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Abstract 

Drug-target residence time, the duration of binding at a given protein target, has been shown in some 

protein families to be more significant for conferring efficacy than binding affinity. To carry out 

efficient optimisation of residence time in drug discovery, machine learning models that can predict 

that value need to be developed. One of the main challenges with predicting residence time is the 

paucity of data. This chapter outlines all of the currently available ligand kinetic data, providing a 

repository that contains the largest publicly available source of GPCR-ligand kinetic data to date. To 

help decipher the features of kinetic data that might be beneficial to include in computational models 

for the prediction of residence time, the experimental evidence for properties that influence residence 

time are summarised. Finally, two different workflows for predicting residence time with machine 

learning are outlined. The first is a single-target model trained on ligand features; the second is a 

multi-target model trained on features generated from molecular dynamics simulations. 
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1. Introduction 

Drug-target residence time, the inverse of the rate of ligand dissociation has been observed, for some 

targets, to be more influential than equilibrium binding affinity in conferring efficacy [1–5]. Several 

examples that correlate residence time to in vivo efficacy have been published [1–5]. An analysis of 

50 drugs that act on 12 different targets has revealed that 70% of drugs with long residence times have 

a higher efficacy than comparable drugs with short residence times [1]. The evidence for association 

of residence time and efficacy is most abundant for GPCRs. The efficacy of muscarinic acetylcholine 

M3 receptor agonists was found to correlate solely with their associated residence times and not with 



their binding affinities [2]. Similarly, with A2A adenosine receptor agonists, residence time was the 

only binding measure found to correlate with in vivo efficacy [4]. The correlation between residence 

time and efficacy has also been observed with antagonists. Residence times of antihistamine 

antagonists were found to correlate with their ability to inhibit the H1 histamine receptor in cells [5]. 

Thus, in many different GPCR examples, efficacy of agonists and inhibition strength of antagonists 

has been shown to be better correlated with residence time than with binding affinity. It should be 

noted that extending residence time not only impacts efficacy, it may also have an effect on drug-dose 

intervals. Tiotropium has a 50-fold longer residence time compared to Ipratropium, both ligands of 

the M3 muscarinic receptor, meaning that Tiotropium can be dosed less frequently [6, 7]. 

 

The difference in residence time of the ligand for its target compared with off-target proteins 

determines the probability of having off-target side effects. Classically, target selectivity is measured 

as a ratio of the binding affinity values for the off-target compared to the target protein (equilibrium 

selectivity). As noted by Copeland et al. (2006) [8], the concentration of drug in blood plasma is not 

constant and, as such, dissociation rates of the drug for the different proteins determine the temporal 

selectivity of the drug. In other words, upon administration of drug, initial selectivity is governed by 

the difference in binding affinities between target and off-target proteins but, as the concentration of 

drug in the plasma decreases over time, the difference in residence times for the target and off-target 

also determines the overall selectivity of a drug. Whilst equilibrium selectivity is important to 

optimise, kinetic selectivity can be utilised to achieve overall selectivity in cases where there is an off-

target protein with high sequence similarity that will yield low equilibrium selectivity [9]. 

 

Concerns have been raised about optimising for drug-target residence time in drug discovery. It has 

been shown that residence time is only responsible for occupancy if it exceeds clearance time by 

mathematical models, and for many small-molecule pharmaceuticals on the market this is not the case 

[10]. There is also the question of protein turnover; if a target has a high turnover there may be no 

need to extend residence time. For example, a Tyrosine kinase inhibitor with a very long residence 

time of a week but a high receptor turnover had an in vivo occupancy of less than 50% after 24 hours 



[11]. Extending residence time should be considered in the context of both protein turnover and ligand 

clearance time. However, extended target occupancy may not be the only mechanism by which long 

residence times lead to better efficacy. Sustained antagonist binding with long drug-target residence 

time may prevent transient agonists from binding as the target would already be occupied [12]. 

 

As a result of these different findings, it has been suggested that it is critical to consider drug-target 

residence time in both the hit-to-lead and lead optimisation phases of drug discovery [8]. To do this 

effectively, however, we need computational tools that predict and rationalise residence time, a 

property that is more difficult to determine experimentally than binding affinity. Machine learning 

(ML) has been at forefront in drug discovery for many years, partly due to the fact it can make 

regressions in complex data that humans cannot understand, and is a good candidate to consider when 

searching for a methodology for the computational prediction of drug-target residence time. In order 

to make an accurate ML regression model, we need to select the correct input features, which are then 

fed into the ML model to give a predicted value output. Choice of feature is critical to the success of 

the ML regression model in making accurate predictions that will converge with experimental results. 

 

1.1 Features that confer long drug-target residence time 

In order to extend residence time without affecting equilibrium binding affinity, the stability of the 

transition binding state needs to be achieved. Details of these transition states are currently difficult to 

assess experimentally but are able to be observed using computational simulations (molecular 

dynamics). With the recent advancement of X-ray free-electron lasers, the identification of ligand 

binding transition states is becoming experimentally more feasible using time-resolved 

crystallography [13]. Until the availability of X-ray free-electron lasers becomes more widespread, 

however, a combination of computational simulations and experimentally-determined information of 

the ligand derived in the bound state will need to be used to help uncover the molecular determinants 

of drug-target residence time. 

 



Suggestions about features that are important for conferring long drug-target residence time has been 

shown in both computational and experimental studies. A survey of Pfizer’s database of 2000 

compounds with residence time values reveals a correlation between extended residence time and 

ligand size [14]. This is supported by an analysis of all available GPCR ligand kinetic data (500 

compounds) as shown in Figure 1, which reveals a weak positive correlation between measures of 

size and residence time. In some cases, molecular weight was found to be correlated solely with 

residence time and not with binding affinity [15]. In other instances, there is a strong correlation 

between residence time and ligand molecular weight [16]. In these cases, care should be taken to 

ensure that the method used to determine residence time outperforms this simple linear correlation is 

not just predicting ligand size as a proxy for the determination of residence time. 

 

<Insert Figure 1 here> 
 

In addition to ligand size, interactions with water are known to be important in determining residence 

time. Buried hydrophilic interactions, interactions that are shielded by water, have been proven both 

computationally and experimentally to extend residence time [17]. These interactions have a higher 

energy barrier, meaning that they are more stable and less transient. Water has also been shown to be 

an important factor for conferring long residence time in a GPCR receptor (the A2A receptor) and 

compounds predicted to have reduced solvation in the bound state were found to have an increased 

residence time [18]. In our previous publication using steered molecular dynamics, the change in 

solvation between the bound and unbound ligand was observed to strongly correlate with residence 

time, partly because ligands with larger changes in solvation energy are more likely to make buried 

hydrophilic interactions with the protein [19]. 

 

The flexibility of the binding site has been noted to also affect residence time [20]. A ligand can affect 

the stability of the binding site by stabilising interactions within the protein, for example ZM-241,385 

stabilizes an intra-protein salt bridge in the A2A receptor, increasing residence time. Disruption of this 

salt-bridge, by site-directed mutagenesis, reduces the residence time of this ligand 16.8-fold from 84 



minutes to 5 minutes [20]. Tiotropium, the previously mentioned Muscarinic subfamily antagonist, 

has a 10-folder longer residence time for the M3 than the M2 receptor subtype [21, 22]. Molecular 

dynamics simulations have revealed that the second extracellular loop is more flexible in the M2 

receptor [23]. Interactions made by the ligand to the receptor that decrease protein flexibility of ECL2 

have been shown to increase residence time. 

 

Matched molecular pair (MMP) analysis was recently used to try to understand structural-kinetic 

relationships [24]. MMP analysis was generally more successful in explain ligand association rates, 

with an increase in a ligand’s polarity resulting in a slow-down in the association rate. Only a few 

MMP transformations were identified where the residence time was significantly extended, whereas 

the binding affinity and the association rate remained largely unperturbed. One of these 

transformations was the removal of the hydroxyl group from Tiotropium (Des-Hydroxy Tiotropium) 

which decreases residence time by 56-fold for the M3 muscarinic receptor. This hydroxyl group in 

Tiotropium is known to form a hydrogen bond to Asn507 [25]. Due to surrounding aromatic residues, 

this interaction might be a buried hydrophilic interaction, hence why the presence of the hydroxyl 

group extends residence time. 

 

1.2 Previous ML methods that have been used to predict RT 

There have been a number of published methods that have attempted to predict drug-target residence 

time using ML but far fewer than the number of ML-based methods that attempt to predict binding 

affinity values. This is likely due to two reasons: first the severe lack of training data for residence 

time compared to binding affinity; and, second, the relatively recent identification of the role of 

residence time in drug discovery [3]. The lack of training data can be seen in the fact that the majority 

of current residence time prediction methods are trained on small numbers (under 100) of compounds. 

In addition, these methods have been used for only two protein targets, HIV-1 protease and HSP90, 

further highlighting the issue of the scarcity of training data. 

 



A summary of different ML methods that have been used to predict drug-target residence time is 

shown in Table 1. One of the first published methods was a QSKR (quantitative structure kinetic 

relationship) model that used VolSurf descriptors of mainly water to predict the residence times of 37 

HIV-1 protease inhibitors [26]. Another method used COMBINE analysis, which uses the 

electrostatic and Van der Waals interactions made by specific protein residues to the ligand as 

features (with different weights) in a PLS (partial-least square) model [27]. Another ML-based 

method, used protein-ligand interaction fingerprints from random acceleration molecular dynamics 

trajectories of ligands dissociating from HSP90 [28]. By doing this, not only was a support vector 

(SV) regression model developed that can predict residence times of prospective HSP90 ligands, it 

also allowed for ligand interactions with specific protein-residues to be noted as important in 

extending residence time, helping to guide structure-based drug design for HSP90 ligands. The 

general accuracy of all these methods is around 1 log unit. These studies were primarily validated on 

small datasets, making the true predictive nature of the difficult to assess. 

 

The ability to deploy any of these ML models is very much dependent on the specific protein system 

under study as one can only predict residence time of a compound for a protein target when there is 

enough kinetic binding data for that protein with which to train a ML model. This constrains the 

application of these methods to well-studied protein systems and makes them less suited to drug 

discovery, which often involves developing pharmaceuticals against novel protein targets (first-in-

class targets). 

 

2. Materials 

This section details instructions of the Python libraries that need to be installed to perform the ML 

methods detailed here. 

 

2.1.1 To install PyQSAR [29], one needs to create a Python 2.7 environment (NOTE 1). 

conda create –name py2 python=2.7 



2.1.2 For ligand feature generation, Mordred [30] will be used. This must be installed in the 

Python 2.7 environment. 

2.1.3 In a separate Python 3.7 environment, install the following packages: matplotlib, RDKit, 

pandas, and scikit-learn. 

 

 

 

3. Methods 

This chapter describes two ML methods that can predict drug-target residence time. The first is a 

ligand only method, in other words, features from the ligand alone are used to train the model. The 

second method incorporates features of the ligand and its protein target. Structural data or a high-

quality homology model is required to carry out the second method. 

 

3.1 Kinetic binding data 

For either method, one requires training data to train the supervised ML models. This needs to be 

experimentally-determined ligand residence time values for a specified target(s). One can obtain 

ligand kinetic data from ChEMBL [31] by searching by activity type, however ,the data is much 

sparser than for binding affinity endpoints and is often far from a comprehensive source of all of the 

kinetic data available in the literature. A recently published database, KOFFI-DB (http://koffidb.org), 

contains kinetic parameters of ligand binding derived from surface plasmon resonance. Currently 

approximately 1000 koff values are available in this database. By far, the largest collection of kinetic 

data is the KIND (KINetic Dataset) which contains 3812 entries collated from 21 publications and 

data produced by the EU-IMI consortium K4DD (http://k4dd.eu) for a wide range of targets including 

ion channels, kinases and GPCRs [24]. Even though this may seem impressive, it is vastly smaller 

than equivalent databases for binding affinity. For single targets, kinetic ligand binding data is quite 

sparse, generally fewer than 100 entries. The paucity of kinetic data is one of the main challenges of 

using ML to predict residence time. 

http://koffidb.org/
http://k4dd.eu/


 

In the examples shown in this chapter, GPCR data scraped from publications and manually curated 

will be used. These 536 entries are approximately double the number of entries found in the KIND for 

GPCRs [24] and can be downloaded from https://potterton48.github.io (see Note 2). Temperature 

corrected residence time values were calculated to minimise the impact of the difference in 

temperatures used by different research groups in different publications when performing the kinetic 

assay. All residence time values were corrected to the mean temperature used across all experiments 

(294.15 Kelvin) using Arrhenius’ equation (see Equation 1). As the change in temperature was small 

(under 15 Kelvin), the frequency factor (A) was assumed to be constant. 

 

𝑘𝑜𝑓𝑓 = 𝐴𝑒−
𝐸𝐴
𝑅𝑇        (𝐸𝑞 1) 

 

It is important to make sure that the training data are relatively representative of the test compounds. 

For this reason, the peptide entries for the NK1 receptor were removed from the example GPCR 

training set. 

 

3.2 QSKR on ligand-only features for a single target 

The first method, the ML model trained on ligand features alone, is a QSKR multi-linear regression 

model for a single target. An open-source Python library, PyQSAR [29], will be used to carry out the 

QSKR modelling. 

3.2.1 Create a table with three columns: the compound name, the compound SMILES string and 

the associated experimentally-determined, temperature-corrected residence time. These 

data will be used as the training and testing data of the QSKR model. 

3.2.2 Investigate the spread of the residence time values, does it follow a normal distribution? If it 

does not, you may want to transform the data to achieve this. In the GPCR example, a log10 

transformation was used for this purpose. 



3.2.3 Launch the python 2.7 environment with “conda activate py2” on macOS/Linux or “activate 

py2” on Windows, in order to use PyQSAR. Then launch a Jupyter Notebook session. 

3.2.4 Import the following libraries: pandas, numpy, Mordred, RDKit, multiprocessing, pyqsar, and 

scikit-learn. 

3.2.5 Use the pandas library to load the table with the SMILES strings and associated residence 

time values into Python 2.7. 

3.2.6 To generate features of the compounds using Mordred, RDKit molecules first must be 

created for each of the compounds from their SMILES strings. 

mols = [Chem.MolFromSmiles(mol) for mol in \     

df['SMILES'].values.tolist()] 

This command loops through each value of the “SMILES” column in the DataFrame and 

generates a RDKit molecule from that, storing it in a list. 

3.2.7 Generate approximately 1500 ligand features using Mordred. This may take some time, but 

approximately 10 compounds will be processed per second on a single CPU. Mordred is 

freely available, but programs such as Dragon [32] can be used to generate even more ligand 

features (see Note 3). 

3.2.8 Remove features with no values generated. This can happen when a descriptor does not 

apply to a particular ligand. If only a limited number of ligands are missing values for a given 

descriptor, the data could be filled in with, for example, the median value. 

3.2.9 Scale the data within each column using Scikit-learn. 

3.2.10 Now split the data into training and test (hold-out) sets. Typically, an 80:20 split is used to 

maximise the amount of data for training. There are several different methods one can 

employ to split the data, the simplest being a random split (see Note 4). 

3.2.11 Cluster the features to find highly correlated features reducing the number of overall 

features that need to be searched using the genetic algorithm. 



3.2.12 Carry out feature selection using a genetic algorithm, selecting only a single feature from a 

cluster in order to prevent highly correlated features being selected at the same time. The 

target information and the experimentally-determined residence time will need to be 

provided. The “components” argument in the feature selection function determines the final 

number of features to be included in the QSKR model (see Note 5). This step may take 

several minutes to hours depending on the number of ligands and computing power. This 

command will return the names of the selected features that have the best predictive 

power. 

3.2.13 Save both the test and training data for the features that have been selected as .csv/pickle 

files. Also save the experimentally-determined, temperature-corrected residence time 

values as a .csv/pickle files. 

3.2.14 Open a Jupyter Python 3 Notebook, by closing the Python2.7 environment “conda 

deactivate py2” and then relaunching Jupyter Notebook. Load the following modules: scikit-

learn, pandas, matplotlib. 

3.2.15 Load the saved feature data and target data (experimentally-determined, temperature-

corrected residence time) into Python into two separate pandas’ DataFrames. 

3.2.16 Train the multilinear regression model on the training data using the features selected in the 

feature selection stage. Use that trained model to predict values for the test set. The quality 

metrics that will be applied are the root mean squared error (RMSE) and R2 (see Note 6). For 

the A1 receptor kinetic data, the following results were achieved: RMSETrain = 0.30, RMSETest = 

0.48, R2
Train = 0.76, R2

Test = 0.67. 

3.2.17 Plot the results using Matplotlib or any other plotting software/package (see Figure 2 for the 

results for the A1 receptor QSKR model). By investigating outliers on the plot, one can 

determine why the model fails in some instances and what can be done to improve it. 

<Figure 2 here> 
 

3.3 Multi-target QSKR model trained on features obtained from molecular dynamics simulations 



In cases where there is insufficient data with which to develop a single-target QSKR model, multi-

target modelling can be used to increase the amount of data. Multi-target models require some 

information of the protein either through explicit representation of the protein the ligand is targeting 

(e.g. by inputting the protein sequence) or through interactions made to the protein by the ligand. 

These models move towards more generalised models for predicting ligand kinetic rates as opposed to 

models only applicable to single receptors or to a single ligand series for a single target. 

 

To extend the COMBINE workflow mentioned in the Introduction [27] to a multi-target model, 

protein family numbering schemes can be used to find equivalent residues to feed into the model as 

training data. For example, for GPCRs, one could use the GPCRdb’s modified Ballesteros and 

Weinstein numbering scheme [33] to find ligand energy values (VdWs and electrostatics) to specific 

residue positions (see Figure 3). 

 

<Figure 3 here>  
 

One of the issues of using protein-ligand interactions to train multi-target models is obtaining 

sufficient data for training the model. The PDBbind database [34] addressed this issue for binding 

affinities by collating all protein-ligand structures in the PDB with associated binding affinity data. 

Due to the lack of ligand kinetic data, the overlap between ligand kinetic data and associated PDB 

structures is very small. Therefore, one has to use predicted structures of the protein-ligand structures 

to increase the data. To increase the reliability of these predicted poses (dockings), one can use 

ensembles of short molecular dynamics (MD) simulations following docking. Training models on 

MD data [35] has been shown to give good performance in predicting values such as log P [36]. A 

short outline of a method to develop a multi-target QSKR model trained on MD simulation data is 

described below. 

 

3.3.1 Obtain protein-ligand starting structures. In preference, use X-ray or Cryo-EM structures as 

starting structures. Failing that, one should use docking to predict ligand binding poses. Bear 



in mind, that the quality of the resulting data obtained (output) heavily depends on the 

quality of the starting structure (input). 

3.3.2 Perform high-throughput molecular dynamics simulations, using a setup that is as 

automated as possible. There are some tools that can help with this such as HTMD [37]. The 

goal is to perform ensembles of simulations to ensure reproducibility of the results. These 

ensembles are replica simulations where the only difference is the starting velocities 

assigned to each atom. 

3.3.3 Obtain properties from the simulations such as hydrogen bonds, RMSD, RMSF, protein-

ligand interaction fingerprints. VMD [38], Chimera [39] or MDAnalysis [40] can help extract 

these features endeavouring to obtain features appropriate for the system and feature to be 

modeled (see Note 7) 

3.3.4 Apply several different ML methods, using the splitting strategies outlined in this chapter. 

Evaluate which method (and hyperparameters) are best using a validation set or by k-means 

validation. 

 

4. Notes 

4.1 PyQSAR [29] is a Python 2.7 library. As Python 2.7 has already passed its “end of life” and thus is 

no longer properly supported, only work that needs to be should be carried out in Python 2.7 

(because it calls upon PyQSAR). Python 3 should be used as the default for everything else. To 

support these different Python environments as easily as possible, Anaconda should be used. 

4.2 All published GPCR-ligand kinetic data was collected into a database. The primary data obtained 

from each published was the ligand name, SMILES string, the temperature the kinetic assay was 

performed at, kon, koff, KD and Ki. Room temperature was assumed to be 294.15 Kelvin. Residence 

time was calculated as the inverse of koff. 



4.3 Other features of the ligand can be used, such as extended-connectivity fingerprints (ECFP) [41]. 

Multiple descriptors can be tested to see which one gives the best performance for the task in 

question. 

4.4 For any kind of split, it is important to ensure that the target value (residence time in the present 

case) has a similar distribution in both the training and test sets. With a random split, it is easy to 

overestimate the power of the model due to compounds in the test set that are very similar to 

the training set in structure and associated target value. A split that takes ligand structure into 

account can be performed to avoid this. Time-based splitting is another option that can recreate 

the scenario of a drug-discovery project. 

4.5 Most QSAR models have fewer than 10 features. In the example shown, four have been chosen 

but the number of features can be varied to determine what is best for a given system. In 

general, the goal is to use the minimum number of features that give rise to fairly good accuracy 

in the training data to reduce the chances of overfitting. Ideally, if data permits, a validation set 

would be used to investigate how many features should be included in the model for optimum 

performance. 

4.6 RMSE has the advantage of being in the same units as the target data, so is easier to understand. 

R2 gives an indication whether the model performs better or worse than random predictions. 

The bigger the difference between training and test RMSE, the more likely that overfitting is 

occurring. 

4.7 For the GPCR QSKR model, the following features were calculated because they had some level 

of experimental evidence that they contribute to residence time: the interaction energy 

between water and the ligand, RMSD of the second extracellular loop of the GPCR, RMSD of the 

binding site, and measures of size of the ligand. 
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Figure Captions 

1. Correlation between ligand size and drug-target residence time. Scatter plots showing the 

correlation between (top) the drug-target residence times of 500 GPCR ligands and ligand 

molecular weight (MW) and (bottom) between residence time and the number of rings in the 

ligand (no_rings). The least squares linear regression lines are shown as a dashed orange 

lines, the strength of those correlations is shown as R2. 



2. Correlation plot of predicted and experimentally-determined (Expt.) residence time 

(RT) for the QSKR model on A1 receptor kinetic ligand data. The blue, open circles are 

the training data and the orange, opaque triangles are the test data. 

3. Using protein family numbering schemes to find equivalent protein-ligand interactions. 

This figure demonstrates how one can use protein family numbering schemes, in this case the 

GPCRdb’s numbering scheme for GPCRs, to find equivalent residues to assign interaction 

energies to. This example shows two equivalent residues from the first helix the A1 (PDB 

accession number: 5UEN) and the A2A receptor (PDB accession number: 3PWH) in blue and 

peach, respectively. The small heatmap shows example interactions energies, Van der Waals 

(VdW) and electrostatics (Elect), for these two residue positions. 

 

Table Captions 

1. Summary of the published ML methods that predict drug-target residence time. aThe 

accuracy on all compounds, excluding 2 outliers, as reported in the original manuscript. bDue 

to the limited number of compounds, the authors performed “leave-one-out” validation in lieu 

of using a separate test set. cNo test set R2 accuracy was reported; the mean absolute error of 

the training set was reported to be 0.48. dThis is, strictly speaking, the Q2
F3 and not the R2 of 

the test set. 

 

Tables 

Table 1 

Name ML method Protein No. Compounds Accuracy (R2) 

VolSurf QSKR [26] PLS regression HIV-1 protease 37 (28/9) 0.57/0.65 

COMBINE [27] PLS regression HIV-1 protease 36 0.94a/0.70b 

COMBINE [27] PLS regression HSP90 70 (57/13) 0.80/0.86b 

τRAMD FP [28] SV regression HSP90 94 (76/18) NAc/0.56d 
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