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BACKGROUND: There is considerable interest in whether genetic data can be used to improve standard cardiovascular disease 
risk calculators, as the latter are routinely used in clinical practice to manage preventative treatment.

METHODS: Using the UK Biobank resource, we developed our own polygenic risk score for coronary artery disease (CAD). 
We used an additional 60 000 UK Biobank individuals to develop an integrated risk tool (IRT) that combined our polygenic 
risk score with established risk tools (either the American Heart Association/American College of Cardiology pooled cohort 
equations [PCE] or UK QRISK3), and we tested our IRT in an additional, independent set of 186 451 UK Biobank individuals.

RESULTS: The novel CAD polygenic risk score shows superior predictive power for CAD events, compared with other published 
polygenic risk scores, and is largely uncorrelated with PCE and QRISK3. When combined with PCE into an IRT, it has superior 
predictive accuracy. Overall, 10.4% of incident CAD cases were misclassified as low risk by PCE and correctly classified as high 
risk by the IRT, compared with 4.4% misclassified by the IRT and correctly classified by PCE. The overall net reclassification 
improvement for the IRT was 5.9% (95% CI, 4.7–7.0). When individuals were stratified into age-by-sex subgroups, the 
improvement was larger for all subgroups (range, 8.3%–15.4%), with the best performance in 40- to 54-year-old men (15.4% 
[95% CI, 11.6–19.3]). Comparable results were found using a different risk tool (QRISK3) and also a broader definition of 
cardiovascular disease. Use of the IRT is estimated to avoid up to 12 000 deaths in the United States over a 5-year period.

CONCLUSIONS: An IRT that includes polygenic risk outperforms current risk stratification tools and offers greater opportunity 
for early interventions. Given the plummeting costs of genetic tests, future iterations of CAD risk tools would be enhanced 
with the addition of a person’s polygenic risk.
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Cardiovascular disease (CVD) is a major cause of 
morbidity and mortality worldwide.1 A risk-based 
prevention strategy, with prevention efforts most 

strongly targeted toward those at higher risk, is the 
widely accepted approach to disease prevention.2 In 
the United States, the risk prediction algorithm recom-
mended by the American College of Cardiology (ACC)/
American Heart Association (AHA) is the pooled cohort 

equations (PCE) algorithm,3,4 while in the United King-
dom, the National Institute for Health and Care Excel-
lence recommends the QRISK algorithm, with the latest 
version being QRISK3.5,6 Both algorithms predict CVD 
risk over 10 years, based on multiple risk factors includ-
ing age, sex, ethnicity, smoking history, systolic blood 
pressure, cholesterol levels, and comorbidities. Active 
management, which may include lipid-lowering treatment, 
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is recommended for individuals whose 10-year risk is 
predicted to be above a certain threshold (7.5% in the 
United States and 10% in the United Kingdom).

An important component of CVD is coronary artery 
disease (CAD), which has been a particular focus for 
genetic studies. Family and genome-wide association 
studies (GWAS) have estimated a heritability for CAD of 
between 40% and 60%.7,8 More recently, studies have 
shown that a polygenic risk score (PRS) derived from 
large-scale genome-wide genotype data can have pre-
dictive power for CAD,9–11 raising the question of whether 
it would be beneficial to add PRS to existing risk predic-
tors to aid the identification of high-risk individuals.12–15 
As it remains constant over the life course, a PRS could 
be used to guide disease prevention earlier in life before 
standard risk factors have an appreciable impact.

Three recent studies in middle-aged individuals of 
European ancestries have combined a PRS for CAD with 
standard risk prediction algorithms.16–18 One large study of 
352 660 adults in the UK Biobank (UKB) found a signifi-
cant overall net reclassification improvement (NRI; 4.4% 
against the PCE algorithm [95% CI, 3.1–4.9])16 and dis-
crimination when stratifying by age (≥55 and <55 years 
old). Smaller studies in the ARIC cohort (Atherosclerosis 
Risk in Communities) (n=4847),17 MESA cohort (Multi-
Ethnic Study of Atherosclerois) (n=2390),17 and the FIN-
RISK cohort (n=21 813)18 found a nonsignificant NRI 
for risk tools that combined PRS and standard risk tools, 
compared with the standard risk tool alone. The FINRISK 
study (Finland Risk) also examined predictive performance 
in ≥55- and <55-year-old age groups and found a signifi-
cant NRI in the younger group but not in the older group.

While some of the above studies examined the pre-
dictive accuracy of an integrated PRS and clinical risk 
tool in different age groups, this stratification was limited 
(only <55 or ≥55 years old) and did not additionally strat-
ify age groups by sex. Given the uncertainty surround-
ing the clinical utility of an integrated genetic and clinical 

cardiovascular risk tool, we set out to definitively address 
this. With our access to the largest GWAS results and 
enhanced methods to construct PRS (using a combina-
tion of novel and established methodologies), we exam-
ine the clinical utility of an integrated genetic and clinical 
risk prediction tool both overall and across a broad array 
of age-by-sex subgroups.

METHODS
The detailed methods of this work are available in the Data 
Supplement. All UKB individuals have given informed consent. Our 
research project (project application number 9659) was approved 
by the UKB according to their established access procedures,19 
and legal and ethical approval is covered by the Research Tissue 
Bank approval obtained from the UKB’s governing Research 
Ethics Committee (REC 16/NW/0274), as recommended by the 
National Research Ethics Service. To facilitate reproducibility of our 
results while also respecting the sensitive individual-level nature 
of these data, the values of the PRSs using our novel CAD PRS 
for the 186 451 individuals on whom they were evaluated in this 
study, along with relevant case-control indicators, will be returned 
to UKB so that they can be made available to approved UKB 
researchers. Additionally, the UKB group I GWAS summary sta-
tistics can be accessed at https://zenodo.org/record/4421038.

RESULTS
CAD PRS Performance
We considered first the independent predictive perfor-
mance of the CAD PRS, both overall and separated into 
age-by-sex subgroups. Overall, our PRS was a significant 
predictor of CAD in both prevalent (pre-UKB assess-
ment) and incident (post-UKB assessment) outcomes 
(prevalent nonevents and events obtained from groups 
III and IV, respectively: Harrell’s C, 0.69; hazard ratio per 
SD increase, 1.90 [95% CI, 1.86–1.95]; P<10100; inci-
dent outcomes obtained from group III: Harrell C, 0.63; 
hazard ratio per SD increase, 1.62 [95% CI, 1.57–1.67]; 
P<10100; Figure 1A). A similar pattern of separation by 
PRS-defined risk in the cumulative incidence of CAD 
was also seen in all age-by-sex subgroups (Figure 1B), 
with the pattern seen most clearly in men due to their 
greater incidence of CAD events.

We compared the performance of our PRS against 
that recently derived and used by Elliott et al,16 the earlier 
PRS of Khera et al10 (which was used in the analysis of 
Mosley et al17), and also the PRS derived by Inouye et 
al.9 We were unable to conduct a formal comparison in 
UKB against the PRS developed by Mars et al,18 as they 
used the entirety of UKB to construct their PRS. Pub-
lished weights for the other 3 PRSs were downloaded 
and reapplied within our pipeline, to provide a like-for-
like comparison. Our PRS is the most powerful, followed 
by the Inouye et al and Khera et al PRSs (with similar 
performances) and then the Elliott et al PRS (Table 1). 

Nonstandard Abbreviations and Acronyms

ACC	 American College of Cardiology
AHA	 American Heart Association
CAD	 coronary artery disease
CVD	 cardiovascular disease
GWAS	 genome-wide association study
HDL	 high-density lipoprotein
IRT	 integrated risk tool
LDL	 low-density lipoprotein
NRI	 net reclassification improvement
PCE	 pooled cohort equations
PRS	 polygenic risk score
UKB	 UK Biobank
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Focusing on incident outcomes (group III), the Harrell C 
statistic of our PRS was higher than the second best-
performing PRS (Inouye et al, z test P=4.6×10−6 for a 
Harrell C difference of 0.015).

We used generalized survival analysis to examine 
whether the performance of our PRS varied significantly 
by age. We found evidence in men, but not in women, that 
predictive power is the highest at younger age groups 
and declines for older ages (Figure I in the Data Supple-
ment). In contrast, PRS performance (as measured by 
hazard ratio per 1 SD increase) did not significantly differ 
between men and women (interaction test P=0.2 from 
survival analysis).

We compared the predictive accuracy of our CAD PRS 
to the individual effects of other known risk factors for 
CAD. Measured via Harrell C, the CAD PRS has similar 
predictive power to each of systolic blood pressure, HDL 
(high-density lipoprotein) cholesterol, and LDL (low-den-
sity lipoprotein) cholesterol and is more powerful than 
either total cholesterol or smoking history (Figure II in the 
Data Supplement). The C values vary by age for many of 
the factors. The only significant difference by sex within 
age group (at P=6×10−3 after Bonferroni correction for 
multiple comparisons) is for PRS in the younger (40–55 

years old) age group. The CAD PRS in 40- to 55-year-
old men was more predictive than any other single risk 
factor in any other group.

Integrated Risk Tool Performance
We investigated PCE applied to CAD outcomes as the 
basis for our primary analysis (see Tables I–IV in the 
Data Supplement and Figure III in the Data Supplement 
for secondary analyses relating to a second risk predic-
tor, namely QRISK3, and to a second disease outcome, 
namely CVD, with qualitatively similar, but less strong, 
results, and see Table V in the Data Supplement for an 
analysis using additional criteria to define CVD-free indi-
viduals, with similar results). We first checked that PCE 
was a strong predictor in its own right, as previous work 
had suggested that if PCE is a poor predictor, then it 
becomes an easily beaten straw man.20 Our overall Har-
rell’s C for PCE was 0.76 (95% CI, 0.75–0.76), compa-
rable to that reported by Elliott et al16 (overall C, 0.76 
[95% CI, 0.75–0.77]), and generally reflective of good 
prediction.20

We proceeded to assess whether CAD PRS further 
enhanced risk prediction beyond the PCE predictions. We 

Figure 1. Cumulative incidence of coronary artery disease (CAD) in UK Biobank incident cases in group III.
A, All of group III. B, Group III stratified into 4 subgroups according to age (45–54- and 55–69-y-old age ranges) and sex. Individuals are 
further stratified by polygenic risk score (PRS)–defined risk into the top 5% of PRS risk (red), the median 40% to 60% distribution of risk 
(blue), and the bottom 5% of risk distribution (green).
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first calculated the correlation between an individual’s PCE 
score (log-odds scale) and their CAD PRS and found that 
these were largely uncorrelated (Pearson correlation coef-
ficient r, 0.016; a similar result was found for QRISK3 r, 
0.025). We note that the two largest contributors to PCE 
scores are age and sex, which under standard conditions 
are uncorrelated with PRS. Family history of premature 
CVD is partly a proxy for genetic risk and is used as a risk 
factor in QRISK3 and alongside PCE for risk management 
in the United States.21 We found that our PRS was largely 
uncorrelated with first-degree-relative family history of 
CVD in UKB (r, 0.084), but we note that age of event is not 
captured in UKB, so we were not able to establish the cor-
relation of our PRS with a family history of premature CVD.

We then investigated reclassification patterns, compar-
ing our integrated risk tool (IRT) with PCE and using a 
7.5% 10-year risk threshold to define high- and low-risk 
groups as recommended under the ACC/AHA guidelines4 
(Table 2). We found substantial reclassification movements 
between the PCE and IRT models. Overall, 13.7% of indi-
viduals are reclassified, of which 7.0% are reclassified from 
low to high risk and 6.7% are reclassified from high to 
low risk by the IRT. There are also substantial differences 
by age and sex in the overall number of people that are 
reclassified by the IRT model, with the overall rate peaking 
in men at 50 to 54 years of age and in women at 65 to 69 
years of age (Figure IV in the Data Supplement). Evidence 
that these reclassifications are beneficial is indicated by 
the observation that 10.4% of incident cases are correctly 
up-classified by the IRT, compared with 4.4% that are 
incorrectly down-classified. Further evidence for beneficial 
reclassification is provided by a comparison of cumulative 
CAD incidence in different reclassification groups, which 
shows that individuals who were up-classified by our IRT 
had consistently greater cumulative CAD incidence than 
those down-classified by our IRT (Figure 2). This pattern is 
also seen to varying degrees in the age-by-sex subgroups 
(Figure V in the Data Supplement).

Next, we analyzed differences in model discrimination 
and NRI (Table  3; Figure  3). Overall, the difference in 
Harrell C was 3% (95% CI, 2%–4%) and ranged from 
0% to 5% in the age-by-sex subgroups. The overall NRI 
was 5.9% (95% CI, 4.7%–7.0%). The positive changes in 
full NRI were all strongly significant even after Bonferroni 

correction for multiple testing (maximum P=0.005 after 
correcting for the overall test plus 4 age-by-sex tests), 
while the difference in Harrell C was significant overall 
(corrected P=7.7×10−12), in the two male subgroups 
(men 40–54 years old corrected P=1.0×10−4; men 55–
69 years old corrected P=4.4×10−9) and in the older 
female subgroup but not in the younger female subgroup 
(women 55–69 years old corrected P=5.4×10−3). Stated 
in traditional diagnostic terminology (sensitivity, specific-
ity, and positive predictive value) at the established 7.5% 
10-year risk threshold, our rescaling approach holds the 
positive predictive value constant while improving sen-
sitivity at a moderate specificity cost (Table VI in the 
Data Supplement). The parameters of this trade-off vary 
depending on the subset of the population being consid-
ered (Table VI in the Data Supplement).

When broken down into age-by-sex subgroups, we 
observed that all the subgroup NRIs were larger than the 
overall NRI, ranging from 8.3% to 15.4% and with the 
largest improvement seen in younger middle-aged men 
(40–54 years old; Table 3). This behavior is driven by dif-
ferent types of positive reclassification in younger (40–
54 years old) versus older (55–69 years old) middle-aged 
men, which to some extent cancel out in the overall NRI. 
In younger men, the large positive NRI (15.4% [95% CI, 
11.6%–19.3%]) is driven by a large NRI in cases (24.1% 
[95% CI, 20.3%–27.9%]), while in older men, the positive 
NRI (9.0% [95% CI, 7.9%–10.1%]) is driven by a posi-
tive NRI in noncases (11.3% [95% CI, 10.9%–11.6%]; 
Figure 3B; Figure VI in the Data Supplement).

Finally, we compared the performance of our IRT with 
an alternative algorithm for combining PRS with PCE,22 
in which individuals at borderline risk (5%<PCE<7.5%) 
are promoted to actionable risk if their PRS is high 
enough to be considered a risk-enhancing factor (in the 
top 20% of the PRS distribution). We found our IRT to be 
superior to this alternative algorithm based on combined 
NRI metrics, both overall and when split into age-by-sex 
subgroups (Table VII in the Data Supplement).

Estimating the Overall Number of Lives Saved
Using an approach described in the Data Supplement 
that leverages previous work by Yang et al,23 we predict 

Table 1.  Prediction Performance Metrics (With 95% CI) of Our PRS Compared With That Used by Elliott 
et al,16 Khera et al,10 and Inouye et al9

PRS

All outcomes Incident outcomes

Harrell C HR per SD Harrell C HR per SD

Elliott et al 0.612 (0.608–0.616) 1.48 (1.46–1.50) 0.598 (0.590–0.606) 1.45 (1.41–1.49)

Khera et al 0.640 (0.636–0.644) 1.64 (1.62–1.67) 0.615 (0.607–0.623) 1.56 (1.51–1.61)

Inouye et al 0.644 (0.640–0.648) 1.63 (1.61–1.66) 0.618 (0.610–0.626) 1.55 (1.50–1.60)

This study 0.662 (0.658–0.665) 1.73 (1.70–1.75) 0.633 (0.625–0.641) 1.62 (1.57–1.67)

All outcomes (prevalent and incident) were assessed using groups III and IV. Incident outcomes were assessed using group III only. HR 
indicates hazard ratio; and PRS, polygenic risk score.
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that 2423 (≥95% CI, 560–4059) deaths would be 
preventable annually in the United States from our IRT 
under 100% statin therapy uptake and compliance, while 
1551 (≥95% CI, 358–2598) deaths would be prevent-
able under 64% uptake and compliance.

DISCUSSION
In our study, we developed a new PRS for CAD and then 
considered its predictive performance both on its own 
and when used as part of an IRT by combining the CAD 
PRS with established clinical risk prediction tools based 
on nongenetic risk factors (PCE and QRISK3 as rec-
ommended in the United States and United Kingdom, 
respectively). We evaluated the performance of the IRT 
in a large independent test set of 186 451 participants 
in the UKB, both overall and in participants stratified into 
age-by-sex subgroups.

In contrast to previous studies,16–18 we found that 
our IRT performed substantially better than the estab-
lished risk prediction tools. Previous studies reported 
overall NRIs in the range 0.1% to 4.4%. We report an 
overall NRI of 5.9% compared with PCE. This numerical 

increase translates to substantive clinical utility, as we 
discuss below.

There are several ways in which our study differs 
from the other 3 cited above, starting with the cohorts 
investigated. We matched our definition of CAD and 
CVD to that of the previous study also performed in 
UKB,16 but our studies, nevertheless, differ in that we 
took advantage of a more recent release of incident 
data. We recognize, therefore, that multiple factors 
might explain the differences in predictive performance, 
but we note that our own PRS for CAD, which com-
bined the largest available published CAD GWAS with 
additional UKB data, provides more powerful predic-
tion on its own than the PRS published by Khera et al10 
(used by Mosley et al17) and by Inouye et al9 and is also 
substantially more powerful than the PRS developed by 
Elliott et al.16 We also found our CAD PRS to be as pow-
erful for prediction as each of several established mea-
sured risk factors (systolic blood pressure, HDL, and 
LDL cholesterol) and more powerful than others (eg, 
total cholesterol and smoking history). It is the also the 
best-performing single risk factor in younger middle-
aged men (40–54 years old).

Table 2.  Reclassification Numbers for Our IRT (PCE+PRS) Model Compared With PCE Alone in Group III

Subgroup Category PCE predictions
IRT (PCE+PRS) 
predictions

Reclassification 
groups (percentage 
of population)

n CAD cases, 10 
y (percentage of 
group)

Men, 40–54 y old Above risk threshold 6281 (17.93%) 9427 (26.92%) →4676 (13.35%) 281 (6.01%)

↑4751 (13.56%) 203 (4.27%)

Below risk threshold 28 743 (82.07%) 25 597 (73.08%) ↓1605 (4.58%) 31 (1.93%)

→23 992 (68.5%) 199 (0.83%)

Women, 40–54 y old Above risk threshold 389 (0.87%) 1033 (2.31%) →294 (0.66%) 21 (7.14%)

↑739 (1.66%) 25 (3.38%)

Below risk threshold 44 241 (99.13%) 43 597 (97.69%) ↓95 (0.21%) 2 (2.11%)

→43 502 (97.47%) 189 (0.43%)

Men, 55–69 y old Above risk threshold 41 316 (91.67%) 36 617 (81.24%) →35 533 (78.84%) 2087 (5.87%)

↑1084 (2.41%) 39 (3.6%)

Below risk threshold 3755 (8.33%) 8454 (18.76%) ↓5783 (12.83%) 89 (1.54%)

→2671 (5.93%) 23 (0.86%)

Women, 55–69 y old Above risk threshold 20 383 (33.02%) 21 858 (35.41%) →15 349 (24.87%) 560 (3.65%)

↑6509 (10.54%) 176 (2.7%)

Below risk threshold 41 343 (66.98%) 39 868 (64.59%) ↓5034 (8.16%) 64 (1.27%)

→34 834 (56.43%) 258 (0.74%)

Overall Above risk threshold 68 369 (36.67%) 68 935 (36.97%) →55 852 (29.96%) 2949 (5.28%)

↑13 083 (7.02%) 443 (3.39%)

Below risk threshold 118 082 (63.33%) 117 516 (63.03%) ↓12 517 (6.71%) 186 (1.49%)

→104 999 
(56.31%)

669 (0.64%)

Individuals are stratified by sex and age at UKB assessment (40–54 and 55–69 y old). Up/down arrows denote up/down-classified individuals, 
respectively (predicted to be in a different category by IRT compared with PCE). Horizontal arrows represent individuals predicted to be in the same 
category by both models. The last column shows the observed number of CAD events in the different reclassification groups, in the 10-y follow-up 
period post-UKB assessment. CAD indicates coronary artery disease; IRT, integrated risk tool; PCE, pooled cohort equations; PRS, polygenic risk 
score; and UKB; UK Biobank.
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Additionally, we analyzed in detail the breakdown of 
reclassification losses and gains making up the NRI. Net 
classification improvements were found within all age-
by-sex subgroups at a level higher than the overall figure 
(ranging from 8.3% to 15.4%). A particularly striking value 
of 15.4% was seen for younger middle-aged men (40–54 
years old). A net additional 24.1% of cases are identified 
by our IRT in this subgroup that are overlooked by the 
PCE tool. While further studies will be needed to fully 
explain these patterns, we speculate that 2 processes may 
contribute. One is that earlier CVD events may be more 
genetically determined than older ones. For example, a 
recent study found that 17.3% of patients aged <55 years 
with hospitalized early-onset myocardial infarction pos-
sessed a CAD PRS of equivalent risk to a familial hyper-
cholesterolemia mutation.24 In parallel, the PCE algorithm 

is trained on CVD events that are most numerous in older 
age groups, and one consequence of this is that the risk 
factors it uses tend to develop only later in life.

Regardless of underlying mechanisms, it is important 
to note that all subgroups appear to benefit from a PRS-
based IRT, so we do not propose that a PRS-based IRT is 
applied only to younger middle-aged men. Nevertheless, 
an advantage of PRS as a risk factor is that it can also 
be used earlier in an individual’s life to identify those who 
may have high lifetime CAD risk but before most other 
nongenetic risk factors have developed predictive power. 
We have also shown that the new CAD PRS is largely 
uncorrelated with PCE and QRISK3, which underlines its 
utility as an independent risk factor.

There are limitations to our study, most of which are 
shared by other PRS studies. Our study was performed in 

Figure 2. Cumulative incidence of coronary artery disease (CAD) in the subgroup of 40- to 54-y-old men in group III.
Individuals are stratified by pooled cohort equations (PCE) and integrated risk tool (IRT)–defined risk (above/below the 7.5% threshold) into 
those predicted to be high risk by both PCE and IRT (red), those up-classified to high risk by IRT (purple), those down-classified to low risk by 
IRT (blue), and those predicted to be at low risk by both PCE and IRT (green).



Riveros-Mckay et al Integrated Polygenic Tool Enhances CAD Prediction

Circ Genom Precis Med. 2021;14:e003304. DOI: 10.1161/CIRCGEN.120.003304� April 2021 198

the UKB and is, therefore, limited by the characteristics 
of this cohort and by the lack of additional external data-
sets for evaluation. In particular, the cohort is of primar-
ily European ancestries (and was restricted to European 
ancestries in this study), the age range of participants at 
UKB assessment is limited to 40 to 69 years, and par-
ticipants tend to be healthier and more affluent than the 
general UK population.25 Additional limitations include 
the assessment of a simple single-risk-assessment-at-
baseline scenario rather than a continuous-assessment 
scenario, a blanket exclusion of samples with missing 
data for training and testing, a PRS that is constructed 
from common variants without rare high-risk variants, an 
evaluation of PCE and QRISK3 risk tools only, a reliance 
on UKB data that included self-report to define some 
outcomes and variables, and the use of prevalent CAD 
cases in the construction of the PRS.

An additional limitation of our study, which is com-
mon to all PRS studies so far, is that we define a single 
PRS and apply it uniformly to all individuals, regardless 
of their age, sex, or other relevant factors. This approach 
assumes that, throughout the genome, common variant 

genetic effects are independent of these other fac-
tors. In contrast, we have shown here that PRS predic-
tion varies by age in men. Furthermore, the attenuated 
effect of PRS in individuals in non-European ancestries 
resulting from biased study data collection is well docu-
mented.26 It is possible, although currently unproven, 
that the genetic determinants of a trait like CAD may 
vary across other population strata (defined, for exam-
ple, by age, sex, or socioeconomic background). If so, 
we note that constructing group-specific PRSs may 
further improve predictive power if there were sufficient 
data for training.27 Even without these more sophisti-
cated statistical approaches, the predictive power of 
PRSs will also increase as more population-scale data 
become available, especially in individuals of non-Euro-
pean ancestries.

One potential concern with using PRS to identify 
high-risk individuals is whether existing interventions are 
effective in genetically defined risk groups. Studies per-
formed so far are reassuring in this regard. Statin ther-
apy28,29 and PCSK9 inhibition30 is at least as effective in 
individuals with high CAD PRS and may in fact be more 

Table 3.  Prediction Performance Metrics (With 95% CI) for Incident CAD Outcomes in Group III, Comparing PCE and IRT 
(PCE+PRS) Models and Stratifying Into Age-by-Sex Subgroups

Category

Harrell C NRI (PCE vs IRT)

PCE IRT Difference Full Within cases Within noncases

Overall 0.76 (0.75 to 0.76) 0.79 (0.78 to 0.79) 0.03 (0.02 to 0.04) 5.88 (4.73 to 7.04) 6.05 (4.91 to 7.19) −0.17 (−0.34 to 0)

Men (40–54 y old) 0.74 (0.72 to 0.75) 0.78 (0.77 to 0.8) 0.05 (0.03 to 0.07) 15.42 (11.59 to 19.26) 24.09 (20.28 to 27.9) −8.67 (−9.11 to −8.23)

Women  
(40–54 y old)

0.75 (0.72 to 0.78) 0.76 (0.72 to 0.79) 0 (−0.05 to 0.05) 8.31 (4.19 to 12.42) 9.7 (5.59 to 13.82) −1.4 (−1.52 to −1.27)

Men (55–69 y old) 0.63 (0.62 to 0.64) 0.68 (0.67 to 0.69) 0.05 (0.03 to 0.07) 8.95 (7.85 to 10.06) −2.31 (−3.35 to −1.27) 11.27 (10.89 to 11.64)

Women  
(55–69 y old)

0.68 (0.67 to 0.7) 0.72 (0.7 to 0.74) 0.04 (0.02 to 0.06) 9.03 (5.99 to 12.07) 12.01 (8.98 to 15.03) −2.98 (−3.33 to −2.63)

CAD indicates coronary artery disease; IRT, integrated risk tool; PCE, pooled cohort equations; and PRS, polygenic risk score.

Figure 3. Model discrimination and net reclassification improvement for the integrated risk tool (IRT) compared with pooled 
cohort equations (PCE).
A, Harrell’s C overall and across age-by-sex subgroups. Blue and red lines refer to IRT and PCE, respectively. Asterisks in x axis labels denote 
level of significance for the difference in Harrel C (***P<0.001). B, Net reclassification improvement (NRI) for the IRT compared with PCE alone 
across different age groups in men (blue) and women (red). The bars indicate the 95% CIs.
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effective than average. Lifestyle changes involving diet 
and exercise are also effective in this group.31

Our results have a number of potential clinical impli-
cations. The ACC/AHA currently recommends consid-
ering a statin prescription if one’s 10-year risk of an 
atherosclerotic CVD is ≥7.5%.4 Currently, this risk is 
determined entirely from clinical risk factors. Our results 
indicate that risks are more accurately predicted if one’s 
PRS is included. Thus, some patients who are classi-
fied as at <7.5% risk using the current ACC/AHA risk 
score will be at ≥7.5% risk when their PRS is incor-
porated. This means, using the current risk score, that 
many patients are not offered statin therapy when they 
do in fact have a ≥7.5% risk. The improvements in clas-
sification are even more pronounced among age and 
sex subgroups (Table 3).

Cardiovascular risk tools have continually evolved as 
additional risk factors have been shown to improve a 
tool’s predictive ability, for example, with the addition of 
diabetes status, which was not part of the original Fram-
ingham risk score.3,32 Our results show enhanced pre-
dictive ability when PRS is incorporated into the current 
ACC/AHA atherosclerotic CVD risk score (PCE), and 
we show that we can substantially improve the classi-
fication of a patient’s 10-year risk. It, therefore, appears 
that future iterations of the ACC/AHA score (and other 
equivalent scores) might be more accurate if PRS was 
included as an additional risk factor, just as the ACC/
AHA risk model was improved with the addition of dia-
betes status.

In the United States, the CVD risk assessment is rec-
ommended in people aged 40 to 75 years,4 of whom 
≈105 million are atherosclerotic CVD free at any one 
time.23 The addition of our PRS to PCE would up-classify 
7% of the population to a level of cardiovascular risk 
that warrants statin prevention (≈7.4 million individuals), 
which we estimate could lead to ≈12 000 lives saved 
over 5 years. We believe this creates a motivation for 
the incorporation of PRS into clinical practice, although 
additional feasibility studies are still required. As an alter-
native to our IRT approach, a previous study22 proposed 
that high genetic risk for CAD could be included as a 
risk-enhancing factor for individuals with borderline PCE 
score (between 5% and 7.5%), and this proposal fits well 
with existing US blood cholesterol management guide-
lines.21 Our IRT outperforms this approach and has the 
advantage of potentially up-classifying more individuals 
(including individuals with PCE scores below 5% but 
with high PRS), as well as down-classifying some of the 
individuals with PCE scores above 7.5%.

We, therefore, conclude that the addition of the PRS 
enhances the predictive ability and clinical utility of 
existing CAD risk tools. This enhanced predictive abil-
ity is especially pronounced in younger middle-aged men 
(40–54 years old), but it is seen across all studied age 
groups and across sexes. Our study argues that future 

iterations of PCE (and similar tools) may benefit from the 
addition of PRSs.
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