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Abstract

In this paper, a consensus framework is proposed for a class of limgéiagent systems subject to matched and unmatched
disturbances in an undirected topology. A linear coordinate transformigtiderived so that the consensus protocol design can be
conveniently performed. The distributed consensus protocol is dmetlby using an integral sliding mode strategy. Consensus
is achieved asymptotically and all subsystems are globally input-to-stéie-sBy using an integral sliding mode control, the
subsystems lie on the sliding surface from the initial time, which avoids amsitséty to disturbances during the reaching phase.
By use of an appropriate projection matrix, the size of the equivalentaaequired to maintain sliding is reduced which reduces
the conservatism of the design. MATLAB simulations validate the effectiserand superiority of the proposed method.
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I. INTRODUCTION

Cooperative control of multiagent systems has receivediderable attention in recent years due to its relevancesldsfi
including microgrids, spacecraft formation and indust@operative roboticsl]. The behaviour is characterised by cooperation
between subsystems via a communication network wherelly ®statsystem shares information with its neighbours to ensur
that all agents reach an agreed goal. Consensus controyscaltand fundamental collective behavior of cooperativatrol.

In a distributed system, consensus control generally fexos how the agents come to agreement on certain quantitiesing
their own information together with information receivadr their neighbours?]. Consensus control can be widely applied
in practice. For instance, in order to increase productioaltiple reactors are used to simultaneously perform a atsm
reaction where controllers communicate with each otherraathtain the temperature, pressure and flow across theorsact
in order to maintain consistency of the product.

In process control, external disturbances can serious#gtathe behaviour of subsystems. Within a multiagent netwiis
behaviour can spread across the systems because of theciitties between the agents. The presence of such unciedaint
can greatly decrease the performance in terms of contralracg. Robust control is an effective approach to cope witths
uncertainty. H,, control is a typical robust control strategy which has beeédely applied in consensus theor$][4]. The
adaptive control paradigm is also commonly used to deal digturbances in multiagent systen&[p]. However, in much of
this research, a high control gain is required to supprestsintiances which may be undesirable in practice. In sonescas
disturbance observer can be systematically designed &rwband then compensate for disturban@@s8]. However, typically
well parameterised models are required to define the destiwdobserver. Sliding mode control possesses usefulatbastics
such as total invariance to matched disturbances, stfaiglard implementation and fast global convergenggil0]. There
are several contributions which consider distributed intsing sliding mode approaches. Consensus is achieved as
decoupled distributed sliding mode control for secondeontiultiagent systems ir2]. Leader-following containment control
is investigated for linear systems ifil]. Scaled consensus is studied for linear systems by meaas &f,, sliding mode
control in [12]. It should be noted that during the reaching phase in adaksliding mode control, the system behaviour is
still affected by matched disturbancek3]. Integral sliding mode control serves as a solution to grizblem as it eliminates



the reaching phase. Finite-time consensus is achievedtmnsl-order multiagent systems with disturbances usinigtagral
sliding mode approach inlfl]. Fixed-time consensus tracking is studied for seconeiortbnlinear systems inlp]. The
consensus protocols il4] and [L5] are not applicable for more general classes of linear syste nearly optimal integral
sliding-mode consensus protocol is designed for multinggstems in the presence of matched disturbancesgn Ilote that
the unmatched disturbances have not been considered iwadhiks Consequently, it is valuable to develop a method toecop
with matched and unmatched disturbances for linear metiagystems.

Much of the existing research in distributed control coassdconsensus for multiagent systems, but does not cortbieler
stability of the subsystems. For example, #) [14] [17], second order systems are usually considered as posiioaity
systems, in which position increases over time, i.e., thEsygstems are unstable after achieving consensus. Tleadhetthis is
due to the existence of zero eigenvalues in the system maithixh causes the system to be critically stable, and whbjesu
to disturbances, the states will diverge. However, in ptgjdihe second order system can also act as a mathematical aiod
a sensor systenil§] or a motor system19]. In these application scenarios, divergence of the statesfinity over time is
undesirable. For other known research, though the stade$ ithe equilibrium point ultimately, there is no direct girof the
stability of the subsystems. I1][[5] and [6], a robust adaptive strategy is utilized to achieve consgnisut it is difficult to
synthesize this method to demonstrate stability of theygibms. As a consequence, it is challenging to develop aeosns
protocol which will stabilize the subsystems and where padcstability can be demonstrated constructively.

Motivated by the above discussion, in this paper a consdnaoework is proposed for linear multiagent systems whieh a
subjected to disturbances and uncertainties by using agradtsliding mode strategy. Firstly, the distributed #insystem is
transformed into a novel regular form by a linear coordineasformation, which facilitates designing the disttémliconsensus
protocol. In comparison with the traditional regular for20][, the novel regular form inherits the property that matclaed
unmatched disturbances can be separated. Further théotragd representation facilitates analysis of the consemsror.
Secondly, despite the presence of external disturbannésteral sliding mode strategy is employed so that theeststart on
the sliding surface. Thirdly, in light of the novel regulamrin and integral sliding mode strategy, a consensus coptoadbcol
is proposed for a distributed linear system, which rendirha subsystems globally input-to-state-stable (IS$)e proposed
protocol is fully distributed without requiring global imfmation when compared td][21] and [22]. In this paper, the main
contributions are twofold. On the one hand, an integralirglidnode based consensus protocol is proposed so that rdatche
disturbances are eliminated while the unmatched distedsare minimized by the projection theorem. On the othedhan
in light of the consensus control framework, consensus Herrhultiagent system can be achieved asymptotically, whie
subsystems are rendered globally ISS.

The rest of this paper is organized as follows. In Sectiordine basic concepts are stated, a linear coordinate traratfon
is given and the problem to be solved is formulated. In Sactib the integral sliding mode control is designed and islid
motion stability is analyzed. In Section IV, consensus amosgstems’ stability are analyzed. In Section V, simulatiesults
are analysed and finally in Section VI, conclusions are drawn

Il. PRELIMINARIES AND PROBLEM FORMULATION

Graph theory is used to illustrate the communication amaoibgystems43]. Let G = (V, £, A) denote anV order undirected
graph consisting of a set of nod&s= {vy,vq,...,ux}, @ set of undirected edges C V x V, and a weighted adjacency
matrix A = (as;) v, - An undirected edg€;; in the undirected graply is denoted by a pair of unordered nodes, v;),
which indicatesy; andv; are neighbours and can communicate with each other. The seighbours for node; is denoted
by Ny, = {v; € V: (vi,v5) € €,i # j}. The weightsa;; = aj;= 1 in the weighted adjacency matrid if and only if the
edge(v;, v;) exists, ande;; = a;;=0 otherwise. Definei;; = 0 wheni = j. A path is a sequence of connected edges in a
graph, and a graph is connected if there is a path betweey paérof vertices.

0, xm denotes am—row andm—column matrix with all the entries being 0,, denotes am—row vector with all the entries

P 4q
being 0.1,, denotes anm x m identity matrix. Let| M|, = /> > |mij|2 be the Frobenius norm ot/ = (mj;),, .-
i=1j=1

HWHoo:lIg?l} |zw;| denotes an infinite norm o> € R™. ||.|| denotes the Euclidean norm and is consistently assumedsin th
<i<n



paper unless additionally stated; (P) denotes an eigenvalue @ € R"*", wherei = 1,2,...,n, Anax (P) denotes the
maximum eigenvalue of.

Consider a distributed multiagent system withsubsystems where the communication among subsystemsageddny an
undirected topology grap@i. Each subsystem has the following identical nominal lirddaramics which is subject to external
disturbances

i (t) = Az, (t) + Bu; (t) + ¢; (t,z) i =1,2,...,N 1)

wherez; (t) € R™, u; (t) € R™, A € R"*™, B € R"*™ are the state, control protocol, system matrix and inputimaf
the ith subsystem respectively. The disturbances and uncéetiare lumped together and denoted¢ast, =) € R", and
2 [xf,...,x%]T € RNm,

The following assumptions will be imposed on systeth (

Assumption 1The pair(A, B) is controllable.

Assumption 2:B has full column rank, i.egyank (B) = m.

Assumption 31; (t,z) € R™ is unknown but bounded, i.e||p; (¢, z)| < 5, wheres € R is known.

Assumption 4The undirected grapy is connected. .

Under Assumption 2, it follows from Lemma 5.3 i@Q] that there exists a linear coordinate transformatﬁeﬁ 212} =
T2 such that (1) can be described as

Zi (t) = A Za () + A1 () + dir (L, 21, 22)

~ ~ - 2
Zio (t) = Ao1Zi1 (t) + AoaZio (t) + Bou, (t) + @42 (t, 21, Z2) @)

where T} is an invertible matrix,z;; (t) € R"™™, Z (t) € R™, Ay, € Rv—mx(n=m) - Ay € R™™ rank (By) = m,
bi (L, %1, %) € R"™ and gy, (t, 21, Z2) € R™ are unmatched and matched disturbances respectf\ie%/, [Z,..., ,%JT,JT €
RN(=m) and3, £ [54,...,7%,]" € RV™.
Perf di f idor .t =l sr]t = [Br Qwemxm| [ar o1 queh thatdy, in (3
erform a coordinate trans ormatlcfﬁi1 zm} = 2[zﬂ ziz} =k, s [zil ziz] such thatA; in (3)
is negative symmetric definite
Zin (1) = Ar1zin (B) +A122i0 () + ¢in (L, 21, 22)

3
Zia (1) = Ao12i1 (1) + Asazia (t) + Bau, (t) + ¢ia (L, 21, 22) )

where Ty is an invertible matrix,z;; (t) € R™™™, zi(t) € R™, A, = K ([111 —A12K2> K ¢ Rir—m)x(n=—m)
Agy € R™™, ¢y (t, 21, 20) = K11 (t, 21, Z2), dia (L, 21, 22) = Kodi1 (t, 21, Z2) + dia (L, 71, Z2) are unmatched and matched
disturbances respectively; £ [27,...,2%,]" € RN®=m andz, 2 [21,,...,25,]" € RN™,

The steps required to renddr; negative symmetric definite are presented as follows:

(a) Apply pole assignment td;; — A5 K. Under Assumption 1, the pafrd;, [112> is controllable according to Proposition
3.3in [20], so there existg, € R™* (=) such thatd;; — A,,K> hasn—m distinct negative eigenvalués (AH - 14112]@),
i=1,....,n—m. In this case A;; — A;5K> is Hurwitz stable and-ank (12111 — A12K2) =n—-m.

(b) SinceA,; — A1,K, hasn — m distinct negative eigenvalues, it follows from Theorem.Q.® [24] that A;; — A5 K>
can be transformed into the corresponding diagonal matr& diag (A1, ..., \,_) by using the nonsingular matrik’; €
R=m)x(n=m) e A = K, (2111 - 2112}(2) K'Y thenAy; = A.

Remark 1:4,, being negative symmetric definite in (3) is helpful for comsgs protocol design and synthesis. This will
play an important role in achieving consensus and ensuhiagtibsystems’ stability.

From the results inZ5], ¢; (¢, ), ¢i1 (¢, 21, 22) and ¢z (¢, 21, 22) may be expressed in the following form:

(07, 65 (t,21,2)]" = ToTy BB ¢ (¢, 2) (4)

(65 (t,21,25),00]" = ToTy BB g5, (£, ) (5)



where Bt £ (BTB)_lBT € R™*™ is the left inverse ofB, and the columns oB- € R"*("~™) gpan the null space of
BT, i.e., BT B+ = 0,5, (n—m). Moreover, the following identity holds

BBt + BBt =1, (6)

Definition 1: Consensus is said to be achieved for the distributed mehiagystem (1) if for any initial conditions,
Jim [z (¢) = @ (1)) = 0, ¥i,j = 1,2, , N.

This paper concentrates on utilizing local information &velop a control protocol such that consensus can be achieve
when each subsystem (3) is affected by bounded externalrioiisices. In this case, the consensus problem for (1) can als
be solved correspondingly.

Before presenting the main results, some lemmas and defigiare given as follows.

Lemma 1:26] (Global Invariant Set Theorem) Consider the autonomoussesy:: = f () with f continuous, and leV (x)
be a scalar function with continuous first partial derivesivAssume that’ (z) — oo as|z| — co, andV (z) < 0 over the
whole state space. L& be the set of all points wher#& (x) =0, and M be the largest invariant set iR. Then all solutions
globally asymptotically converge t81 ast — cc.

Definition 2:[27] Consider the system

Assume that: = f (x,0) has a uniformly asymptotically stable equilibrium pointtaé origin. The system (7) is said to be
globally ISS if there exist & £ functionn, a classKC function ¥ such that

[zl < n ([lzoll ;) + 0 (ulloo) , VE = 0 (8)

for any initial statexq € R™ and any bounded input € R™.
Definition 3:[27] A continuously differentiable functiofv : R* — R is said to be an ISS global Lyapunov function Bf
for the system (7) if there exist clags,, functionsey, es,e3 and X’ such that:

1 (lel) <V (2 (1) < ea (lal) Ve € R £ >0 ©
WD) f o.0) < e (el Yu € B < ] > X (o) (10

Lemma 2:[27] (Globally ISS Theorem) Consider the system (7) andiet R — R be an ISS global Lyapunov function
for this system. Then (7) is globally ISS according to Deiimit2 with

19:5f1-62-x (11)
Remark 2:According to Definition 2, the response &f= f (x,0) with initial statex, satisfies
[zl < n([lzoll 1), ¥t >0 (12)

As t increasesy) (||l ,t) — 0, then
2]l <9 (Jull ) (13)

Lemma 3:[28] If pq, po, ..., un >0 and0 < p < g, then

n 1/q n 1/p
(Z p ) < <Z I ) (14)
1=1 i=1

Il1. I NTEGRAL SLIDING MODE CONTROL PROTOCOL DESIGN AND STABILITYANALYSIS OF THE SLIDING MOTION

This section aims to design an integral sliding mode corgrotocol and analyze the stability of the sliding motion foe
multiagent system (3). To simplify notation, some of thedtion arguments will be omitted.



The sliding function is presented as follows
T T
s =at ([0 A0 - [Hew Hw)
15
_ /t All A12 uqon (T) dT> ( )
to !

Ay Az
wheres; (t) is a sliding-mode variabl&; € R™*" is a projection matrix that will be designed later accordionghe projection

O(nfm) xXm

T
EACIEAC] IS

O(nfm)xm
By
designer.z;; (tp) andz;s (to) are the initial values ands°” (t) is a consensus control protocol that is defined by

theorem and satisfiesank | G

Jj=1

N N
ui™ (t) = By (Z aij (22 (1) = zi2 (1) + ATy > aij (21 (1) — 201 (t))) — Az zin (1) — Azozi2 (1) (16)

The corresponding sliding surface is

T

{(£L~-J£h£;~-¢NgTsﬂﬂzomwﬁzlﬂ,n,N} 17)

wheres; (t) is defined in (15).
The control protocol for the multiagent system (3) is given b

wy () = ul® () + ™™ (1) (18)

whereud® (t) is a discontinuous control protocol and selected as

(G O“fgjxm ]) si (t)

0 T
By
wherep > 3| B*||,. is a control gain.

Next, the behaviour when each subsystem is subjected wrllistce effects will be analyzed when the system is coetioll
by the discontinuous control protocol (19). Closing theplan (3) with (18), the derivative 0§; (¢) with respect to time is

given by
T
3 (t) = G [zﬂ zg} — usom

(19)

All A12
A21 A22

O(n—m)xm

r "
[%‘1 ZiQ} + B,

A A T | On—m ; T
e 1 A {zle ZZTQ} 4 |Y=myxm (udis + ugom) +[ r 27;}
Az Aso By
(20)
. All A12 |:Z£ Z£:|T + O(n—m)xm u;;on
Azr Az By
X T
_ O[,L'G < O(n—m)an U?zs+|: ;11 Z;:| )
By
The equivalent discontinuous contraf’s is obtained from this as
0 B T
u;i;; (t) _ (G (n—m)xm ) G[ 31 Zj;} (21)
2

=m, a; € R is a small positive parameter which can be chosen by the



By substituting (21) as.#* (¢) in (3), the sliding dynamics can be obtained as

Zi1 (t) = Arrzi1 (t) + Ar2zio (t) + ¢ir (L, 21, 22)
(22)

O(nfm) xXm

Zio (t) = As1zi1 (t) + Agozio (t) + Bgufon (t) — By (G

) ol o)

T
As can be seen, the action of the integral sliding mode cbstirategy has transformed the original disturban[@ﬁ% qsz;}
into the following equivalent disturbances

2

i1 O(nfm)xn

O(n—m) xm

By

O(n—m) xm

¢i8q t7’21722
( ) _B! G
B2

Vel |~ | [sfo o]y of | 65 T
(23)

has full rank,BJf(Tng)_1 is a matrix which minimizes the norm af;, (¢, 21, 22),

O(nfm)xm

Theorem 1:SinceG

2

O(n—'m)xn
* -1 : [ -1 4
G =BT =arg min ||| I - BQ<G 0<n—m>xm> MG (24)
B;

Proof : Notice that

0(n7m)><n

-1 T T O(n_
I, — 0 T or Toor| — (n—m)xm ; 25
a[tr]) o e o))l )= P @5
2
0 o T
where p; = (G (”’é”)xm {qu OT} . Thus (24) can be transformed into
2
T 0

_ T T B (n—m)xm ) 26
or argwném {gb 0 } By i (26)

which hasy} = BT (TxTy)" [¢T OT} as a solution according to the classical projection theoirempage 51 of 29].
T
Making G = BT (T,Ty) "', it can be obtained that; = B+ (TxT)~ [¢T OT} = ¢, which implies that (24) is true.

Remark 3By substitutingp? :B+(T2T1)’1[¢5 OT} into (25) and combining (6), it follows thafts?, || = [¢3; Oﬂr ,
i.e., the norm of the equivalent disturbances is driven lgytuhmatched disturbances and the effects of the disturbaaree
minimized by designing the projection matrix optimally.

Theorem 2:Assume Assumptions 1-3 hold. Then the control from (19) caepkthe subsystem (3) on the sliding surface
(17) from the initial time withG = B+ (T,Ty) "

Proof : Substitute the discontinuous element from (19) with= BJF(TQTI)’1 into (20). Then

. — Si T
§;(t) = a;BH (1) ™! <_pT2T1BS‘| * [ B ZTQ} ) (7)

A Lyapunov candidate function is selected as

1 N
=52 sis (28)
i=1



Combining with (4), (5) and (27), the derivative bf (¢) is given by
N

T
STQ'B+(T2T1)_1( pI>TW B H H [T ’g:| )

Il
=1

~.
_

N

:Z i (=pllsill + s B )

Mzu

o (=pllsill + il HB+¢iH) (29)

~.
_

>l

= Z_ai [sill (p — || B* ¢il|)
z;l

<> —aillsill (o — || B || - llsll)

i=1
N

<> —ailsill (o8] z)

i=1

According to Lemma 3, it follows that

N
t) < Z_Uz' [[sill
=1

Y (30)

> —Omin Z HSZH

i=1
S ~—OminV Vl

whereo; = «; (p — B|| BT || ), omin is the minimum among the;.

It follows that the subsystem (3) will slide on the surfac&)(flespite the presence of the disturban@. [Because the
subsystem starts on the sliding surface at the initial titnejll remain on the sliding surface thereafter, i.e.= $ = 0 when
t > 0.

A

IV. CONSENSUS AND STABILITY ANALYSIS OF SUBSYSTEMS

In this section, consensus will be analyzed for the distetsystem in the presence of the control protocol. The Igtabi
of each subsystem is then considered.

When the subsystem is restricted on the sliding surface §LibgtituteG = B*(TQTl)’1 and the consensus control protocol
(16) into (22). The sliding dynamics can then be described as

Zi1 (1) = Ar1zin () + Ar2ziz (1) + ¢i1 (¢, 21, 22) (31)
Zig (t) = Gi (t, 21, 22)
N
whereg; (t, 21, 22) = Z agj (22 (t) = zi2 (1)) + Ay Zl aij (21 (t) — zi1 (¢))-
Assumption 5]9] ||</>,1 (t, 21, 29)|| < i (t, 21, 22) ||7
among they;, i =1,..., N.
Assumption 6The closed-loop system (31) does not involve the caseth-lgab oo when¢; — 0,,.
Remark 4:According to Assumption 6, both the disturbanc{e% qbZTQ} and control inputs (18) do not drives — oo
in the system (3), i.e;2 does not correspond to the unbounded cases f28nh(page 122). Recalling that the disturbances
are bounded, the consensus control protocol (16) is lireeat,the discontinuous control protocol (19) is boundedn the
will be bounded whert; — 0,,

(tazilazjl) S *)\max (All)a Ymax iS the maXimUm



Theorem 3:Suppose Assumptions 1-5 hold. The distributed system (8d)achieve consensus asymptotically.
Proof: The consensus problem can be transformed into the follosfabilisation problem:

ed (t) = Arel (t) + Apzel (t) + el (t, 21, 22)

_ (32)
e (t) = G (t, 21, 20) — C (t, 21, 22)

a A (a a T 1 & b A b b \T 1 X P1 A
wheree? (t) = (e“,...,ei nfm) =zl — % 2 %1, € (t) = (eﬂ,...,ei7m) = Zio — 7 2 Zj2s € (L2, 22) = i —

Jj=1 j=1
* Z i1, C (o, 20) 2 4 Z G-

j_
Based on the errors deflned aboyg(t, z1, z2) can be rewritten as

i (t, 21, 22) ZGU e —eb +A12Za” ej —ef (33)

Becauseu;; = aj;, for { (¢, 21, 22) it can be obtained that

_ 1 X
C(t, 21, 22) = NZCJ‘

1 XL (Y N
— NZ (Z aji (€ —€5) + AT, Y aj (e — e;))

k=1 k=1

(34)

T 9N Zz%k [(ez - eb) + (62’- —ep) +A, (ef — ) + AT (ef —ef)]

VQ(t) = % ‘ Z Z /0 . " aijydy + %Z (Gg)Tel; (35)

N
=200 > i e — ) e+ D () el (36)

/N

i=1 j=1 i=1

) N T N N N N
Va(t) = > (Anef + Arpel + 6?”) D i (e —et)+ Y (6?)T (Z aij (¢) — €l) + AL aij (¢f — ¢f)
+

N N N N N
1 T 1 T
=3 DO ai(zia — z) " AT (21 — 20) — 3 DD aii(zio = z0)" (22— 2zp2) + DY aydh (20 — 21)

i=1 j=1 i=1 j=1 i=1 j=1
(37)



Further, note thatl,; is negative definite, sd?; is negative definite. Combined with Assumption 5, the follggvinequalities
can be obtained
N N

. 1
Va(t) < 3 ZZGU max (Afl) 251 — Zle Zzamllm Z]2H + Zzaw @il l[2i1 — zj1l
i= 1] 1 i= 1] 1 i=1j=1
N N
< *ZZ% max (A11) [z — 221 — ZZ%HM Zjall* + = ZZ%‘ (vi llzall + 5 1z ) llzin = 25l
i= 1] 1 =1 j=1 1= 1j 1
1
< 522% max (A1) + Ymax) (Izall + 121 1) 20 = 251 - Zzamnm 2l
i=1 j=1 i=1 j=1

(38)

The analysis of (38) is presented as folloW8iax (AT1) + Ymax) ([[zi1 || + |zj1]) |zi1 — 251 < 0, equality holds if and
only if z;1 — zj1 = Op—pm, (zi1 = 2j1 = Op—y, included); ||z — zj2||2 > 0, equality holds if and only ifz; — zj2 = O,,.
Hence,V, < 0. Referring to Lemma 1, it can be obtained that Ya)t) is radially unbounded over? ande?; (b) Since the
undirected graph is connected,Vi§ = 0, thenz;; = Zj1, Zi2 = Zj2, Vi,j = 1,2,...,N. That iS,tILI& l|zin — 21| = 0 and
Jim [z — 2| = 0, Vi, j = 1,2,.... N, i.e., lim [lo; — ]| =0, Vi, j = 1,2,--- . N. Based on the above analysis, system
(31) can be driven to consensus asymptotically.

It can then be obtained from (31) that goes to0,, asymptotically. Due to the presence of the unmatched tiahaes
oi1 (t, 21, 22), the evolution ofz;; () and z;2 (¢) should be discussed.

Theorem 4:Suppose Assumptions 1-6 hold. The subsystem (31) is glot8 wherez;; is the state and both,, and ¢,
are considered as inputs.

Proof: According to Assumption 3¢;|| < g, thus||¢;1|| < . From Assumption 6 and Remark 4, is bounded. Referring
to Lemma 2, the inputs;, and ¢;; are both bounded.

A Lyapunov candidate function is constructed as

1

Let —1 < # < 0, then the derivative o (¢) is given by
Vs (t) = 220
= ZZ; (A112i1 + Ar2zio + ¢i1)

(40)
=(1+6) 25141121'1 + ZijiAlQZiQ + Z¢T1¢z‘1 — 9231141121‘1
< (1 + 9) Amax (All) ||Zzl||2
provided thatz}, A122;0 + 2] o1 — 02] A1z < 0.
Assume thal|z]] 1220 + 2} dar|| < ||02]
A i i

)\max (All) 0

According to Lemma 2, it can be shown that(]|zi1]|) = €2 (||zal]) = Lllzall® —e3 ([zi1]) = (1 +6) Amax (A11) |21 ]|,
where z;; is taken as the state angh and¢;; as the inputs in Lemma 2. It follows that the subsystem is ajlgdSS with

[As2|l g [[zi2]l + l[din l

9 () = =2 E 42)
Therefore, appealing to Remark 2; is bounded with
o < Vol lzal + ol )
Remark 5:The above results indicate that the Lyapunov funcligns negative definite along the trajectories:gf whenever
the trajectories are outside of the ball defined|b§; || = W, and the trajectories will remain ultimately bounded

el Azl pllzizll 4 dall
by the ball of radius v o7vrs Tt
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Remark 6:This section considers stability of the subsystems. No#¢ tie stability of the subsystems is not considered
in [1]. When the subsystem dynamics (1) is a class of second-oydezrss, the states may diverge due to the existence of
disturbances. See the appendix for a detailed analysis.

V. SIMULATIONS AND ANALYSIS

In this section, two simulation examples are presented tootdstrate the validity of the proposed method.
Example 1. This example aims to demonstrate the effectiveness of theretical results in the presence of matched and
unmatched disturbances. Consider a multiagent systemfauthsubsystems, whose topology connection is shown inlFig.

@

(2)
3 @

Fig. 1: Undirected graph with 4 subsystems

The dynamics of each subsystem is given by

5 8 3 5 7
4 7 5 9 4 1
& = z; + u; + &; (44)
1 5 4 3 0 5
9 6 0 9 -8 6

where the initial states are selected as follows:

xl(O):[—E) 76 S}T,xQ(O):[n 3 —10 —4}T s

3 (0)=[8 -3 -1 O}T,x4(0):{—4 6 0 —2}T

The disturbances are as follows:

[_ 2

tll’ﬁ sin <t11171 —+ f1273,2 + flg.TI; —+ t147,4 —+ ;13 (01COb (”L’,;)) —+ ;14 (055111 (t))

5 (46)

= 2\ - -
t 217 sin (tulzl + t1otin + t1sTiz + t1aT; 4) + t23(0.1cos (243)) + t 24 (0.5sin (1))
) + ¥33 (0.1cos (wi3)) + ¥34 (0.5sin (¢))

t317; sin (1‘113“,1 + t1oTin + t1sTis + L14Tia

;41’}@ sin <t11L71 + t 1250 + t 13243 + t14LL4> + \1?43 (O.lCOS (113)) + \1?44 (O.SSiII (t))

WhereT2T1 |:A,J:| , (TQTl)_l = |:?,J:| y Vi = 0.1,1,7 = 1,2,3,4.
4x4 4x4
The coordinate transformation matrices are

—0.4943 0.3465 0.7856 —0.135 1.0000 0.0000 0.0000 0.0000
;. _ |-01300 08433 —0.3951 03404 _ | 0.0000 1.0000 0.0000 0.0000 )
' 104880 —0.3904 0.0000 0.7807| "> | 0.3561 0.9858 1.0000 0.0000

0.7076  0.1279  0.4762  0.506 —0.0737 0.6324 0.0000 1.0000

3.6493 10.101

0.4614 —-7.505
It can be verified by computations thib;|| < 5. In addition, by coordination transformation, it can beaibéd that

and other parameters are selecteddas 1.00, a; = 0.0001, p = 0.15,G =

~ ~ ~ ~ 2
sin ((tnl‘u + tiowio + t13wiz + 7514'7?/;,4) )

0

di1 =i (48)
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~ - — — 2 - — — — 2
parll < i llzall :’Yz‘\/(t 11T + ti2wio + ti3wiz + t14-7?i4) +<t21-7711 + oo + to3Tiz + t24-77i4> can be verified.
T

. _ . . S O(n—m)xm
To avoid chattering in the implementation, a boundary lamgproximation is used such that ( I )% si (t)/
2
T

G| s ) s; (t) + 0| is used to replace (19), whedeis a small positive scalar and selecteddas 0.01.
2

The simulation results are shown as Fig&

20 35 : ‘
X
11 4
151 1 30
""" 21
- : ; : ‘ X ]
oh Xa| | 25 12
............... X
22
41 20 B
5 B == X5
Ti1 7y
o R OO OO O S ST PO ST TR SOTITSY PP x42 4
0 685" \ 1
6. 8 i B 10 | 1
_5+ S Ti0 s 120 R
st J
10 f : : : : : 1 ok J
0 20 40 60 80 100 120 140 160 180 200 0O 20 40 60 80 100 120 140 160 180 200
time time
(a) z;1 with respect to time (b) x;2 with respect to time
20 10

15 i i i i i i i i i 25 i i i i i i i i i
0O 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
time time
(c) z;3 with respect to time (d) x;4 with respect to time

Fig. 2: Subsystems’ states with respect to time

Fig.2 shows the subsystems’ states with respect to time. aksbe seen, in the presence of matched and unmatched
disturbances, the system achieves consensus. Fig.3 shevssilbsystems’ control inputs with respect to time. It carséen
that the control inputs remain bounded after the subsystamstabilized, and there is no obvious chattering in therobn
signal. Fig.4 shows the sliding variable with respect toetirtt is seen that every subsystem starts on the slidingiffam
the beginning which avoids sensitivity to matched distades in the reaching phase.
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20 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 30
20
10
10
0
0
5 -10 f £ .10
-20
-20 1
-30
30}
-40
40 | | | | | | | | | 50 | | | | | | | | |
0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 8 100 120 140 160 180 200
time time
(a) w1 with respect to time (b) u2 with respect to time
10 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ; 20
5 15
0
10
5
-10 5
z -15' — S o
-20 =
-25
-10
-30
.35 i -15 tf
40 | | | | | | | | | 20 ‘ | | | | | | |
0 20 40 60 8 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
time time
(c) us with respect to time (d) ug with respect to time

Fig. 3: Subsystems’ control inputs with respect to time

Example 2. Consider the multiagent system whose topology connecti@isio shown as Fig.1. To further test the proposed
distributed protocol, the protocol (3) developed i fvhich uses an adaptive scheme will be compared with the odeth
proposed in this paper. The dynamics of each subsystem as diy

. 0 1
Ty =
0 0

where the initial states are selected as follows:

x;+ i + @5 (49)

0.4

21 (0) = {1 zr,x?, (0) = [—1 —Q}T,xg (0) = [3 4}T,x4 (0) = {—3 —4}T (50)

The disturbances are as follows:

- — — 2 -
tll’Yi, SiIl (f 1141 + t12.7,‘,,;2> + 0011‘ 12 (COS (T,l) + SiIl (f))

¢i=| - R 5 B (51)
t21’}/i SiIl (tnx“ + tlgfL‘ZQ) —+ 0.01t22 (COS (.L“) +SiIl (t))

WhereT2T1 = {/{jj:|2><2, (T2T1)71 = |:tij:|2><2: Yi = 0.08, 1,] = 1,2.
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For the protocol proposed in this paper, the coordinatestommation matrices are

“1 0 10
0 —11’%:[1 11 (52)

and the other parameters are selected as0.15, a; = 0.0001,p = 0.4,G = [0.4 —0.4} ,6 = 0.0001.
It can be verified by computations thip;|| < 5. In addition, by coordination transformation, it can beaibéd that

T, =

_ _ 2
¢i1 = 7y; sin ((tnl'il + tlQIiQ> > (53)

— — 2
| darll < izl =%\/<tuxi1 + tlgl'ig) can be verified.
1.0000 2.4495
2.4495 6.0000

For the protocol (3) proposed id]| the parameters are selectedas [ ] , K= {—1.0000 —2.4495} ,d; (0) =

O, €; (O) = O,Ti = 10,€i = 10, R; = 05, Yi = 0057% = 0.05.
The simulation results are shown as Fig& where the solid lines denote the method proposed in thperpéabeled as
2020; the dashed lines denote the method proposet],itapeled as 2014.

1 1
0.8 1 0.8
0.6 1 0.6
0.4 1 0.4
0.2 F 1 0.2

o 0 @ 0
02} . 02F
0.4 1 0.4
06 J -0.6
08 b -0.8

0O 10 20 30 40 50 60 70 80 90 100 0O 10 20 30 40 50 60 70 80 90 100
time time
(a) s1 with respect to time (b) s2 with respect to time

1 1
0.8 1 0.8
0.6 1 0.6
0.4 1 0.4
0.2 F 1 0.2 F

& 0 s 0
02 1 021
04 1 0.4
06 1 06
-08F J -0.8

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
time time
(c) s3 with respect to time (d) s4 with respect to time

Fig. 4: Subsystems’ sliding motion with respect to time
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Ty — ZIJ/4
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10

20

30
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60

70
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(d) Consensus errors with respect to time for the fourth sstbsy

Fig. 5: Consensus errors with respect to time in two protwcol
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50 T T T T T T T T T 350 T T
0 ——2020
300 - - =2014/
ol —2020]| |
- ==2014 250 F .
-100 k 1
5ot 200 1
3 200t 1 S 10} ]
250 - w00l |
-300 ¢
50 1
-350 [ L
-400 ¢ 0
450 | | | | | | | | | 50 | | | | | | | | |
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
time time
(c) us with respect to time (d) w4 with respect to time

Fig. 6: Subsystems’ control inputs with respect to time i fvotocols

From Fig.5, the consensus errors with respect to time usiagtoposed method (2020) differ very little from those af th
method in L] (2014) in terms of the settling time and overshoot. Howeitexan been seen that the control inputs of the method
in [1] are several times higher than for the proposed method fdnitial period of time (Fig.6), which is energy-consuming.

Stability of the subsystems is not considered when degigthia protocol (3) in ]], and the states correspondingly diverge.
This can be verified by substituting numerical values int® sigstem matrix (54) in the appendix. No matter what vakijes
take, it can be seen that there are two zero eigenvalues igytem matrix. The simulation results also illustrate fhot,
as shown in Fig.7 (a) and (b). With the proposed approachnégative symmetric definitness df;; guarantees the state
evolution with the protocol devised in this paper are ultiehabounded as seen in Fig.7 (c) and (d).

1500 g 4
oF i
1000 : /
) So 1
g —x,,(2014) s —X,,(2014)
§ —x,(2014 5ot .
sool 5,(2014) | —,,(2014)
—X,,(2014) . —X,,(2014)
%, (2014) - X,,,(2014)
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
time time
(a) z;1 with respect to time in1] (b) z;2 with respect to time in1]
4 4 202
M | o —X,,(2020) |
—X,,(2020)
2F * 2 *
) - ) —X,,(2020) |
B s -X,,(2020)
o0 —x,,(2020) - o0
S —X,,(2020) s g
Py —%,4,(2020)| 1 2 .
3} X, (2020) | ab i
4 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 4 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
time time
(c) z;1 with respect to time in this paper (d) ;2 with respect to time in this paper

Fig. 7: Subsystems’ states with respect to time
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VI. CONCLUSION

A consensus framework is proposed for a class of linear agétit systems in the presence of matched and unmatched
disturbances. An integral sliding mode strategy is utiize ensure the subsystems lie on the sliding surface froninitial
time. The impact of the disturbances are minimized accgrdinthe projection theorem. A consensus protocol is dedigne
and analyzed applying a linear coordinate transformatimhthe global invariant set theorem. The stability of eadbsgatem
is guaranteed by appealing to results on global ISS. Numalesimulations show the validity and superiority of the pyepd
method. Future work will focus on experimental testing anacpical application of the proposed method. In terms obithe
an interesting direction is to discuss the consensus ofimean systems using a sliding mode strategy.

APPENDIX

The analysis of the case where the subsystem states argidi/én [1] is presented as follows:
(a) Substitute the consensus protocol @) [nto the subsystem dynamics (2]), to obtain a lumped form:

i=[Iy®A+ (DL)® (BK)|z+ (In ® B) (R+ F) (54)

It should be noted that in this appendix, (1]) refers to the corresponding equatior) {n [1], and the notations also refer
to the ones in]] unless otherwise stated.

(b) Here, an eigenvalue can be acquired by the system midttixo A + (DL£) ® (BK)] in (53) by which stability of the
subsystem can be judged.

. . . 0 a 0
(b.1) When the subsystem dynamics (1})[is in a linear second-order form, theh = “2| and B & L where
2
a2, by € R. To guarantee the controllability of the subsystem, # 0 andby # 0. K £ |k, 12:2}, wherek,, ks € R.
(b.2) Calculate the elements item by item as follows for ty&tem matrix|[Iy ® A+ (DL) @ (BK)]:
) 0 ap 0 a
In ® A =dia R, 55
voaang | [0 %] [0 ] 59
N
DL = [diLij] ot =1,...,N (56)
pr=| Y © (57)
kibg  kabs
_ - 0 0 0 0
(DL) @ (BK) = |d;L = |- : (58)
]ﬁbg kgbg NxN diﬁijklbg diﬁijk‘gbg NxN
then ~

In®A+ (DL) ® (BK)

diag | [° Q2| |0 G 0 0 (59)
0 0 0 0 diﬁijklbg dj,ﬁijkgbg NxN
N
N s
[Aij}2N><2N

T
In (58), Aj1 + Ajs + Ajs + . ... +[\i(2N_1) =0, thena [1,0, ey 17()] is an eigenvector of (58), wherec R anda # 0,
N———

2N
and the corresponding eigenvalue is 0.
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(c) Consider now where there is at least one 0 in the eigeesatfi[/y ® A + (DL) ® (BK)]| so that the subsystem is
critically stable. For (53), although the nonlinear teftncan compensate the disturbance tefinthe disturbances still have
an effect on the critically stable subsystem and as a coeseguthe states diverge. This covers the analysid]of [

In addition to fl], there are other contribution®][5][6][14] where the states may diverge for a second-order subsystem
when subjected to disturbances.
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