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Abstract 

Neurite orientation dispersion and density imaging (NODDI) estimates 

microstructural properties of brain tissue relating to the organisation and processing capacity 

of neurites, which are essential elements for neuronal communication. Descriptive statistics 

of NODDI tissue metrics are commonly analysed in regions-of-interest (ROI) to identify 

brain-phenotype associations. Here, the conventional method to calculate the ROI mean 

weights all voxels equally. However, this produces biased estimates in the presence of CSF 

partial volume. This study introduces the tissue-weighted mean, which calculates the mean 

NODDI metric across the tissue within an ROI, utilising the tissue fraction estimate from 

NODDI to reduce estimation bias. We demonstrate the proposed mean in a study of white 

matter abnormalities in young onset Alzheimer’s disease (YOAD). Results show the 

conventional mean induces significant bias that correlates with CSF partial volume, primarily 

affecting periventricular regions and more so in YOAD subjects than in healthy controls. Due 

to the differential extent of bias between healthy controls and YOAD subjects, the 

conventional mean under- or over-estimated the effect size for group differences in many 

ROIs. This demonstrates the importance of using the correct estimation procedure when 

inferring group differences in studies where the extent of CSF partial volume differs between 

groups. These findings are robust across different acquisition and processing conditions. 

Bias persists in ROIs at higher image resolution, as demonstrated using data obtained from 

the third phase of the Alzheimer’s disease neuroimaging initiative (ADNI); and when 

performing ROI analysis in template space. This suggests that conventional ROI means of 

NODDI metrics are biased estimates under most contemporary experimental conditions, the 

correction of which requires the proposed tissue-weighted mean. The tissue-weighted mean 

produces accurate estimates of ROI means and group differences when ROIs contain 

voxels with CSF partial volume. In addition to NODDI, the technique can be applied to other 

multi-compartment models that account for CSF partial volume, such as the free water 

elimination method. We expect the technique to help generate new insights into normal and 

abnormal variation in tissue microstructure of regions typically confounded by CSF partial 

volume, such as those in individuals with larger ventricles due to atrophy associated with 

neurodegenerative disease.  
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1. Introduction 

Neurite orientation dispersion and density imaging (NODDI) (Zhang, H. et al 2012) is 

a widely used approach for estimating microstructural properties of tissue using diffusion 

weighted magnetic resonance imaging (DWI) (Alexander et al 2019). NODDI estimates the 

density and orientation dispersion of neurites, two key aspects of neurite morphology. These 

tissue metrics, termed neurite density index (NDI) and orientation dispersion index (ODI), 

relate to the density and structural organisation of axons in white matter and dendrites in 

grey matter that are essential for neural communication and provide useful biomarkers of 

brain function. Their changes have been linked to function in both healthy populations (Kunz 

et al 2014, Genc et al 2018, Mollink et al 2019) and in cases of diseases (Winston et al 

2014, Broad et al 2019, Scahill et al 2020).  

 A common way of investigating NODDI tissue metrics is region-of-interest (ROI) 

analysis. This utilises descriptive statistics of NODDI metrics in ROIs to summarise 

microstructure in a region. These statistics may then be correlated to neurological 

phenotypes to make inferences about brain-phenotype associations. This approach has 

been applied in studies of normal development (Lynch et al 2020), aging (Kodiweera et al 

2016) and in neurological diseases such as Huntington’s disease (Zhang, J. et al 2018, 

Scahill et al 2020), fronto-temporal dementia (Wen, J. et al 2019) and Alzheimer’s diseases 

(Colgan et al 2016, Slattery et al 2017, Parker et al 2018, Wen, Q. et al 2019). 

 Among the many approaches of imaging tissue microstructure with DWI, NODDI is 

one of the few that explicitly quantify the extent of CSF contamination, making it particularly 

suited for studying normal ageing and neurodegenerative diseases. NODDI employs a multi-

compartment model to represent the signal from both CSF and tissue in a voxel, which 

enables quantification of NDI and ODI, microstructure parameters of the tissue space, that 

are free from CSF contamination. NODDI can therefore by used to investigate tissue 

microstructure abnormalities in conditions associated with brain atrophy without the 

confounding influence of CSF. This contrasts with other approaches, such as diffusion 

tensor imaging (Basser et al 1994), in which microstructure parameters in voxels 

contaminated by CSF are confounded (Metzler-Baddeley et al 2012). 

However, this approach to removing CSF contamination presents a hitherto 

unrecognised problem in ROI analysis. Namely, the mean of NODDI tissue metrics in an 

ROI, such as the mean NDI or ODI, become biased when the ROI contains voxels with CSF 

partial volume. This is because conventional methods calculate the mean by averaging 

NODDI tissue metrics across all voxels in an ROI (Parker et al 2018, Zhang, J. et al 2018, 

Wen, J. et al 2019, Wen, Q. et al 2019, Andica et al 2020, Scahill et al 2020), which weight 

all voxels equally. In doing so, the variation in the amount of tissue present in a voxel due to 
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CSF contamination is not accounted for. This can lead to a mis-estimation of the mean 

microstructure of the tissue across the ROI, which can be problematic for white matter tracts 

in periventricular regions whose border are particularly vulnerable to high CSF 

contamination. Given that ventricular enlargement is a prominent feature in individuals with 

Alzheimer’s disease (Schott et al., 2005), NODDI data from these patients are more likely to 

be affected by this issue.   

 To address this, we introduce the tissue-weighted mean, a new approach that aims 

to produce estimates of regional microstructure unbiased by the presence of CSF 

contamination. The key idea is to utilise tissue fraction metrics from NODDI to account for 

varying CSF contamination among ROI voxels. This is enabled by NODDI’s explicit 

representation of the tissue and CSF compartments. In contrast to the previous approaches 

that consider the influence of CSF partial volume on ROI means, such as the streamline 

density weighted average (Lynch et al 2020), this permits usage of the full tissue 

microstructural information across the ROI. Tissue-weighted means therefore account for 

CSF contamination while retaining the intent of the conventional means – which is to 

estimate the average microstructure metric across the brain tissue within the ROI.  

In this work we provide a theoretical description and comparison between the 

conventional and tissue-weighted means using NODDI metrics. Our study aims to determine 

the prevalence across ROIs of estimation bias associated with the conventional mean, 

compare bias between healthy individuals and those with larger ventricles, and to assess the 

impact of applying the tissue-weighted mean to group studies. To do this, we apply the 

tissue-weighted mean in an exemplar study of white matter regional abnormalities in a 

cohort of healthy individuals and those with Young Onset Alzheimer’s Disease (YOAD), in 

which increased ventricular volume is a prominent feature of the disease (Drayer 1985). The 

conventional mean, tissue-weighted mean, bias and effect sizes are quantified in 

periventricular and non-periventricular ROIs. We also assess whether bias persists across 

alternative image resolutions and image analysis spaces.  

The rest of this paper is organised as follows: we first formally define the tissue-

weighted mean, before explaining the theory and methods used to quantify bias in 

conventional means. We then describe the methods for calculating conventional and tissue-

weighted means of NODDI tissue metrics in a cohort consisting of cognitively healthy 

individuals and those with YOAD. Bias in conventional means and differences in effect sizes 

are compared and reported across white matter ROIs. Finally, we discuss our findings and 

their implications for studying brain regional microstructure. 
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2. Theory 

2.1. NODDI model: voxel compartments and tissue parameters 

NODDI adopts a multi-compartment model of the diffusion signal in each voxel 

(Zhang, H. et al 2012). The model assumes the DWI signal is a summation of signals from 

two primary compartments in a voxel: one representing free water and the other from tissue 

(Fig. 1). The free water fraction (FWF) parameter estimates the volume fraction of free 

water, contributed primarily from CSF. The tissue fraction (TF) parameter estimates the 

volume fraction of the tissue, TF=1-FWF.  

Further parameters are derived corresponding to properties of the intra-neurite and 

extra-neurite space within the tissue component of the voxel. NDI provides a surrogate 

measure of the neurite density in the tissue compartment and ranges from 0 (low density) to 

1 (high density). ODI estimates the dispersion of neurite orientations in the tissue and 

ranges from 0 (no dispersion) to 1 (fully dispersed). 

 

 

 

Figure 1. Graphical representation of the NODDI model. The model estimates the volume of 

the free water (area shaded with wiggly lines) and tissue (area shaded with straight lines) 

compartments within a voxel, parameterised as the free water fraction (FWF) and tissue 

fraction (TF), respectively. The tissue volume is further represented as two sub-

compartments, each estimating the volume of the intra-neurite (IN) and extra-neurite space 

(EN) (lines coloured blue and grey, respectively). NDI estimates the density of intra-neurite 

space within the tissue and is equal to the relative volume fraction of the intra-neurite 

compartment. ODI is also a property of the tissue, representing the orientational distribution 

of the intra-neurite space. 

FWF =

+ +

TF =

+ +

NDI =

+

Free water

Tissue
IN

EN

Extra-neurite 

Intra-neurite

F
re

e
 w

a
te

r

+

                  



 6 

2.2. Conventional mean 

The conventional mean of NDI or ODI weighs each voxel equally and is calculated as 

the arithmetic mean. Let m denote the set of values for a NODDI tissue property of interest 

(i.e. NDI or ODI) in an ROI. Its arithmetic mean, denoted as  ̅, is then  

 

  ̅  
 

 
∑  

 

   

   ( )  

 

where i is the voxel index within the ROI, ranging from 1 to N, the number of voxels in the 

ROI. mi is the NODDI tissue property for voxel i. 

 

2.3. Tissue-weighted mean 

The tissue-weighted mean instead calculates the mean of the metric across the 

tissue component of the ROI using a weighted average, with the weightings being the 

fraction of tissue in each voxel. The tissue-weighted mean of m, denoted as  ̅ , is thus:  

 

 ̅  
∑   
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where    is the TF of voxel i within the ROI. This is equivalent to 

 

 ̅  
  ̅̅̅̅

 ̅ 
  ( )  

 

a more concise formulation derived by dividing both the numerator and denominator of 

equation (2) by N. 

 

2.4. Bias in conventional means 

Fig. 2 shows an illustrative example of calculating the two means in an ROI 

consisting of two voxels, each with different TFs. When calculating the conventional mean, 

NDI values in the voxel with lower TF are overweighted, resulting in a miscalculation of the 

tissue mean. In contrast, the tissue-weighted mean weights each NDI value by its voxel TF 

and gives correct calculations of the tissue mean. This demonstrates that the conventional 

mean is in general a biased estimate of the tissue-weighted mean.  
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Figure 2. Illustrative case of estimation bias in the conventional mean in an ROI consisting 

of two voxels with different tissue volumes. Left shows an ROI covering an area of ground 

truth anatomy containing both CSF and tissue. Numbers in each sub-region show the local 

neurite density and are approximately normally distributed. Right shows NODDI tissue 

parameter NDI in two voxels covering the ROI. For each voxel, the NDI parameter describes 

the average neurite density of the tissue sub-regions that the voxel covers. In the presence 

of CSF partial volume, the conventional mean misestimates the ground truth mean by 

overweighting the NDI value in voxel 1, generating a bias of 0.008. Using estimates of the 

TF to weight the NDI in each voxel, the tissue-weighted mean correctly calculates the mean 

NDI of the tissue as 0.567.  

 

 

To clearly show the relation between the two means, observe that the numerator in 

equation (3) can be written as 

 

  ̅̅̅̅  
 

 
∑((    ̅)   ̅)((    ̅)   ̅)
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which simplifies to 

 

  ̅̅̅̅   ̅  ̅     (   )  ( )  

 

where    (   ) is the covariance of m and t across the ROI. Here, Cov(m,t) is calculated 

without Bessel’s correction (with N instead of N-1 in the denominator), which is an unbiased 

estimate of the population covariance when N is large. 
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Dividing equation (5) by  ̅ shows that the tissue-weighted mean is the conventional 

mean with an additional term, namely the covariance of m and t divided by  ̅. The difference 

between the means can be written as 

 

 ̅   ̅   
   (   )

 ̅
 ( )  

 

The term on the right-hand side is equal to the bias in the conventional mean. The 

two means are only equal when    (   )     For a fixed covariance, the smaller the mean 

TF of the ROI, corresponding to higher partial volume, the larger the bias. The bias in the 

conventional mean is positive when there is a negative correlation between m and t and vice 

versa for positive correlation. 

 

 

3. Materials and methods 

3.1. Study participants 

We analysed NODDI data from 21 control subjects and 30 patients that was acquired 

in a study of YOAD (Slattery et al 2017). Recruitment, diagnosis and exclusion criteria are 

described in the supplementary material (section S.2). Patient demographic characteristics 

are shown in Table S1. Ethical approval was obtained from the National Hospital for 

Neurology and Neurosurgery Research Ethics Committee and written informed consent 

obtained from all the participants.  

 

3.2. Image acquisition 

A multi-shell DWI sequence optimised for NODDI was acquired on a 3T Siemens 

Magnetom Trio scanner (Siemens, Erlangen, Germany) using a 32-channel phased array 

receiver head coil. DWI acquisitions consisted of a spin-echo echo planar imaging (EPI) 

sequence with EPI factor 96; TR=7000ms; TE=92ms; 55 interleaved slices with slice 

thickness 2.5mm; in plane FOV 240x240mm2 with resolution 2.5x2.5mm2; multi-slice 

acceleration factor 2; b-values=0 (n=13), 300 (n=8), 700 (n=32) and 2000 (n=64) s/mm2. 

Optimised gradient directions from the Camino software package generated using 

electrostatic energy minimisation were used (Cook et al 2007). Sequences utilized twice-

refocused spin echo to minimize distortion effects from eddy-currents (Reese et al 2003). 

The total acquisition time was 16m13s.  

T1-weighted images and B0 field maps were acquired to correct for susceptibility-

induced off-resonance fields. T1-weighted images were acquired using a 3D sagittal 
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MPRAGE volumetric sequence with TE=2.9ms; TI=900ms; TR=2200ms, matrix size 

256x256x208 and isotropic 1.1x1.1x1.1mm3 voxels. For B0 field mapping, 2D dual echo 

gradient echo images were acquired using an EPI sequence with TEs=4.92/7.38ms and 

TR=688ms, matrix size 64x64x55 and resolution 3x3x3mm3. 

 

3.3. Pre-processing 

DWI non-brain voxels were removed by aligning the intracranial volume mask of the 

T1-weighted image to the DWI using SPM12 (Malone et al 2015). Inter-volume misalignment 

due to motion and image distortions due to residual eddy current-induced off-resonance 

fields were corrected using FSL eddy v6.0.2 (Jenkinson et al 2012, Andersson et al 2016).  

B0 maps were calculated from the unwrapped gradient echo phase images. Distortions in 

the DWIs due to susceptibility-induced off-resonance fields were corrected via a combined 

approach using the B0 maps and registration to the T1-weighted image (Daga et al 2014). 

 

3.4. NODDI metrics 

The NODDI model was fitted to the pre-processed DWIs using AMICO (Zhang, H. et 

al 2012, Daducci et al 2015), outputting parameter maps of NDI, ODI and FWF. TF maps 

were calculated from the FWF as 1-FWF using FSL fslmaths. 

 

3.5. Atlas-based parcellation of white matter ROIs 

NODDI maps in the native subject space were parcellated into forty-eight white 

matter ROIs defined in the John Hopkins University (JHU) white matter atlas (Mori et al 

2008) using atlas-based parcellation. This was achieved by aligning the JHU atlas and 

subjects’ NODDI data via a bootstrapped population template. The alignment was also used 

to parcellate ROIs in the template space (see section 3.10). 

The bootstrapped population template was created from the subjects’ DWI data (as 

in Zhang, J. et al 2018) using an iterative alignment algorithm (Guimond et al 2000, Zhang, 

H. et al 2007, Zhang, H. et al 2010) that employs linear and non-linear image registration in 

DTI-TK (Zhang, H. et al 2006). DTI-TK is a diffusion tensor (DT)-based registration, ranked 

the best of its kind (Wang et al 2011), which has been shown to improve alignment in white 

matter (Pecheva et al 2017) and reduce systematic errors compared to FA-based 

registration (Keihaninejad et al 2013). ROIs were propagated to the subject native space via 

the IIT atlas (Zhang, S. & Arfanakis 2011) and the bootstrapped population template. 

Propagation via the IIT atlas enables accounting for anatomical variation among JHU atlas 

participants.  
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Alignment between JHU and IIT atlases was implemented by registering their 

respective fractional anisotropy maps using FSL flirt and fnirt. IIT atlas and population 

template were aligned using linear and non-linear DT-based image registration in DTI-TK. 

Nearest neighbour interpolation was used to preserve the categorical nature of the labels. 

ROIs were classified as periventricular (those sharing a border with ventricles, n=29) 

and non-periventricular (n=19) by manually inspecting ROIs overlayed on the between-

subject average DT mean diffusivity maps in population template space. ROIs are shown in 

Fig. S1 and abbreviations are described in Table A1.  

 

3.6. Conventional and tissue-weighted means 

The conventional and tissue-weighted NDI and ODI means were calculated for each 

white matter ROI for each subject. Conventional means were computed using FSL fslstats. 

Tissue-weighted means were computed using the implementation available at 

https://github.com/tdveale/TissueWeightedMean, which is based on the alternative formula 

defined in equation (3). This formula can be readily implemented with FSL fslmaths and 

fslstats. 

 

3.7. Mean tissue fractions 

 To understand the relation between the conventional mean and CSF partial volume 

contamination, mean TFs were analysed for all ROIs in control and YOAD subjects by 

calculating their between-subject mean and standard deviation. Differences in mean TF 

between groups were determined using two-tailed Welch’s t-tests, a variant of the students t-

test that accounts for unequal variance between groups. A Bonferroni-corrected p-value 

threshold of <0.05 was applied to determine significant differences and control family-wise 

error (FWE) rate to <0.05. R v3.6.1 was used for these calculations and all subsequent 

analyses. 

 

3.8. Bias in conventional mean 

Bias in the conventional mean was estimated in all ROIs by subtracting the tissue-

weighted mean from the conventional mean. The calculated bias was equal to its 

theoretically predicted value     (   )  ̅ (see equation (6)).  

Regional bias was summarised in control and YOAD subjects by their between-

subject mean and standard deviation. Non-zero bias was determined using two-tailed one 

sample t-tests and the difference in bias between control and YOAD subject was determined 

using two-tailed Welch’s t-tests. Bonferroni-corrected p<0.05 were considered significant. 
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Pearson correlation was used to test for associations between mean TF and 

magnitudes of bias for control and YOAD groups and two-tailed Welch’s t-tests were used to 

test for different magnitudes of bias between periventricular and non-periventricular ROIs. In 

both cases p<0.05 was considered significant. 

 

3.9. Bias at higher image resolution 

We assessed whether bias exists in contemporary datasets with higher image 

resolution than that of the YOAD study. Multi-shell DWI, T1-weighted images and field maps 

for 75 healthy control subjects were obtained from the third phase of the Alzheimer’s 

Disease Neuroimaging Initiative (ADNI 3) (Mueller et al 2005, Weiner et al 2017, 

adni.loni.usc.edu). DWI and T1-weighted images were obtained from the earliest available 

visit for each subject and field maps closest to the DWI visit were selected. Subject 

characteristics are described in the supplementary material (section S.3). 

The multi-shell DWI sequence, optimised for NODDI, was acquired on a 3T Siemens 

Prisma scanner (Siemens, Erlangen, Germany) using a 64-channel receiver head coil and 

consisted of a spin-echo EPI sequence with EPI factor 128; TR=3400ms; TE=71ms; 81 

slices with slice thickness 2mm; in plane FOV 232x232mm2 with resolution 2x2mm2; multi-

slice acceleration factor 3; b-values=0 (n=13), 500 (n=6), 1000 (n=48) and 2000 (n=60) 

s/mm2. Gradient directions were evenly spaced using an electrostatic repulsion algorithm 

(Caruyer et al 2013). The total acquisition time was 7m20s.  

T1-weighted images and B0 field maps were obtained to correct for susceptibility-

induced off-resonance fields. T1-weighted images were acquired using a 3D sagittal 

MPRAGE volumetric sequence with TE=2.95ms; TI=900ms; TR=2300ms, matrix size 

240x256x176 and 1.05x1.05x1.2mm3 voxels. For B0 field mapping, 2D dual echo gradient 

echo images were acquired using an EPI sequence with TEs=4.92/7.38ms and TR=571ms, 

matrix size 78x78x54 and resolution 2.97x2.97x3.75mm3. 

Imaging data underwent the identical pre-processing and ROI analysis steps as 

described in sections 3.2-3.8.  
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3.10. Bias in template space ROIs 

As an alternative to native space ROI analysis (Oishi et al 2009, Zhang, S. & 

Arfanakis, K 2014, Wen, Q. et al 2019, Lynch et al 2020), template space ROI analysis is 

also common (Geng et al 2012, Kodiweera et al 2016, Zhang, J et al 2018, Schahill et al 

2020). Hence we also examined bias in template space ROIs, by propagating JHU ROIs to 

the bootstrapped population template and repeating the analyses described in sections 3.6-

3.8. The population template had voxel dimensions of (1.75 x 1.75 x 2.25) mm3.  

 

 

3.11. Group differences comparison 

To determine the implications of applying the tissue-weighted mean for group 

differences, Cohen’s ds effect sizes (Cohen 1988), which describe the standardised mean 

difference between two groups of sample observations, were computed for each ROI (mean 

difference contrast of control minus YOAD). Effect sizes were compared between the 

conventional and tissue-weighted mean computed in the subjects’ native space. Two-tailed 

Welch’s t-tests were used to determine significant group differences. Bonferroni-corrected 

p<0.05 were considered significant. 
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4. Results 

4.1. Mean tissue fractions 

Mean TF varies between regions (Fig. 3) and as expected, tends to be lower in 

periventricular regions (Table A1), suggesting those ROIs experience higher CSF partial 

volume contamination. YOAD subjects’ ROIs tend to have lower mean TFs than control 

subjects, consistent with expected increases in CSF partial volume contamination due to 

atrophy.  

 

 

Figure 3. Mean TFs in control and 

YOAD subjects for each white matter 

ROI. Bars show the mean ± standard 

deviation of the mean TF across 

subjects. ROIs are in decreasing order 

of mean TF in control subjects from 

left to right. Bilateral ROIs are ordered 

adjacently when no significant 

difference was observed by two-tailed 

t-test between their mean TFs in 

control subjects. Horizontal lines with 

stars denote significantly lower mean 

TF in YOAD subjects, determined 

using two-tailed Welch’s t-tests 

(p<0.05 Bonferroni-corrected across 

ROIs). 
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4.2. Bias in the conventional mean 

There is statistically significant evidence of bias in the conventional mean of NODDI 

metrics for most white matter ROIs (Fig. 4). Those with lower mean TF tend to have higher 

magnitudes of bias, as expected from equation (6) – the correlation between mean 

magnitude of bias and the inverse of mean TF is high (r>0.94) for both NODDI tissue metrics 

(NDI, ODI) and cohort group (control, YOAD) combinations [r=0.94 for NDI in controls 

(p=6.0x10-24), r=0.95 for NDI in YOAD (p=3.0x10-25), r=0.99 for ODI in controls (p=7.7x10-41) 

and r=0.99 for ODI in YOAD (1.1x10-39)]. As implied, YOAD subjects’ ROIs with relatively 

lower mean TF tend to display greater bias.  
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Figure 4. Bias in conventional means for each white matter ROI. Bars show the mean ± 

standard deviation of bias across subjects. The height of each bar is the average bias 

across subjects, equal to the bias in the group mean. Black points indicate significant 

evidence of non-zero bias, determined using two-tailed one sample t-tests (p<0.05 

Bonferroni-corrected across ROIs). Blue stars indicate significant differences in bias 

between control and YOAD subjects, determined using two-tailed Welch’s t-tests (p<0.05 

Bonferroni-corrected across ROIs). ROIs are ordered as in Fig. 3.  

                  



 16 

Periventricular ROIs tend to have higher magnitudes of bias than non-periventricular 

ROIs. Significantly higher bias for ODI in control subjects (p=0.043) and YOAD subjects 

(p=0.032) is observed for periventricular ROIs, whereas NDI bias tends to be higher in 

periventricular ROIs for both groups but is not significant (control p=0.067, YOAD p=0.11). 

ODI is positively biased (over-estimated), an effect more pronounced in ROIs with 

lower mean TF. NDI bias in non-periventricular ROIs tends to be positive (over-estimated), 

whereas NDI bias in periventricular ROIs shows less trends of directionality. The 

directionality of bias reflects the sign of the covariance between TF and NDI or ODI within an 

ROI. 
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4.3. Bias at higher image resolution 

As with the relatively lower resolution YOAD data, the correlation between mean 

magnitude of bias and the inverse of mean TF is high (>0.9) for both NODDI tissue metrics 

[0.90 for NDI (p=8.7x10-18) and 0.96 for ODI (3.7x10-28)]. When considering the mean across 

control subjects for each ROI, the magnitude of bias tends to be lower in the higher 

resolution ADNI data than in the YOAD cohort but is not significant. 
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Figure 5. Bias in conventional means for each white matter ROI in higher resolution ADNI 

data. The height of each bar is the average bias across ADNI control subjects. Black points 

indicate significant non-zero bias, as in Fig. 4.  
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4.4. Bias in template space ROIs 

A similar association between lower mean TF and higher magnitudes of bias, higher 

bias in periventricular ROIs, and higher bias in the patient group is observed in the template 

space as with the native space ROIs (Fig. S4, S5). Accordingly, the group mean bias is 

highly correlated between native and template space ROIs for both groups of subjects 

(control NDI r=0.96, ODI r=0.99; YOAD NDI r=0.97, ODI r=0.99).  

A strong positive association (r=0.89-0.98, all p<5.7x10-17 for metric-group 

combinations) between bias magnitude and inverse of mean TF is observed in template 

space ROIs, consistent with bias associated with CSF contamination. Periventricular ROIs 

show significantly greater magnitudes of bias in ODI than non-periventricular ROIs for both 

cohort groups (p<0.05), a trend is also observed for NDI but which is not significant 

(p<0.073). YOAD subjects’ ROIs with their relatively lower mean TF tend to display greater 

bias. Bias directionality is similar in the template space as in the native space for most ROIs. 

Two main differences in patterns of bias are observed in template space: - bias 

magnitudes tend to be lower for non-periventricular ROIs and bias in NDI conventional 

means tend to be more consistently negative (under-estimated) in ROIs with lower mean TF. 

 

4.5. Group differences comparison 

Fig. 6 compares the estimated effect sizes computed using the conventional mean 

and tissue-weighted mean (Fig. S2, S3). Overall, effect sizes are similar using the two 

approaches, with only small differences observed for the majority of ROIs. However, those 

ROIs with large differences in bias between control and YOAD groups (Fig. 4) have large 

differences in effect sizes. Note that as we are interested in the direct comparison between 

the tissue-weighted mean and conventional ROI mean, we report unadjusted effect sizes as 

these are quantitatively simple to interpret. We found that adjusting the NODDI tissue 

metrics for subtle variations in age and sex between groups had a negligeable influence on 

the estimated effect sizes (Fig. S6).  

Using the conventional mean, effect sizes for lower NDI in YOAD compared to 

controls are over-estimated in comparison to the tissue-weighted mean for most ROIs (28/39 

showing lower NDI, Fig. 6), with the largest over-estimation observed for the left and right 

tapetums (TAP-L and TAP-R) and superior frontal occipital fasciculus (L-SFO) (note that 

some effect size differences are visually unapparent). In these ROIs, bias is higher in the 

group means of the YOAD group than in controls. However, effect sizes for lower NDI in 

YOAD are under-estimated using the conventional mean for 11 ROIs in which the bias is 

more positive in the YOAD group than in controls, for example in the fornix (FX). This results 
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in a gain of significant group differences for reduced NDI in the left and right hippocampal 

cingulum (CGH-L and CGH-R) using the tissue-weighted mean.  

Effect sizes for lower ODI in YOAD are under-estimated for most ROIs (19/24 with 

lower ODI) when using the conventional mean (Fig. 6). In some ROIs, such as those of the 

corpus callosum (GCC, SCC, BCC), effect size directions using the conventional mean are 

mis-identified as higher ODI in YOAD. These effects are due to higher (more positive) ODI 

bias in the mean of YOAD groups than in controls. Using the tissue-weighted mean results 

in a gain of significant group differences for lower ODI in YOAD in the right posterior corona 

radiata (PCR-R) and splenium of the corpus callosum (SCC) which are absent using the 

conventional mean. There are also ROIs with over-estimated effect sizes for higher ODI in 

YOAD using the conventional mean. Significant group differences for higher ODI in YOAD 

are absent for the left and right hippocampal cingulum, limbs of the fornix (FX_ST-R and 

FX_ST-L) and left sagittal stratum (SS-L) when using the tissue-weighted mean compared to 

the conventional mean. Effect size for higher ODI in YOAD increases in the fornix when 

using the tissue-weighted mean. 
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Figure 6. Effect sizes for group differences in NDI (left) and ODI (right) between control and 

YOAD subjects (Cohen’s ds, mean difference contrast of control minus YOAD) using the 

conventional mean (blue) and tissue-weighted mean (red), for each white matter ROI. 

Positive effect sizes correspond to lower means in YOAD subjects and negative effect sizes 

to higher means in YOAD subjects. Points above the bars indicate significant differences 

between the control and YOAD group as determined by two-tailed Welch’s t-tests on the 

group means (p<0.05 Bonferroni-corrected across ROIs). ROIs are ordered as in Fig. 3. 
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5. Discussion 

This study introduces the tissue-weighted mean, an unbiased method for estimating 

the mean of NODDI tissue microstructure metrics within an ROI. We observe statistically 

significant bias in conventional means for most ROIs and an association between higher 

magnitudes of bias and lower tissue fraction. In addition to the subjects’ native space, bias is 

observed in images at higher resolution and when warping images to a template. 

Furthermore, due to its higher magnitude in patients than healthy subjects, the observed 

bias confounds the estimation of group differences, resulting in effect sizes of conventional 

means being either over- or under-estimated compared to the tissue-weighted mean.  

Bias in conventional means occurs because the contribution of voxels with low TF 

are over-weighted. Periventricular ROIs, which tend to have lower mean TF consistent with 

CSF partial volume contamination, have higher magnitudes of bias. These findings suggest 

that in general the periventricular structures, such as the corpus callosum, are particularly 

susceptible to bias. Certain small periventricular structures, such as the tapetum and fornix, 

appear even more susceptible due to the relatively high proportion of their surface bordering 

CSF and larger surface area to volume ratio. As brain atrophy leads to reduced regional 

volumes (Vernooij et al 2008, Agosta et al 2011) and enlarged ventricles (Drayer et al 1985), 

regions that have undergone atrophy may have an even higher propensity for bias, which is 

supported by findings of higher bias in the YOAD group.  

The choice of image analysis space in which to compute ROI means may also 

influence the observed bias. Previous studies have performed ROI analysis in either the 

native subject space (e.g., Oishi et al 2009) or template space (e.g., Geng et al 2012). As 

template space analysis requires transformation and resampling of NODDI maps, it is 

important to determine the influence that interpolation and distortion associated with image 

transformation has on the patterns of bias. When warping NODDI metrics to a template, 

overall patterns of bias are similar. This indicates that analysis of regional NODDI tissue 

metrics in either space should use the tissue-weighted mean to reduce estimation bias. 

However, marginally lower magnitudes of bias are observed in some ROIs. Although the 

differences are small, this suggests that the computational processing of images prior to ROI 

analysis (i.e., warping to a population template) can have an impact on the magnitude of 

bias, and that previous studies of ROIs in template space may have experienced lower 

magnitudes of bias than those in native space. 

Bias persisted in conventional ROI means derived from DWI at more standard image 

resolutions (2mm isotropic vs. 2.5mm isotropic voxels in YOAD). In the higher resolution 

ADNI 3 data, despite ROIs containing twice the number of voxels (125 per 1000mm3 in 2mm 

isotropic data vs. 64 per 1000mm3 in 2.5mm isotropic data) and therefore having a 
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substantially lower proportion of voxels with CSF partial volume, the overall magnitude of 

bias is not significantly lower. This demonstrates that bias observed in the YOAD cohort is 

not purely a result of the DWI data having relatively lower resolution, and that bias can affect 

images at resolutions which are now standard in neuroimaging research (Scahill et al 2020). 

Ongoing large-scale population studies such as ADNI (Weiner et al 2017) and UK Biobank 

(Miller et al 2016, Alfaro-Almagro et al 2018), which make open access datasets of 

biomarkers that include summary metrics of microstructure in white matter ROIs, may 

benefit from more accurate estimates by applying the tissue-weighted mean. 

 We expect that bias can affect studies in mice as well as in humans, based on their 

similar relative resolution and ROI positions relative to the ventricles. While it is true that 

image resolution for mice is considerably higher than for humans, it is the voxel size relative 

to the size of anatomical structures that is important when comparing across species. 

Indeed, this relative image resolution is similar in mouse and human studies. Given the 

reported brain volumes of mice (Badea et al 2007) and humans (Hofmann 2014, Im et al 

2008) are ~509 and ~1,400,000 mm3 respectively, both have on the order of tens of 

thousands of voxels per brain volume at (200 x 200 x 500) µm3 (Colgan et al 2016) and (2.5 

x 2.5 x 2.5) mm3 resolutions. In fact, the human brain has ~90,000 voxels per brain volume 

compared to the mouse which has ~25,000. The anatomical location of ROIs with respect to 

CSF is also similar among the white matter structures. For example, both human and mice 

have the midsagittal portion of the corpus callosum bordering the lateral ventricles at the 

aforementioned imaging resolutions. 

Bias in conventional means impacts estimation of group differences, with effect sizes 

computed using the conventional mean being either under- or over-estimated (Fig. 6). The 

magnitude of effect size mis-estimation is region-dependent, with the ROIs having higher 

differences in bias magnitudes between groups also having higher differences in effect 

sizes. Effect sizes in structures containing substantial partial volume tend to be more 

severely affected. These results suggest that bias in conventional means can confound 

estimation of effect sizes and alter findings of significant group differences. Inference of 

group differences in regional microstructure using conventional ROI means of NODDI tissue 

metrics may be influenced by bias, particularly those in periventricular regions and those 

undergoing atrophy. Firstly, some true disease effects can be masked by bias, as evidenced 

by ROIs that have higher effect sizes when using the tissue-weighted mean compared to the 

conventional mean. Secondly, the conventional mean may over-estimate the effect sizes for 

some ROIs.  

Previous work has addressed the problem of CSF partial volume effects, where the 

voxel-wise metrics are confounded by CSF partial volume (Vos et al 2011, Metzler-Baddeley 

et al 2012) by analysing a subset of voxels with minimal partial volume (Zhang, S. & 
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Arfanakis, Liu et al 2011), applying streamline density-based weighting when computing the 

mean (Lynch et al 2020), or using the median across the ROI instead of the conventional 

mean (Lewis et al 2018). We emphasise that the tissue-weighted mean aims to address a 

different problem – that of bias in conventional ROI means that arises after voxel-wise partial 

volume effects have been accounted for. Nevertheless, as the median might provide a viable 

alternative method to compute the mean metrics across an ROI, as it is typically not affected 

by the outlier values that partial volume may cause, we compared the performance of the 

median to the conventional mean in terms of its ability to reduce bias with respect to the 

tissue-weighted mean. We found that bias in the median is of a similar magnitude to that of 

the conventional mean, suggesting that the median is not a substitute for the tissue-

weighted mean (Fig. S7). 

The tissue-weighted mean is likely applicable to a wide class of DWI models, 

anatomical locations, research hypothesis and study groups. The method can be applied to 

tissue metrics derived from any multi-compartment models that estimates the CSF volume 

fraction, such as the free water elimination (FWE) method (Pasternak et al 2009). The 

regions that experience CSF contamination are not restricted to periventricular locations, but 

include other structures that border CSF, such as the neocortical grey matter which is 

adjacent to the sub-arachnoid space. Aside from neurodegeneration, the tissue-weighted 

mean can be applied to other diseases which feature ventricular enlargement, such as 

hydrocephalus, including normal appearing hydrocephalus (Vanneste et al 2000, Corkill et al 

2003). Beyond CSF contamination, the tissue-weighted mean can be used under an 

alternative hypothesis where the free water fraction (CSF volume fraction) corresponds to 

interstitial free water, such as is the case in inflammation induced vasogenic oedema 

(Palacios et al 2020). Furthermore, the concept of the tissue-weighted mean is naturally 

extendable to other descriptive statistics of ROIs that summarise tissue microstructure 

information across voxels, such as the variance, covariance and regression coefficients. 

In this exemplar application of the tissue-weighted mean, the inclusion of YOAD 

allows us to make tentative assessment of the regional microstructure correlates of the 

disease. We observe a concordance between significant group differences and expected 

regional pathology, demonstrating that the tissue-weighted mean is sensitive to biologically 

plausible disease effects. For instance, the tissue-weighted mean had significantly lower 

NDI, consistent with tissue neurodegeneration, in the left and right hippocampal cingulum 

(CHG-L and CGH-R) (Fig. 6, S2), which were absent using the conventional mean. These 

regions form hippocampal connections involved in memory processing (Nakata et al 2009), 

a brain function associated with symptoms of Alzheimer’s disease and YOAD (Rossor et al 

2010).  
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6. Conclusion 

This study shows bias in conventional ROI means is highly prevalent and particularly 

affects periventricular regions where partial volume due to CSF contamination is higher. This 

bias confounds group difference metrics, suggesting inferences in cohorts with brain atrophy 

or different ventricle sizes can be influenced by bias. The proposed tissue-weighted mean 

provides unbiased estimation of regional mean tissue metrics and can be derived from DWI 

models that estimate CSF contamination and tissue microstructure. It can be applied to 

accurately identify disease effects in future studies of white matter neurodegeneration, 

especially for periventricular regions and for other brain tissues prone to CSF contamination, 

such as cortical grey matter. This may provide additional insight into associations between 

brain microstructure and aging, development and neurodegeneration. 
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Appendix 

 

Table A1. JHU atlas white matter ROI location, abbreviations and region names. 

  
 

Periventricular 
 

MCP Middle cerebellar peduncle 
GCC Genu of corpus callosum 
BCC Body of corpus callosum 
SCC Splenium of corpus callosum 
FX Fornix 
ML-R Medial lemniscus right 
ML-L Medial lemniscus left 
SCP-R Superior cerebellar peduncle right 
SCP-L Superior cerebellar peduncle left 
CP-R Cerebral peduncle right 
CP-L Cerebral peduncle left 
ALIC-R Anterior limb of internal capsule right 
ALIC-L Anterior limb of internal capsule left 
RLIC-R Retrolenticular part of internal capsule right 
RLIC-L Retrolenticular part of internal capsule left 
ACR-R Anterior corona radiata right 
ACR-L Anterior corona radiata left 
PCR-R Posterior corona radiata right 
PCR-L Posterior corona radiata left 
SS-R Sagittal stratum right 
SS-L Sagittal stratum left 
EC-R External capsule right 
EC-L External capsule left 
CGH-R Cingulum (hippocampus) right 
CGH-L Cingulum (hippocampus) left 
FX-ST-R Fornix or stria-terminalis right 
FX-ST-L Fornix or stria-terminalis left 
TAP-R Tapetum right 
TAP-L Tapetum left 
 

Non-Periventricular 
 

PCT Pontine crossing tract 
CST-R Corticospinal tract right 
CST-L Cortical spinal tract left 
ICP-R Inferior cerebellar peduncle right 
ICP-L Inferior cerebellar peduncle left 
PLIC-R Posterior limb internal capsule right 
PLIC-L Posterior limb internal capsule left 
SCR-R Superior corona radiata right 
SCR-L Superior corona radiata left 
PTR-R Posterior thalamic radiation right 
PTR-L Posterior thalamic radiation left 
CGC-R Cingulum right 
CGC-L Cingulum left 
SLF-R Superior longitudinal fasciculus right 
SLF-L Superior longitudinal fasciculus left 
SFO-R Superior frontal occipital fasciculus right 
SFO-L Superior frontal occipital fasciculus left 
UNC-R Uncinate fasciculus right 
UNC-L Uncinate fasciculus left 
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Code used in calculating the tissue-weighting mean is available here: 

https://github.com/tdveale/NODDI-tissue-weighting-tool. ROI data and other scripts used in 

this analysis are available on request and without restriction by contacting the corresponding 

author. Acquired or processed NIfTI images are not available due to patient confidentiality 
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