIFT4G_converted_rankscore 6.81 0.10 14.40 2.04 0.27 2.44 1.61 5.77 3.66 0.10 

Polyphen2_HVAR_rankscore 8.64 -0.37 19.14 2.39 0.50 0.98 4.41 5.39 3.27 0.12 

LRT_converted_rankscore 4.49 -0.07 14.65 3.95 -0.10 4.46 4.29 8.44 2.10 0.70 

MutationTaster_converted_rankscore 4.77 0.38 9.38 9.57 0.30 6.93 1.90 13.90 1.90 0.56 

MutationAssessor_rankscore 7.95 -0.45 18.40 1.68 1.61 1.61 1.32 4.35 3.03 0.00 

FATHMM_converted_rankscore 0.32 2.42 0.08 2.30 0.13 0.40 -1.01 -0.58 -0.20 0.42 

PROVEAN_converted_rankscore 5.92 0.28 10.89 4.45 1.08 0.66 1.67 2.85 4.49 -0.11 

VEST4_rankscore 12.48 -0.06 15.27 2.91 0.44 4.58 3.16 12.51 3.34 0.04 

MetaSVM_rankscore 7.04 -0.14 10.81 2.39 0.86 0.48 1.43 -0.62 0.51 0.15 

MetaLR_rankscore 8.44 -0.25 7.14 1.80 0.71 0.63 1.23 1.01 0.29 0.31 

M_CAP_rankscore 11.50 0.02 1.15 3.03 0.44 2.50 0.76 2.12 2.26 0.15 

REVEL_rankscore 11.28 0.13 11.09 3.02 0.77 1.69 1.29 1.98 1.40 0.14 

MutPred_rankscore 2.73 2.08 6.29 0.33 0.25 1.22 1.81 1.20 1.76 -0.03 

MVP_rankscore 0.72 -2.63 -2.45 0.35 -0.01 -0.64 -1.32 -0.11 -0.52 0.12 

MPC_rankscore 4.20 -1.80 1.26 1.17 0.05 -0.76 -0.44 1.59 0.21 0.13 

PrimateAI_rankscore 0.16 -2.70 2.71 1.90 -0.49 0.09 -0.34 2.24 1.06 0.03 

DEOGEN2_rankscore -0.21 -0.88 -1.20 0.81 0.12 -0.29 -1.26 -0.09 -0.24 0.05 

BayesDel_addAF_rankscore 7.04 -0.29 2.38 2.43 0.38 3.74 1.30 9.18 1.38 2.55 

BayesDel_noAF_rankscore 3.34 -0.61 -0.06 3.41 0.41 2.18 0.23 4.89 -0.03 1.76 

ClinPred_rankscore 4.96 -2.10 9.19 0.57 0.41 0.94 0.52 2.71 2.24 0.04 

LIST_S2_rankscore 0.83 -2.81 0.30 1.77 0.11 -0.03 -0.40 1.49 0.02 0.23 

CADD_raw_rankscore 2.33 -0.78 7.63 5.30 0.54 2.83 1.19 11.21 0.48 2.44 

CADD_raw_rankscore_hg19 1.26 -0.68 8.04 7.66 0.59 2.62 1.54 13.51 0.59 2.32 

DANN_rankscore 0.91 -1.78 6.90 5.92 0.94 3.08 1.91 5.35 0.92 0.55 

fathmm_MKL_coding_rankscore 3.16 -0.07 11.35 3.37 0.23 4.24 1.50 5.87 0.91 0.98 

fathmm_XF_coding_rankscore 0.70 0.16 2.71 0.55 0.25 1.95 1.86 1.45 0.49 0.17 

Eigen_raw_coding_rankscore 4.98 0.28 9.19 5.18 0.71 5.69 2.24 5.52 1.52 1.21 

Eigen_PC_raw_coding_rankscore 2.59 0.28 6.78 4.99 0.52 4.20 2.05 7.48 1.71 1.20 

GenoCanyon_rankscore 0.75 0.72 2.73 2.46 0.46 3.07 -0.21 5.14 -0.06 1.30 

integrated_fitCons_rankscore 5.63 1.01 2.30 0.29 -0.19 1.19 -0.34 3.52 2.35 0.17 

GM12878_fitCons_rankscore 1.23 0.63 0.27 -0.25 0.01 0.48 0.20 0.01 -0.07 0.48 

H1_hESC_fitCons_rankscore -0.40 0.50 -0.06 0.10 -0.03 0.99 -0.09 -0.15 -0.21 0.39 

HUVEC_fitCons_rankscore 0.53 0.48 0.08 0.12 -0.23 0.29 -0.04 2.36 0.36 0.42 

GERPPP_RS_rankscore -0.18 0.12 2.54 -0.06 0.97 0.41 0.46 0.42 -0.03 0.26 

phyloP100way_vertebrate_rankscore 2.13 1.05 2.12 -0.13 0.18 1.00 0.85 1.63 1.05 -0.28 

phyloP30way_mammalian_rankscore -0.16 0.74 2.63 -0.19 -0.21 -0.16 1.64 0.96 1.21 -0.15 

phyloP17way_primate_rankscore 1.34 1.34 0.14 1.26 0.90 0.29 1.62 6.12 0.76 -0.21 

phastCons100way_vertebrate_rankscore 0.51 -0.04 5.18 2.67 0.00 1.55 1.11 0.25 0.12 0.75 



phastCons30way_mammalian_rankscore 2.41 1.11 0.61 2.97 0.56 1.23 1.88 2.55 2.47 -0.39 

phastCons17way_primate_rankscore 0.18 1.05 2.62 0.84 0.81 0.12 0.59 2.16 0.94 0.40 

SiPhy_29way_logOdds_rankscore 0.38 0.46 9.83 1.75 1.47 0.46 0.89 2.28 0.19 2.32 

 

 

  



Table 6 Results of multivariate analysis including selected categories and annotations with sex and 

principal components as covariates. The SLP obtained from the Wald statistics for each predictor 

variable is shown followed by the SLP for the likelihood ratio test incorporating all variables. Also 

shown for comparison are the SLPs obtained from the original weighted burden tests, as first 

presented in Table 2. 

 

Category / Annotation MC4R PCSK1 LDLR PCSK9 ANGPTL3 DNMT3A FES GCK HNF4A GIGYF1 

SpliceRegion NA 0.53 0.26 -0.12 3.03 0.47 -0.33 0.10 -0.43 0.09 

ProteinAltering -1.58 1.48 -0.70 -0.54 0.07 -0.74 -1.05 -1.47 -0.18 0.76 

LOF 7.08 2.75 13.15 3.85 3.56 0.52 3.01 4.54 -0.06 10.55 

MutationTaster_converted_rankscore -0.40 -0.08 -0.40 1.45 -0.36 1.05 -0.29 1.94 -0.47 -0.47 

Polyphen2_HVAR_rankscore 1.80 -0.74 3.71 -0.88 -0.25 0.56 2.79 0.75 0.44 0.58 

MutationAssessor_rankscore 1.59 -1.36 3.20 -0.24 1.16 0.06 -0.21 1.79 -0.05 NA 

PROVEAN_converted_rankscore -0.77 2.44 -0.11 1.76 -0.06 -0.08 0.00 -2.31 1.52 -0.10 

phastCons30way_mammalian_rankscore 0.79 1.21 -0.51 0.62 0.58 0.08 0.76 0.25 1.17 -0.60 

SLP for likelihood ratio test 14.73 10.26 65.73 13.22 5.40 5.90 4.67 20.73 4.16 5.80 

SLP previously obtained from standard 
weighted burden analysis 

15.79 6.61 50.08 10.42 5.67 8.21 6.1 22.25 6.82 6.22 

  



Figure 1 SLPs for LDLR, MC4R and PCSK1 generated by the ProteinAltering variants using different 
values for WF, the weighting function based on MAF.  

 

 

  



Figure 2 Heatmap of SLPs produced by each variant category for each gene. The size of the dots for 
each gene are proportional to the SLP for each variant category relative to the maximum SLP 
obtained for that gene. White circles indicate negative SLPs. 

 

 

 

 

  



Figure 3 Plot of pairwise correlations between dbNSFP annotations for the variants used in this 
study. Black circles indicate positive correlations and white circles negative correlations. 

 

 

 

 

  



Figure 4 Heatmap of SLPs produced by each dbNSFP annotation for each gene. The size of the dots 
for each gene are proportional to the SLP for each annotation relative to the maximum SLP produced 
by any annotation for that gene. White circles indicate negative SLPs. 

 


