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ABSTRACT
The use of backfill in early phase dose-finding trials is a relatively recent practice. It consists of as-
signing patients to dose levels below the level at which the trial is at. The main reason for backfilling
is to collect additional information on efficacy, in order to assess whether a plateau may exist on the
dose-efficacy curve, which is possible with molecularly targeted agents or immunotherapy in oncol-
ogy. Recommending a dose level lower than the maximum tolerated dose at the end of study could
be supported in such situations. How to best backfill patients is not yet established. In this paper we
propose to randomise backfill patients between the doses below the dose where the dose-escalation
experiment is at. A refinement of this would consist of discontinuing dose levels that show insufficient
efficacy compared to higher dose levels, starting at dose level 1 and repeating this process sequentially.
At the end of the study, data from all patients (both the backfill patients and the dose-finding patients)
are used to estimate the dose-efficacy curve. The fit from a change point model is compared to the fit of
a monotonic model to identify a potential plateau. Using simulations, we show that this approach can
identify the plateau on dose-efficacy curves when such a plateau exists, allowing the recommendation
of a dose level lower than the maximum tolerated dose for future studies. This contribution provides
a methodological framework for backfilling, from the perspective of both design and analysis.

1. Introduction
As a key component of the drug development process in

oncology, Phase I dose-finding trials have traditionally fo-
cused on assessing safety and any drug related toxicity due to
cytotoxic agents. The importance of the dose-finding com-
ponent to the whole process has been the subject of recent
work by Conaway and Petroni [2]. In recent years, phase
I trials have increasingly attempted simultaneous evaluation
of efficacy endpoints in various patient populations via dose-
expansion cohorts, with the aim of identifying which pa-
tient population(s) to be the focus of future studies [6]. With
chemotherapy the dose-response curve was traditionally as-
sumed to be monotonic and increasing with dose thus the
working assumption was that a higher dose would be more
efficacious, as long as it remains well tolerated. In other
words toxicity was used as a surrogate for efficacy. In such
settings, the aim was to identify the maximum tolerated dose
(MTD).More recentlywithmolecularly-targeted agents such
as monoclonal antibodies the working assumption that the
dose-efficacy and dose-toxicity curves are increasing with
dose has been challenged [3]. Targeted therapies have shown
that they can have a dose level, abovewhich the dose–response
curve is no longer increasing. This level will frequently be
below the MTD [15, 16]. For this reason the concepts of bi-
ologically effective dose (BED), or optimal biological dose
(OBD), have been increasingly used in dose-finding stud-
ies of monoclonal antibodies. Similarly, some immune ther-
apy agents have shown signs of a dose-response curve that
is rather flat or reaches a plateau in the sense that efficacy is
similar at nearby dose levels [1]. If the dose-efficacy curve
displays a plateau, a dose level lower than the MTD may be
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recommended as the recommended phase II dose (RP2D),
as it reduces the risk of toxicity for patients, incurs no no-
table penalty efficacy-wise and can potentially be more cost-
effective.

While using toxicity data to guide the dose-finding exer-
cise, there are two main ways to assess efficacy in settings
where we hypothesize that a plateau on the dose-efficacy
curve may exist. Firstly, we could identify the MTD in a
dose-escalation study and at end of the dose-escalation part,
include one or several expansion cohorts near the MTD [6,
5, 8, 7, 10]. Secondly, during the dose-escalation study, we
could simultaneously backfill dose levels below the dose level
where the experimentation is at, as these doses would have
been declared “safe”. The objective behind the inclusion of
backfill patients would be to collect additional information
on efficacy on the lower part of the curve below the MTD.
This second approach has recently been implemented in a
few recent studies [12, 11, 18]. For example, in the dose-
escalation phase of a recent dose-finding study of carfilzomib
and panobinostat for patients with relapsed/refractory multi-
ple myeloma, there were four possible dose levels. Dose lev-
els 1 and 2 were each backfilled with three patients. Level 1
was backfilled when the experimentation was at level 3, and
level 2 when the experimentation was at level 4. The timing
of backfill was pre-specified in the study protocol.

Currently, there appears to be no statistical framework in
the literature to provide structure to backfill [9]. Yet spread-
ing or experimenting far away from the MTD still must re-
spect statistical, coherency and ethical principles. Here, we
consider approaches that allocate backfill patients in a way
that maximizes their potential benefit, while still allowing
the evaluation of the shape of the dose-efficacy curve. One
question of particular interest is whether randomization can
be used to allocate backfill patients to doses, andwhich doses
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should constitute the backfill set. If randomization is to be
used, it would be important to discontinue backfilling to the
first dose level (and subsequently to the second dose level et
cetera) as soon as there is enough evidence that its efficacy
is lower than the efficacy of other dose levels.

2. Statistical features of the design
In this Section we describe the main elements of our sta-

tistical approach. In Section 2.1 we gather together the main
notation that we use. Following this we describe in Section
2.2 how to implement an actual trial and, finally, Section 2.3
indicates how the recommended dose is obtained.
2.1. Notation and observations

The study concerns m dose levels and a maximum of n
patients. The goal is to locate the recommended phase II
dose (RP2D) in an efficient and ethical way. The jth pa-
tient, j = 1, ..., n is allocated to one of the m dose levels.
This level is denoted Xj ∈ {d1,… dm}.We define Yj to be
a binary variable (0, 1) where 1 denotes that patient j suf-
fered a dose-limiting toxicity (DLT) and is zero otherwise.
The probability of DLT at dose level di , i = 1, ..., m, is de-
noted R(di) so that, R(di) = Pr(Yj = 1|Xj = di) and where
R(di) < R(dk) when i < k. For the jth patient we will
also record two additional binary variables, Vj andWj . Thefirst of these indicates tumour response. The true probabil-
ity of a positive tumour response at Xj = di is denoted by
Q(di) = Pr(Vj = 1|Xj = di), i = 1, ..., m. The second vari-
able, Wj , indicates which set of patients they are part of: 1
for dose-finding patient and 0 for backfill patient. The data
can be represented sequentially by Ωj = {(xl , yl , vl , wl),
l = 1,… , j}.We are interested in the running tally of suc-
cesses at dose levels di , i = 1, ..., m, and consider the fol-
lowing two quantities:

V̄j(di) = n−1j (di)
j
∑

l=1
VlI(di = xl),

V̄j(d∗i ) = n
−1
j (d

∗
i )

j
∑

l=1
VlI(di > xl) ,

where I is the indicator function, nj(di) = ∑j
l=1 I(di =

xl), nj(d∗i ) =
∑j
l=1 I(di > xl) and where we define 0/0 =

0.
As far as the rates of DLT are concerned we lean on a

one-parameter model-based design,  (xj , a) where a is themodel parameter, which will help us identify the MTD. In
terms of efficacy data, our model �(xj , b) where b is a vec-tor of parameters, can take two different shapes, one with a
plateau and one without a plateau, each one resulting in a
specific approach to dose recommendation.

During the study, we need to dynamically determine the
set of acceptable doses for backfill based on accumulating
efficacy data. The highest dose level in this set is always one
dose level lower than the dose where the dose-finding exper-
iment is at. The lowest dose level is level 1 as soon as the

second dose level is opened for dose-finding patients. Using
our running tallies V̄j(di) and V̄j(d∗i ), we define the hypoth-esis H0 to help us decide whether the first dose level, and
subsequently the second dose level et cetera, can be removed
from the set. In statistical terms we writeH0 ∶ E[V̄j(di)] =
E[V̄j(d∗i )] , i = 1. This process is iterative. As long as we
remain underH0 then backfill to the lowest dose level can bejustified as there is not enough evidence that signals higher
efficacy rates at higher levels. When H0 is rejected for the
first time, we discard the first dose level from the set, and
redefine H0, now as E[V̄j(di)] = E[V̄j(d∗i )] , i = 2. This
results in the sequential elimination of doses that show com-
paratively insufficient efficacy. We present in Section 2.2
how we intend to testH0 in practice.

At the end of the study, we contrast the following two
hypotheses to make a final dose recommendation that com-
bines efficacy and toxicity considerations:

• H1 ∶ Q(di) < Q(dk) when i < k.
• H2 ∶ There exists ℎ , 1 < ℎ < m, such that Q(di) <
Q(dk) when i < k < ℎ and Q(di) = Q(dk) when
i ≥ ℎ , k ≥ ℎ.

UnderH2 the probability of tumour response is assumed to
increase with dose up to a certain dose level, and to then
be reasonably well approximated by a plateau. There are
a number of different ways in which we can decide between
H1 andH2 which of the two is best supported by the efficacy
data at the end of the study. We provide ways to test these
hypotheses in Section 2.3.

In our framework, we have 3 different expressions of
the likelihood to consider. The first relates to the dose-DLT
model  (xj , a). The second and third expressions relate to
the dose-efficacy curve and correspond to the hypotheses
outlined by H1 and H2. From a frequentist perspective our
running estimate of the parameter a comes from the estimat-
ing equation, U (1)n (â) = 0 where:

U (1)n (a) =
n
∑

j=1
wj

[

yj
 ′

 
{xj , a} + (1 − yj)

− ′

1 −  
{xj , a}

]

. (1)

UnderH1, our running estimate of the vector b comes from
the zeros of U (2)n (b̂) where:

U (2)n (b) =
n
∑

j=1

[

vj
�′

�
{xj , b} + (1 − vj)

−�′

1 − �
{xj , b}

]

. (2)

Under H2, and, for given ℎ , 1 < ℎ < m, our running esti-
mate of the vector b comes from the zeros of U (3)n (b̂) where:

U (3)n (b) =
n
∑

j=1
jℎ

[

vj
�′

�
{xj , b} + (1 − vj)

−�′

1 − �
{xj , b}

]

+∑n
j=1(1−jℎ)

[

vj
�′

� {dℎ, b} + (1 − vj)
−�′
1−�{dℎ, b}

]

, (3)
in which we use jℎ to abbreviate I(xj < dℎ). U (1)n (a) is

orthogonal to bothU (2)n (b) andU (3)n (b) but, of course,U (2)n (b)
and U (3)n (b) are not orthogonal to one another.
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From an operational standpoint we have two sequential
dose allocation schemes taking place iteratively during the
study. First, wemake use of the continual reassessmentmethod
(CRM) [13] to identify theMTD, using DLT data from dose-
finding patients, and, secondly, we carry out sequential test-
ing of H0. These schemes impact the allocation of dose-
finding and backfill cohorts, which we consider in the next
section.
2.2. Allocation of cohorts of patients during the

study
We need keep track of the two distinct cohorts of pa-

tients:
1. So called dose-finding patients are those whose ob-

served DLT data contribute to the dose-escalation de-
cisions during the course of the study. If patient j be-
longs to this cohort thenWj = 1.

2. The backfill patients are the patients that are randomised
to dose levels below the level that is explored with
dose-finding patients. The observedDLT data for these
patients do not influence the dose-escalation decisions
during the study. If patient j belongs to this cohort
thenWj = 0.

In practice dose-finding patients are recruited first when a
new dose level is opened following dose escalation. There-
after, backfill patients are individually randomised to the dose
levels that are part of the backfill set, in the way that de-
scribed below in this Section.
Dose-finding patients

We make use of the Bayesian CRM as model-based de-
sign [13, 17] to allocate dose-finding patients to the available
dose levels. The dose-finding exercise starts at the first dose
level, and dose-skipping is not allowed. Within these con-
straints, the allocation of the dose level for the next cohort of
patients is to the dose level with an estimated DLT risk clos-
est to the target toxicity level (TTL) denoted �. To model
the dose-DLT relationship, we assume a working model of
the form  (di, a) = �ai , where �i are the standardised doses
(skeleton) representing the discrete dose levels di and a fol-lows an exponential distribution with � parameter equal to 1.
Given that the prior mean of the model parameter is equal to
1, the standardised dose is equal to the prior estimate of DLT
probability at each dose level. We employ the posterior plug-
in mean estimate of DLT probability for dose-escalation de-
cisions [13].
Backfill patients

We use the dose-finding patients to guide us to our best
current estimate of the MTD. When this estimate is at level
2 or higher then we can address the question of whether and
how to backfill patients to those levels lower than the current
estimate of the MTD. We will associate a probability of a
backfill patient being allocated to any of these lower levels,
including a probability of zero when the evidence is such as
to suggest insufficient efficacy at that level. Specifically, we
proceed as follows:

1. For as long asH0 has not been rejected, we randomise,
according to G(di) to all dose levels below the level
where the dose-finding experimentation is currently
at. We use a discrete uniform distribution for G(di),resulting in equal probability of randomisation at each
dose level of the set of acceptable doses for backfill;

2. As soon asH0 has been rejected for the first dose level,we randomise, according to G(di) , i = 2, ..., m to all
dose levels excluding the lowest level. The same idea
then applies as we continue the study.

Any acceptable test can be used to sequentially monitor
H0. In our case we chose to carry out a test ofH0 on the ba-sis of a Bayesian Beta-Binomial model, assuming a uniform
prior on the (0,1)-interval for the true (but unknown) proba-
bilities of response that govern both V̄j(di) and V̄j(d∗i ). We
specify the test of H0 by picking some difference between
the rates at the lowest level available and the higher levels,
and an associated probability of it. Specifically we chose a
difference of zero and a posterior probability of a difference
of 80% as threshold to rejectH0.
2.3. Dose recommendation at study completion

The sequential allocation to the current estimate of the
MTD results in a final estimate of the MTD at study com-
pletion, this estimate being the level the next patient would
have received, had one further patient been included in the
study. No additional model fitting is carried out. The data
involved in this estimate come from information from the
dose-finding patients. In particular the information from back-
fill patients is not used. However, the determination of RP2D
will make use of all of the observations, those tumour re-
sponse observations from the backfill patients aswell as those
from the dose-finding patients. These observations are used
to calculate the observed efficacy rates. They are also used
in the more flexible models for �(xj , b). Not only do we useall of the data to estimate the unknown components of the
vector b but also we will use the full data set to decide which
of two forms for �(xj , b) has the strongest support. Choos-ing between competing model forms come under the head-
ing of model choice. The first model form is one where the
success rate is monotonically increasing over the doses and
any choice for �(xj , b) that satisfies the strict monotonicity
constraint could be used. Here, and in our illustrations be-
low, we appeal to the well-known logistic transformation in
which b = (�0, �1), where �0 is the intercept parameter and
�1 > 0, the slope parameter.

The second form of interest formodelling�(xj , b) is slightlymore complex as it involves a plateau occurring for doses
higher than ℎ, a conceptual continuous value for a dose. We
treat ℎ as an unknown parameter so that one possible pa-
rameterization for �(xj , b) would specify b as of dimension
3, with a logistic specification for doses below ℎ, followed
by a plateau for those doses above ℎ. When d1 < ℎ < dm,the model is well-specified and all 3 parameters, �0, �1 and ℎcan be estimated. We might push ℎ to the limit of the above
parameterization, i.e., ℎ = dm. In this case we have a strictlymonotonic dose-efficacy curve. We specify the second form
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in the following way:

log
Q(di)

1 −Q(di)
= �0 + �1

{

I(xj ≤ ℎ)xj + I(xj > ℎ)ℎ
}

, (4)

d1 < ℎ < dm, �1 > 0.

In some formal way then, we can express the problem
of model choice as one between two hypotheses: the first in
which ℎ = dm (for which we use the first model specifica-
tion, i.e. the logistic model without plateau) and the second
in which d1 < ℎ < dm. Our estimated RP2D will depend
upon which one of these two hypotheses is best supported
by the data. We can include any prior information on the pa-
rameters of the two models. In our illustrations the prior dis-
tribution for ℎ is taken to be uniform on the range of explored
dose levels. For �0 and �1 we may use minimally informa-
tive prior distributions, using normal distributions centered
at zero with large variances. The same prior distributions for
�0 and �1 were used in the models with a change point and
the models without a change point in our illustrations below.
How to make best use of the posterior distributions is a topic
we have not studied and, for our examples, we simply used
the posterior mean. From the computational angle, note that
a model without a plateau is a conventional Bayesian logistic
regression that can be fit with standard software.

Our running estimate of the MTD will also be our RP2D
if we conclude that a model without a plateau provides the
best explanation of the data. If though we conclude in favor
of a model with a plateau then it makes sense to choose a
dose as low as possible but on the plateau. This will have the
advantage of lowering the rate of adverse effects but ought
only to make a very small difference to the rate of efficacy,
or none at all in the case of a pure plateau. In this case we
revise our final estimate of the MTD from the running es-
timate based on the dose-finding patients alone to a lower
dose. This is then the RP2D. Although unlikely, it is theo-
retically possible for the estimated plateau to take place be-
yond the currently estimated MTD.We say unlikely because
we have little in the way of observations beyond the MTD. If
this should occur then we would take the estimated MTD as
the RP2D and make no use of the plateau. Model choice is a
very broad topic and the many approaches within this topic,
in particular as they relate to change point models, are rele-
vant to our work here. We have not carried out any study into
the many options available and chose one well understood
and popular method based on leave-one-out cross-validation
[4, 20]. This is a technique that selects the model with great-
est predictive ability on an empirical basis.

3. Simulations
3.1. Illustration of a single hypothetical

dose-finding trial with backfill
We present here as illustration a dose-finding trial that

was simulated according to the dose-efficacy and dose-DLT
curves shown in Figure 1A. We set the target toxicity level
� at 25%. From a toxicity perspective, dose level 5 cor-
responds to the MTD. The dose-efficacy curve presents a

plateau from dose level 3 at 25% for tumour response rate.
Recommendation-wise at the end of study, the RP2D should
be dose level 3, since it provides the same efficacy as dose
level 5 but with a lower DLT rate.

In this simulated trial a one-parameter Bayesian CRM
model was employed to model the dose-DLT curve, as de-
scribed in Section 2.2. The CRM’s skeleton was equal to the
true probabilities of toxicity. The study started at dose level
1 and dose-skipping was not allowed.

The evolution of the trial is shown in Figure 2. Ten dose-
finding cohorts of three patients and nine backfill cohorts of
three patients were allocated during the study, for a total of
57 patients. The first DLT was observed at dose level 4 in
a patient from the fourth dose-finding cohort. Until then no
positive response had been seen in the dose-finding patients.
At this point backfill patients had been randomised to dose
levels 1 to 3. No DLTs and no positive responses had been
seen in the backfill patients. The study continued to dose
level 5, with three additional dose-finding patients on dose
level 5, and randomisation of 3 backfill patients to dose lev-
els 1, 3 and 4. This backfill patient at dose level 4 experi-
enced the first positive tumour response in the study. The
trial continued in this fashion until 57 patients in total had
been dosed, as shown on Figure 2. Randomisation to dose
level 1 was discontinued for backfill patients after the 39th
patient. Five responses had been seen by then at dose lev-
els 2 and higher among 30 patients, and none among the 9
patients at dose level 1. The posterior probability of a differ-
ence in probability between dose 1 on the one hand, and dose
levels 2 and higher combined on the other hand, was 84.8%,
greater than the threshold of 80% proposed in Section 2.2.

At the end of the study, dose level 5 was the MTD with
respect to the TTL of 25%. The posterior plug-in estimate
of DLT risk was 22.5% at dose level 5, and 32.7% at dose
level 6. Efficacy-wise, a model with a plateau was retained
as better fit to the data, in comparison to a model without
plateau. Indeed the comparison of predictive accuracy, us-
ing leave-one-out-cross-validation, between a change point
model and a conventional logistic regression for efficacy (as-
suming monotonicity between probability of response and
dose level) favoured the change point model. The mean of
the posterior distribution of the change point was 3.72. The
resulting modeled dose-efficacy curve is shown in red with
its confidence band on Figure 1B, in addition to the true and
observed dose-efficacy curves.

Combining efficacy and toxicity considerations, the RP2D
was dose level 4. Its modeled efficacy rate was equal to that
of dose level 5. From a toxicity perspective, the posterior
plug-in estimates of DLT risk were 14.6% and 22.5% at dose
levels 4 and 5 respectively.
3.2. Simulations of six different scenarios

To assess the performance of our proposed backfill strat-
egy, we considered six scenarios, each with seven dose lev-
els. These are presented in Figure 3 and described quanti-
tatively in Table 1. In all scenarios the target toxicity level
was set at 25%.
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In the first two scenarios (scenarios A and B), the RP2D
should be dose level 3, given that it corresponds to the start
of the plateau efficacy-wise at a lower dose level than the
MTD at dose level 5. Indeed, recommending dose level
3 would provide an equal efficacy rate compared to level
5, with reduced toxicity. In scenarios C and D, the RP2D
should be dose level 7, corresponding to the MTD, given
that there is no plateau on the dose-efficacy curves. In the
last two scenarios (E and F), given that the plateau starts at
the MTD (scenario E) or a dose level higher than the MTD
(scenario F), the MTD itself, which is dose level 4, should
be the RP2D.

As in Section 3.1, a Bayesian one-parameter powermodel
was employed tomodel the dose-DLT curve. AGamma(1,1)
prior was used for the model parameter. The CRM’s skele-
ton was equal to the true dose-DLT curve in the first two
scenarios, but was different to the true dose-DLT curve in
the remaining four scenarios.

The simulated trials started at dose level 1. Dose-skipping
was not allowed. Ten dose-finding cohorts of three patients
were used, and randomised backfill cohorts of three patients
were used as long as the experimentation was at dose level 2
or higher. In order to discontinue dose levels, a threshold of
80% was used for the probability of a difference in efficacy
rates between the first dose level (and subsequently the sec-
ond dose level etc) and the remaining dose levels combined.
1000 simulations were performed per scenario. The results
are reported in Tables 1, 2 and 3.

In scenarios A and B, dose levels 3 and 4 together were
recommended 75% and 78% of the time respectively. The
MTD toxicity-wise, dose level 5, was recommended in 16%
and 15% of the simulations in scenarios A and B respec-
tively. A plateau on the dose-efficacy was identified 70%
and 72% of the time in scenario A and B respectively, lead-
ing to a RP2D lower than the estimated MTD in 66% and
69% of the simulations. In terms of discontinuation of lev-
els for the backfill patients, only 14% of the simulated trials
in scenario A did not discontinue the first dose level. This
percentage was 39% in scenario B, due to the less steep slope
of the dose-efficacy curve prior to the plateau. Discontinua-
tion percentages for the first, second and the remaining dose
levels are provided in Table 3.

In scenarios C and D where there was no plateau on the
dose-efficacy curve, the true MTD, dose level 7, was recom-
mended in 51% and 60% of the simulations respectively. In
scenario C, dose level 4 was recommended 30% of the time,
due to the shallow nature of the dose-efficacy curve. The
first dose level was not discontinued for the backfill patients
in 27% and 11% of the simulations for scenarios C and D
respectively, and was discontinued in 33% and 26% respec-
tively. In scenario D, in 76% of the simulations, either dose
level 1, or dose levels 1 and 2, or dose levels 1, 2 and 3, were
discontinued for the randomisation of backfill patients.

In both scenarios E and F, dose level 3 was recommended
45% of the time. Dose level 4, the true MTD, was recom-
mended 36% and 34% respectively. A plateau was identified
in 56% of the simulations for both scenarios, and led to a

RP2D at a level lower than the estimated MTD in 42% and
39% of the simulations in scenario E and F respectively. The
first dose level was not discontinued in 33% and 36% of the
simulations in scenario E and F respectively, and was dis-
continued 31% of the time in both cases.

These results support the fact that a systematic and eth-
ical approach to backfilling lower dose levels can be put in
place, in order to accurately find the RP2D. Inmost scenarios
studied, there were no losses in terms of accurately finding
the MTD or allocating backfill patients at the right levels as
determined by efficacy, while the sample size remained fea-
sible and small as consistent with clinical protocols of early
phase trials.

4. Discussion
The introduction of backfill into early phase dose-finding

trials is a relatively recent development [12, 11, 18, 9]. It is
important to note that the goals of backfill are very differ-
ent to the ones of approaches such as EffTox [19] that use
both efficacy and toxicity data to guide the dose-finding exer-
cise. With backfilling, the dose-escalation process is guided
by toxicity, even though in practice pharmacokinetics and/or
pharmacodynamics data can be formally or informally incor-
porated into dose-(de)escalation decisions. Efficacy data in
the form of partial or complete responses is used to refine the
backfill set during the escalation process, and at the end of
the study to make a dose recommendation. Comparing op-
erating characteristics between a backfill design and EffTox
via simulations would be challenging on two aspects. Firstly
the backfill design aims at spreading backfill patients on dose
levels below the MTD. An EffTox approach aims at concen-
trating the patients on the optimal dose by incorporating both
efficacy and toxicity information in each dose-escalation de-
cision. For this reason it is not easy to compare both ap-
proaches with respect to the proportion of patients allocated
to dose levels. Secondly, it is possible to construct situations
where the optimal dose depends on the method. In Figure 1,
the optimal dose level is dose level 3 according to the backfill
approach. However, with an EffTox approach, depending on
chosen utilities, dose level 2 may be the optimal dose. Con-
sequently, these approaches cannot be compared objectively
with respect to the proportion of simulated studies choosing
the optimal dose, as the definition of the optimal dose varies.

Part of our purpose in this paper is to argue that a de-
velopment such as backfilling needs to take place within the
framework of some formal statistical structure. At the most
elementary level, we would like to be sure that the motiva-
tion for backfill is well grounded. Early in the study, before
much dose escalation has taken place there may be little to
concern us by allocating patients to levels lower than the cur-
rent one: these levels are likely to be not far removed from
the dose that is currently under scrutiny. Given the limited
amount of data available at this point it is not necessarily
feasible to discard any dose level from the backfill set due
to insufficient efficacy. However, as we move away from the
lowest levels, and as we gather more information, we can
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find ourselves in a situation in which, not only is the need
for an answer more compelling but our ability to provide an
answer improves with each new inclusion. In this work we
initially assume a simple structure whereby all the levels up
to the current estimate of the MTD enjoy a comparable rate
of efficacy. A sequential test of the hypothesis governing the
rate of efficacy at the lowest level when contrasted against all
the other levels allows the continuation of backfill to all of
the lower levels. Once the hypothesis is rejected then the
level is no longer a part of the dose-finding algorithm, or at
least no longer a part of the backfill component of the dose-
finding algorithm.

We can pursue the same strategy to the backfill patients
at levels 2, 3 and above. Starting with the lowest, these levels
can be eliminated from the backfill allocation set - one by one
- as we obtain enough evidence to reject a hypothesis that the
current lowest level enjoys an efficacy rate comparable to the
higher levels. Here, we chose to work with a Bayesian Beta-
Binomial model in order to base our decision on the poste-
rior distribution of the difference in tumour response rates
between dose level 1 and the remaining dose levels. This
is not the only way to achieve our objective. Other models
could be used or, indeed, we could make a simple compar-
ison based on the empirical rates. Different approaches to
this comparison could be a subject worthy of further study.
Our approach appeared to work quite well here. For those
simulated scenarios where the dose-efficacy curve was in-
creasing over at least the first two dose levels, this approach
discontinued either the first or the first two dose levels about
50% of the time. Another possible, potentially more real-
istic, model might postulate a steady dose-efficacy function
and one that includes a change point in the slope at some
point on the dose-efficacy curve. Doses below the change
point would be considered unacceptable and removed from
the backfill set. A very extensive literature on change point
detection, in particular when it relates to rates, is available
and could provide some initial input into a further investiga-
tion of the sequential identification of the backfill set. There
is some room then for further study of the best way in which
to structure the backfill component of the study.

A final ingredient to the backfill component of the study
remains and that is the distribution,G(di) to the backfill doses.Here, for simplicity, we have taken this to be discrete uni-
form over the backfill set. However there is no added dif-
ficulty in working with some other choice for G(di), possi-bly one that puts more weight on those doses closer to the
MTD than those further removed from it. More research on
G(⋅) is needed. For example, a tendency to keep most of
the backfill set close to the MTD, while reducing the risk
of allocation to ineffective doses will also have the result of
reducing the amount of information we need to discard inef-
fective doses. So, the impact of an apparently conservative
approach to backfill is not immediately clear. Greater com-
plexity would follow if we allowG(di) to also depend on theobserved rates of efficacy. It would be quite a challenge to
find a way to decide among the various options which ones
are the most promising. In some instances, including the

lowest dose level in the backfill set may not be appealing to
investigators and sponsor. Indeed there might be prior in-
formation (from pharmacokinetic data for example) that the
efficacy rate at the starting dose level may not be sufficiently
high to justify backfilling this level. In our framework, this
would be achieved by allocating a fixed weight of zero to
dose level 1, i.e. G(d1) = 0.The main goal of backfill, as far as our final recommen-
dation is concerned, is to be able to have enough information
to decide whether or not a dose lower than the estimated
MTD may be a more suitable dose to take forward as our
RP2D. Again, there are many potential approaches to pro-
viding an answer to that question. We have taken a simple
approach in which we contrast hypotheses H1 and H2. Theapproach is promising as illustrated by scenarios A and B
where the plateau was identified some 70% of the time. Un-
derH1, we assumed the dose-efficacy function could be ap-
proximated by a logistic model. This could be given more
study. UnderH2,we used a similar function for the first part
of the curve, followed by a change point at which no further
increase in the probability of efficacy is apparent. As for all
modelling, we do not suppose that H1 or H2 describe pre-cisely the mechanisms we are studying but that they provide
working approximations to them. Our interest is focused on
the difference betweenH1 andH2 rather than the exactitudeof either so that, if we feel H2 provides a better descriptionof the observations then we use this information to locate the
approximate beginning of the plateau. We then argued that
this point provides a more effective RP2D than the MTD
itself. Our results showed this quite convincingly in some
cases.

Clearly we cannot hope to come out on top in all situa-
tions and the most challenging situation here would be one
in which the dose-efficacy curve is not particularly steep.
Such a case is shown in Scenario C and does not involve any
plateau. The chances here of choosing incorrectly an RP2D
lower than the MTD are higher since a simple change point
model with a plateau can prove itself to better reflect the ob-
servations than the more accurate monotonic logistic model.
Examples in the dose-finding literature where an incorrect
model provides a better fit than the correct model are quite
common and stem from the paucity of information conse-
quent upon small sample sizes. The error here is not great
since a shallow dose efficacy curve tells us that the lower rec-
ommendation is not too far below the potentially more effec-
tive one at the MTD. All of these issues need to be brought
out at the design stage in order to tie down a particular de-
sign with features that, overall and on average, result in the
kind of operating characteristics that the study investigators
deem suitable.

It was necessary to make a number of choices in order
to find a design that can be implemented in practice. Some
of these may seem quite arbitrary such as the class of dose-
finding models we chose to work with. Other choices relate
to design calibration and, under this heading, we might wish
to investigate various possibilities for the selection of a suit-
able G(di). A final set of choices were made in order to gain
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an angle on statistical properties. Under this heading there
is our choice to employ a subset of patients to identify the
MTD and the whole cohort to identify which doses can be
considered acceptable for the backfill set. A significant body
of theoretical study is available to us to confirm that this
approach avoids any potential bias in estimating the MTD
[14]. We could potentially make fuller use of all of the data
and there may be ways in which information gleaned from
the backfill set could be employed, at least in part, to help
improve our sequential location and final estimation of the
MTD. This would be worthy of further study.

It is important to note that backfillingmay delay the com-
pletion of the study. However, backfilling is done in practice
nowadays because investigators believe that this may be a
price worth paying in order to collect additional informa-
tion during the study, including assessing whether there is a
plateau on the dose-efficacy curve. Nonethelesss, as illus-
trated in Figure 2, backfilling takes place simultaneously as
the dose-finding cohorts. This saves time compared to back-
filling after completing the dose-escalation phase.

In this paper we have provided a comprehensive frame-
work to backfill patients in a controlled way in oncology
dose-finding trials that takes into account the ethical con-
straints that we should not backfill to dose levels as soon as
there is evidence of insufficient efficacy.
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Figure 1: (A) True dose-DLT and dose-efficacy curves from which the hypothetical trial
data were simulated, (B) true, observed and modeled dose-efficacy curves in the hypo-
thetical trial after 10 cohorts and 57 patients in total. The shaded grey area corresponds
to the limits of the 2.5%-97.5% quantiles of the posterior distribution of the modeled
dose-efficacy curve

Dehbi et al.: Preprint submitted to Elsevier Page 8 of 13



Controlled backfill

Figure 2: Evolution of the hypothetical dose-finding trial
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Figure 3: Simulation scenarios: (A) dose-efficacy curve displays a plateau at 25% tumour
response probability from dose level 3 and MTD is dose level 5 (TTL is 25% for all
scenarios), (B) dose-efficacy curve displays a plateau at 15% tumour response probability
from dose level 3 and MTD is dose level 5, (C) monotonic dose-efficacy curve reaching
28% at dose level 7, which is also the MTD, (D) monotonic dose-efficacy curve reaching
49% at dose level 7, which is also the MTD, (E) dose-efficacy curve displays a plateau at
dose level 4 at 20% tumour response probability and MTD is dose level 4, (F) dose-efficacy
curve displays a plateau at dose level 6 at 24% tumour response probability and MTD is
dose level 4
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Table 1
Dose-efficacy curve, dose-DLT curve, skeleton, recommenda-
tions and in-trial allocations of the six simulated scenarios

Dose level
1 2 3 4 5 6 7

Scenario A
dose-efficacy curve 5% 15% 25% 25% 25% 25% 25%
dose-DLT curve 1% 4% 8% 16% 25% 35% 46%
skeleton 1% 4% 8% 16% 25% 35% 46%
% of recommendation for dose 0% 0% 29% 46% 16% 8% 1%
% of patients receiving dose 16% 18% 20% 19% 17% 9% 2%
Scenario B
dose-efficacy curve 5% 10% 15% 15% 15% 15% 15%
dose-DLT curve 1% 4% 8% 16% 25% 35% 46%
skeleton 1% 4% 8% 16% 25% 35% 46%
% of recommendation for dose 0% 0% 32% 46% 15% 6% 1%
% of patients receiving dose 18% 19% 18% 18% 17% 8% 2%
Scenario C
dose-efficacy curve 4% 8% 12% 16% 20% 24% 28%
dose-DLT curve 0% 0% 1% 4% 8% 16% 25%
skeleton 5% 10% 15% 20% 25% 30% 35%
% of recommendation for dose 0% 0% 0% 30% 10% 9% 51%
% of patients receiving dose 17% 16% 14% 13% 11% 10% 19%
Scenario D
dose-efficacy curve 7% 14% 21% 28% 35% 42% 49%
dose-DLT curve 0% 0% 1% 4% 8% 16% 25%
skeleton 5% 10% 15% 20% 25% 30% 35%
% of recommendation for dose 0% 0% 0% 14% 13% 13% 60%
% of patients receiving dose 15% 15% 14% 13% 12% 11% 19%
Scenario E
dose-efficacy curve 5% 10% 15% 20% 20% 20% 20%
dose-DLT curve 4% 8% 16% 25% 35% 46% 56%
skeleton 3% 10% 17% 25% 32% 40% 48%
% of recommendation for dose 0% 5% 45% 36% 11% 2% 0%
% of patients receiving dose 21% 22% 24% 19% 10% 3% 1%
Scenario F
dose-efficacy curve 4% 8% 12% 16% 20% 24% 24%
dose-DLT curve 4% 8% 16% 25% 35% 46% 56%
skeleton 3% 10% 17% 25% 32% 40% 48%
% of recommendation for dose 0% 6% 45% 34% 13% 3% 0%
% of patients receiving dose 21% 22% 23% 19% 11% 3% 1%
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Table 2
Plateau identification in the six scenarios and recommendation
of RP2D at a dose level lower than MTD

[% of simulations] plateau identification RP2D <MTD due to existence of plateau
Scenario A 70% 66%
Scenario B 72% 69%
Scenario C 41% 41%
Scenario D 31% 30%
Scenario E 56% 42%
Scenario F 56% 39%
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Table 3
Backfill dose discontinuation percentages in the six scenarios

Dose level(s) discontinued
[discontinuation %] none 1 1+2 1+2+3 1+2+3+4 1+2+3+4+5
Scenario A 14% 37% 39% 9% 1% 0%
Scenario B 39% 36% 20% 3% 1% 0%
Scenario C 27% 33% 25% 11% 3% 0%
Scenario D 11% 26% 30% 20% 11% 2%
Scenario E 33% 31% 21% 12% 2% 0%
Scenario F 36% 31% 19% 10% 3% 0%
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