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Abstract. In this paper, we propose JABBIC lookups, a telemetry-
based system for malware triage at the interface between proprietary
reputation score systems and malware analysts. JABBIC uses file down-
load telemetry collected from client protection solutions installed on end-
hosts to determine the threat level of an unknown file based on telemetry
data associated with files already known to be malign. We apply word
embeddings, and semantic and relational similarities to triage potentially
malign files following the intuition that, while single elements in a mal-
ware download might change over time, their context, defined as the
semantic and relational properties between the different elements in a
malware delivery system (e.g., servers, autonomous systems, files) does
not change as fast. To this end, we show that JABBIC can leverage file
download telemetry to allow security vendors to manage the collection
and analysis of unknown files from remote end-hosts for timely processing
by more sophisticated malware analysis systems. We test and evaluate
JABBIC lookups with 33M download events collected during October
2015. We show that 85.83% of the files triaged with JABBIC lookups
are part of the same malware family as their past counterpart files. We
also show that, if used with proprietary reputation score systems, JAB-
BIC can triage as malicious 55.1% of files before they are detected by
VirusTotal, preceding this detection by over 20 days.

Keywords: Malware triage · Word embeddings.

1 Introduction

The anti-malware industry is confronted by the challenge of identifying malware
in large amounts of telemetry data from files downloaded by end-hosts using
their client protection solutions [31, 38]. Typically, antivirus software collect and
transmit telemetry data from a large number of client machines when users
download files that are potentially malicious and unknown to the proprietary
security vendor. Since security vendors do not possess unknown downloaded
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binaries but only telemetry reports, they rely on file reputation score systems
to prioritize and collect those binaries that require utmost attention. At this
stage, however, malware analysts need to make decisions as to which files should
be prioritized for collection and analysis based only on telemetry data since
state-of-the-art triage systems require the downloaded binaries [11, 37, 18, 19].

A widely used solution is built upon file reputation score systems. Generally,
antivirus (AV) engines rely on a backend system which assign reputation scores
to unknown files. Hash values of unknown files that are found in the backend
system are assigned reputation scores accordingly. When a hash value is not
found in the backend system, the AV engine sends back on-device activity data.
The backend system verifies if the data matches any predefined behavioral rules
and returns a reputation score. Lastly, if the backend system is uncertain then
a negative reputation score is arbitrarily assigned. To this end, we develop the
JABBIC (judge a book by its cover) triage system which uses download contex-
tual information when looking up a file. This way, the backend reputation score
system is provided with additional clues about the extent to which an unknown
file can be deemed as malicious.

JABBIC runs at the interface between file reputation score systems and mal-
ware analysts, and leverages download telemetry data to match unknown files to
known malicious files such that the semantic and relational similarities between
their associated telemetry data is maximized. The match itself is accompanied
by a confidence score which, if above a set threshold, indicates whether an un-
known file and the known malicious file it has been matched with are likely to
belong to the same malware family or be siblings by parent files, file naming
patterns, signers, or a combination of these. Malware analysts are thus able to
better guide their decisions as to which unknown files with negative reputation
scores, potentially in the order of millions, to collect and analyze first.

JABBIC uses word embeddings which are an approach developed within nat-
ural language processing (NLP) to capture semantic and relational properties
between words [24]. Words are projected to a latent space - an n-dimensional
vector space - in such a way that vectors that are close in latent space have cor-
responding data points that have some degree of relatedness [23]. Word2Vec [24],
a word embedding algorithm, takes as input a corpus of natural text and, given
a window size relative to each sentence, outputs a vector representation for each
unique word which reflects its meaning. We adapt this idea by applying the ap-
proach to abstract ‘sentences’ which describe file download events, the ‘words’
of which refer to characteristics of the download telemetry data (such as ASes,
network and host IDs, domain names, and URL paths).

2 Related Work

Researchers have developed state-of-the-art systems that show great promise
on detecting malware using word embeddings. The authors in [11] proposed a
methodology that used Word2Vec and TF-IDF algorithms to embed API syscalls
functions from malware binaries. These embeddings captured the infection be-
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havior of malicious files and were used to cluster the malware samples into fam-
ilies. In [37], authors presented an Android malware detection system, called
ANDRE, which utilized the raw labels from antivirus vendors, meta-info of bi-
naries, and insights from source code analysis to learn latent representations of
labeled malware samples. Clustering and deep learning were then used to assign
malware families to weakly labeled samples based on how similar they were to
strongly labeled samples. Scalable triage malware triage systems that have also
shown promising results include BitShred [18], MAST [8], and SigMal [19],
all of which rely on binary analysis. Nevertheless, these state-of-the-art methods
require the binary files and rely on a sequence of static and/or dynamic analy-
sis stages. Such detection systems are thus not suitable for the telemetry-based
detection of malware, particularly when it is uncommon for client protection
solutions installed on end-hosts to send a copy of the downloaded binary to
antivirus vendors.

3 Background and Motivation

JABBIC is positioned at the interface between a proprietary reputation score
system – widely used by security companies to flag potentially malicious files
using telemetry data – and malware analysts who decide whether files should be
submitted for further analysis (Fig. 1). When a file is downloaded, the antivirus
software sends telemetry data to a reputation score system that is proprietary
to the vendor. The telemetry data of unknown files with negative reputation
scores are forwarded to JABBIC which then searches for known malicious files
whose telemetry data are similar both semantically and relationally to that of
the unknown files. The unknown and known malicious files, their reputation
scores, and the confidence score with which JABBIC matched them, are sent to
the malware analyst who then decides whether to initiate a file collection request
to the end-host. As shown later in this paper, the confidence score quantifies the
likelihood that an unknown file and a known malicious file found by JABBIC

share the same malware family.

Fig. 1: Improved triage of unknown files using JABBIC at the interface between
proprietary reputation score systems and malware analysts.
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Table 1: JABBIC triage report sample based on telemetry data.
Row
index

Query file (unknown) Match file (known) JABBIC
confidence scoreHash Malware family Risk given reputation score Hash Malware family Risk given reputation score

1 AF4EF... convertad low 01A28... convertad high 0.85
2 F3841... installcore medium DF20D... installcore high 0.76
3 1C233... yakes low 90CDC... yakes high 1
4 D6483... opencandy low 1B487... downloadadmin low 0.56
5 38F6E... swisyn high 27A50... ardamax low 0.49

Prior to the application of JABBIC, the reputation score provides the only
means to rank the risk (and therefore priority) of unknown files (see Table 1).
However, the matching of these files with known malicious files (with high con-
fidence) suggests that this implied ranking is misleading. The low-risk query
files, Table 1 at row indices 1, 3 and 4, are not only matched by JABBIC with
known files having high risk levels but also the same malware families. These files
would thus be incorrectly given the lowest priority which can lead to significant
detection delays. Furthermore, file risk levels based on reputation scores are not
necessarily representative of how malicious they are. For example, the unknown
and known files in Table 1 with the same malware family have a very large
discrepancy in their risk levels despite performing similar malicious activities.
Therefore, we propose that the triage process is based on the JABBIC scores
once files are flagged as suspicious by the reputation score system. JABBIC
scores are also meaningful when compared to reputation scores. For instance,
scores of at least 0.6, a threshold which we set in Section 6, indicate that two
matched files are likely to belong to the same malware family or have some form
of sibling relationship, as shown in Table 1.

4 Data

We leverage a dataset from NortonLifeLock’s data sharing platform. The teleme-
try used in this study does not contain any personal identifiable information. The
dataset contains information on 33,188,789 download events for the entire month
of October 2015, and include the SHA2 string of the downloaded file, the SHA2
string of the parent file that initiated the download, the IP of the file host, the
URL of the file host, and the time and date the file was first observed by Nor-
tonLifeLock. The data also include file reputation scores denoting low, medium,
and high-risk levels. We augmented this dataset with autonomous system (AS)
information. The AS number for each download IP was identified using IP to
AS mappings published on University of Oregon Route Views Archive [2].

4.1 Ground truth labels

We identified 115,705 query file hashes that were downloaded solely on 31 Oc-
tober 2015 to ensure that neither JABBIC nor the baseline methods, which we
discuss in subsection 8.4, had any prior information about these files. For each
query file, we used JABBIC to search its match file in every previous day of the
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same month; thus each query file has 30 matches, one for each previous day, re-
sulting in 515,571 unique matches across all days. This allows us to evaluate the
performance decay of JABBIC over time. Query files can have the same matches
across multiple days and two or more query files can have the same matches for
one or more days. Similarly, we used the baseline methods to search matches
for query files among known files downloaded on 1 October 2015. We limit the
search to one day for the baseline methods because we want to compare their
performance to that of JABBIC when identifying matches among known files
downloaded 30 days prior to when the query files were downloaded. The query
file hashes and the returned match hashes were then searched on VirusTotal [3].

Table 2: Query hashes and corresponding match hashes that were identified by
Jabbic and variant baselines, found on VirusTotal and labeled by AVClass with
a malware family.

Matching method # hashes % found on VT % labelled by AVClass

Query files 115,705 6.71 3.73

Jabbic* matches 515,571 15.34 7.4

Skip-gram** matches 3,012 27.08 12.71

CBOW** matches 4,454 29.88 14.51

fastText** matches 11,618 17.79 9.96

TF-IDF** matches 15,586 22.22 12.38

Bloom filters** matches 25,026 18.57 10.12

LSH** matches 25,099 18.18 9.98
Dropper files 45,567 66.83 63.82

* Unique match and dropper hashes were searched for all 30 days.
** Variant baselines whose performance was evaluated based on their abil-
ity to identify match files downloaded on 1 0ctober 2015. For this reason,
the numbers for unique match and dropper hashes are much smaller when
compared to those reported for JABBIC.

A breakdown of how many queries and unique matches were found as mali-
cious on VirusTotal and labeled with a malware family is shown in Table 2. We
used the AVClass labeler[30] with the VirusTotal scanning reports to retrieve
their malware families. We also searched the dropper hashes of queries and their
matches whose malware families were different but had JABBIC scores within
the threshold set in Section 7. This allowed us to determine whether a query file
and its match were dropped by files with the same malware family despite the
query and the match having different malware families.

5 Methods

5.1 Embedding Download Events

Word2Vec is an approach which can be applied to data which is structured as a
sequence of ‘words’; typically formed into sentences. Unlike natural language, in
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which words are linked by semantics and sentences arise naturally, in order to
apply it in the present context we need to artificially formulate a sentence-like
representation of the file download information. We conceptualized a download
event as a structured fragment of information of the form an AS that owned an
IP address facilitated the download of a file from a domain at a particular
location given by the URL path. Each download event is therefore represented
as the sentence (AS, network ID, host ID, file SHA2, domain, URL path) before
being fed to a Word2Vec model. The structure of the sentence also preserves the
hierarchical structure of the malware delivery infrastructure: (1) the domains
and URL paths form the full file host URLs, (2) ASes own the file host IPs and
hence the latent relationships among host IPs are better captured during the
training; and (3) the position of the file hashes in the sentence ensures that the
latent relationships between host IPs and domains are also indirectly preserved
due to the chosen window size.

Choice of Word2Vec model There are two main types of Word2Vec model
– Skip-gram and CBOW – each with different properties. We choose Skip-gram
for training word embeddings because (1) the aim is to predict the context of
a given word rather than predict the word given a context (e.g., predict context
given a downloaded file, IP, URL, or AS as input rather than vice versa), (2)
Skip-gram performs better with infrequent words [26], which is advantageous
considering the high cardinality of file hashes (e.g., there are 968,174 unique
file hashes for the 1 October 2015 dataset with 1,129,239 file hashes, meaning
that each file appears in the dataset 1.17 times on average), and (3) Skip-gram
does not require large amounts of data to produce high quality embeddings
when compared to CBOW [26]. The weights in Word2Vec models are adjusted
using negative sampling [25]. The recommended negative samples is between
5 and 20 for small training datasets, and 2 to 5 for large datasets [25]. We
chose negative sampling with 5 negative samples to update the model weights.
Subsampling of frequent words and discarding of rare words are omitted to avoid
both removing valuable file hashes, IP addresses, domain names, and URL paths
from the dataset and reducing the vector space within which the search for the
local match is carried out.

Temporal granularity NortonLifeLock collected and aggregated the download
events telemetry on a daily basis. We choose to retain this temporal slicing and
train a separate Word2Vec model for each day. JABBIC lookups can be carried
out sequentially or concurrently on multiple days. A daily granularity allows
us to limit the search space to most recent download events and thus increase
training and lookup speeds; for instance, we find that the strongest matches were
identified a day prior to that of query files and hence there is no need to increase
the search space to an entire month. Lastly, in real-world settings, training a
separate Word2Vec based model on a daily basis minimizes the update delay of
the search space.
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Training hyperparameters We set the starting learning rate (α) at its default
value of 0.025 and the number of epochs at 10. How to choose a suitable embed-
ding size for Word2Vec (i.e., the dimensionality of the latent space) is the subject
of much debate [35]: values between 100 and 300 are usually recommended in
the literature, while a guideline introduced by Google is the fourth root of the
number of categories (e.g., unique words in vocabulary) [4]. Here we adopt the
latter approach: the average vocabulary size across all 30 days of October 2015
is 1,111,775.29, and the average fourth root is 32.44, and so we chose an embed-
ding size of 32. A further choice is the window size to use. Relative to the size
of each sentence, larger windows capture topic-specific information about words,
while smaller windows capture more functional (i.e., syntactical relationships)
information [22]. We set the window size to 2 since we are interested in learning
syntactical relationships between words.

Fig. 2: Correlation values between calculated relatedness scores and cosine simi-
larities, across all pairs of file hashes, for a range of hyperparameter values.

We tested the sensitivity of word embeddings to these choices by training a
Word2Vec model for 1 October 2015 data, containing 1,129,239 download events,
for all combinations of the following hyperparameter values: embedding size: 32,
64, 128, 256; α: 0.025, 0.25; window size: 1, 2, 3, 4, 5; and epochs: 10, 20, 30,
100, 200, 300. We built a dataset that contained file hash pairs together with an
assigned similarity that measured the relatedness between them. The relatedness
score was calculated using the R/O score, described in subsection 5.2, such that
two file hashes that shared similar contexts had higher scores and vice versa. We
calculated these scores for 1000 observations that contained the top 200 most
downloaded files. We then calculated the Pearson and Spearman [14] correlation
coefficients and associated two-tailed p-values between the relatedness scores and
the cosine similarities across all pairs of file hashes. A similar approach was used
in [28] and [12] with datasets containing 999 [15] and 200 word pairs, respectively.

The accuracy of word embeddings using α=0.025, embedding size = 32, win-
dow size = 2, and epochs = 10 was fairly high as indicated by the Pearson
and Spearman correlation coefficients of 0.703 and 0.558, respectively, both with
two-tailed p-values lower than 0.001 (Fig. 2). The highest correlation coefficients
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were obtained using α=0.025, embedding size = 128, window size = 3 and epochs
= 10 (r=0.751, rho=0.654, p<0.001 ) and α=0.025, embedding size = 32, win-
dow size = 4 and epochs = 200 (r=0.762, rho=0.622, p<0.001). However, these
correlation coefficients were only marginally higher than those obtained with
the hyperparameters we initially proposed. We chose to trade off this small dif-
ference in embedding quality for highest training speeds; smaller embedding,
window size, and number of epochs meant faster training speeds.

5.2 Local Matching

To identify matches for a given input file, we adapt the search method developed
by Zhang et al. [36] that finds terms in previous time slices that are semantically
closest to a given input term in the present time slice. The method of Zhang et
al. [36] was designed for querying archives and collections of past documents.

Consider a base vector space, which is the set of vectors trained on the data
containing query files (e.g., Word2Vec model trained on 31 October 2015 data),
and a target vector space, which is the set of vectors trained on the data where
the local match searching is carried out (e.g., Word2Vec model trained on 1
October 2015 data). Given a query file q (unknown file represented by its hash)
in base vector space, the aim is to find its best representative file hash m in
target vector space (known malicious file represented by its hash). We formulate
this problem as follows.

Let Ssim(q,m) = cos(M · q,m) be the across-time semantic similarity be-
tween a query file q in base vector space and a local match file m in target
vector space, where M is the transformation matrix which projects the base
vector space to the target vector space. Let Fq = (V,

∏
) be a download event

associated with query file q, defined by a set of download event elements V –
such that V = q ∪ C, where C = {c1, c2, c3, ..., cu} is a set of u context words
(e.g., ASes, network and host IDs, domains, and URL paths) – and a set of asso-
ciations

∏
= {π|association between q and each context word in C}. Similarly,

let Fm = (V
′
,
∏′

) be a download event associated with file m in target vector

space, with download event elements V
′

and associations
∏′

defined equiva-
lently. The objective is to find the file m∗ such that Fm∗ in target vector space
is most similar to Fq in base vector space. Relational similarity is then defined

as Rsim = cos(M · (q − ci), (m − c
′

i)), where q − ci is the subtraction between

the vector of query file q and the vector of its context word ci, and m− c′i is the

subtraction between the vector of file m and the vector of its context word c
′

i.
The local similarity LS between Fq and Fm is calculated as per equation

1, where v0 and v
′

0 denote the vector representations of query file hash q in
base space and its counterpart file hash m in target space, respectively; vi and
v
′

i denote the vector representations of all i and i
′

delivery infrastructure ele-
ments (e.g., file hash, AS, network ID, host ID, second-level domain, and host
URL) of q and m, respectively; and u is the number of context words. LS is a
weighted combination of semantic and relational similarity, with higher λ values
corresponding to higher weighting for semantic similarity.
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LS = λ ·
∑u

i=0 Ssim(vi,v
′
i)

u + (1− λ)
∑u

i=1 Rsim((v0,vi),(v
′
0,v
′
i))

u (1)

The best local match of query file hash q is given by argmaxm(LS(q,m)),
which returns the file hash m∗ in target space that is most representative of the
query file hash q semantically, relationally, and by delivery infrastructure.

Offline training, whereby words are grouped into time bins and then a Word2Vec
model is separately trained for each slice, is useful for capturing the seman-
tic content of words at discrete intervals. However, each embedding is specific
to its corresponding time bin, which means that embeddings of a particular
word across different time bins cannot be meaningfully compared. Vector align-
ment is required in order to compare vector representations of words in different
vector spaces. For vector space alignment, we use orthogonal Procrustes, an
assumption-free method [34], to project the base vector space onto the target
vector space.

The Ratcliff/Obershelp (R/O) pattern matching algorithm compares two
strings and outputs a value between 0 and 1, where 1 denotes a complete match
between the two strings and 0 indicates no substrings in common. The iterative
process by which the R/O algorithm works is described in [16]. In our context,
we use the R/O score to quantify the overlap between the contextual information
of pairs of query and match files in a string-like sense. Put simply, this measures
the similarity between the contexts of the two files. As shown below, this can
be used as a confidence measure that allows us to quantify the certainty with
which JABBIC can associate a local match file with a given query file.

6 JABBIC Lookups Architecture

The system architecture is illustrated in Fig 3. 1 Determine the temporal gran-
ularity by which telemetry data from known malicious files is to be split (e.g.,
by day). 2 Train separate target vector-based models for each day, and then
store them into a lookup database. This allows for the selection of a specific past
timeframe within which searching for a local match is carried out. 3 Train a
base vector space for the day which contains the query files; that is, those files
that have not been downloaded in any previous timeframes. 4 Select a target
vector space within which local matches are to be searched given the query files
from the base vector-based model (e.g., find local match files downloaded on 1
October 2015 given query files downloaded on 31 October 2015). 5 Align base
and target vector spaces to a common vector space in which cosine similarities
can be computed. 6 Identify query files as those files that have not been seen
before. 7 For each query file in the base vector space, find its most representa-
tive match file in target vector space from a previous timeframe and then assess
the confidence with which these files are matched using the R/O score. After
lookups are completed, the current base vector space can then be added to the
lookup database, which can then be queried when local matches are searched for
queries downloaded the next day.
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Fig. 3: JABBIC lookups architecture.

7 JABBIC Confidence Score Threshold

In this section, we assess the triage performance of JABBIC on download events
from October 2015 for which malware family labels, parent files, and file names
are available from both the VirusTotal scan reports and our datasets. First, we
identify 115,705 unique hashes of files downloaded solely on 31 October 2015 to
ensure that no prior information about these files is known to JABBIC in the
lookup process. For each of these files, JABBIC lookups are used to search their
match file hashes in every previous day. This allows us to assess the triage accu-
racy when lookups are performed on data up to thirty days prior to when query
files were downloaded. Lastly, we relate triage accuracy to the corresponding
R/O scores and then set an optimal confidence score threshold. Unknown query
files matched with malicious known files to a confidence R/O score above the
set threshold are very likely to be related by malware family.

7.1 Matched files and malware families

On average, across all days of October 2015, 81.18% of unique and labeled (query,
match) pairs have the same malware family irrespective of the R/O score. The
percentage of (query, match) pairs with the same malware family increased as the
daily proportion of (query, match) pairs with R/O scores in ranges [0.6, 0.8) and
[0.8, 1] also increased while peaks in R/O scores in range [0, 0.6) led to a percent-
age decrease (Fig. 4). The highest density of (query, match) pairs with the same
malware family was associated with R/O scores in range [0.6, 1]; 89.43% and
87.43% of (query, match) pairs with R/O scores in ranges [0.8, 1] and [0.6, 0.8),
respectively, had the same malware family, while the percentage is much lower
for scores in the range [0, 0.6). Thus, for any given (query, match) pair, a higher
R/O score increases the probability that the malware family of the query file is
the same as that of its match. The certainty with which JABBIC found matches
with the same malware family as that of their corresponding query files was
highest up to seven days prior to when queries were downloaded; on average,
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85.68% of the matches found in these days had the same malware family as their
counterpart query files compared to an average of 79.81% across previous days.

Fig. 4: Percentage of query file hashes and their match file hashes from each
previous day of October 2015 with the same malware families. The plot also
shows the proportion of pairs falling into each R/O band.

Fig. 5: ROC curves for the R/O score metric (R/0 ∈ [0, 1] and thresholds 0.2,
0.4, 0.6, 0.8).

Next, we evaluate the reliability of setting the confidence score threshold at
0.6 when deciding whether a query file (unknown) and a match file (known as
malicious) are likely to belong to the same malware family. This is particularly
useful when, despite missing malware family labels, analysts can rely on the as-
sumption that a query file and a match file, which are paired by JABBIC with a
confidence score of at least 0.6, are also likely to have the same malware family.
Thus, the query file can be prefiltered for collection and analysis by more than
just its reputation score which, as we show in the next section, is not a reliable
risk indicator. First, we calculated the weighted precision, recall, and F1 scores
across all classes (i.e., malware families) to evaluate the average performance
of JABBIC when matching query and known files by malware families. Second,
we assessed how the certainty with which JABBIC assigned malware families
to previously unseen files changed based on different R/O score thresholds us-
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ing the receiver operating characteristic (ROC) curve and area under the ROC
curve (AUC) metrics. The matching process is framed as a binary classification
problem, with each ( query, match) pair being assigned label 1 if their families
are the same, and 0 otherwise.

Table 3: JABBIC performance at matching unknown and known malicious files
by malware families for different R/O confidence score ranges.

R/O range Weighted precision Weighted recall Weighted F1 score Labeled pairs

R/O ∈ [0, 1] 0.87 0.82 0.84 89,158
R/O ∈ [0, 0.6) 0.5 0.36 0.40 11,355
R/O ∈ [0.6, 1] 0.92 0.89 0.89 77,803

For a second stage triage, we aim for the highest true positive rate – identify
as many queries as possible that have the same malware families as their matches
– while accepting a higher false positive rate since the cost of collecting and an-
alyzing mismatched unknown files has no significant practical implications. The
initial triage of files as either benign or potentially malign has already been done
by the reputation score system. Thus, the only implication of JABBIC match-
ing a small proportion of unknown files to malicious known files with different
malware families, is that the unknown files are collected and analyzed earlier
than they otherwise would. For this reason, we accept a confidence R/O score
threshold of 0.6 as optimal, which not only correctly matches the highest pro-
portion of unknown query files to known malicious files by malware families but
also achieves the lowest false positive rate (Fig. 5). Most importantly, however,
is that 89% of matched files with confidence scores in range [0.6, 1] had the same
malware families (F1 score of 0.89 in Table 3). Therefore, malware analysts can
rely on the assumption that if a query file is matched to a malicious known file
with a confidence score of at least 0.6, then the query file is most likely to be
related to the malicious known file by malware family.

7.2 Lambda Parameter

The λ parameter value was set to 0.5, meaning that semantic and relational
similarities were given equal weights in the match lookup process. In Table 4
we also show the percentage of (query, match) pairs with R/O confidence scores
falling in different ranges had 0.2 and 0.8 been used instead. We find that the
confidence scores of (query, match) pairs were not sensitive to the three λ values;
that is, the proportion of (query, match) pairs with confidence scores in ranges
[0.6, 8) and [0.8, 1] did not differ significantly as the λ parameter value was
changed. One reason for this could be that there was a relatively high number
of files that were good candidates as local matches for a each query file. Despite
the lack of sensitivity of local match lookups to the three λ parameter values, it
appeared that setting λ to 0.5 achieved the highest proportion of R/O scores in
ranges [0.6, 0.8) and [0.8, 1], although just marginally.
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Table 4: Matching R/O scores for different λ parameter values.
λ R/O ∈ [0, 0.2) R/O ∈ [0.2, 0.4) R/O ∈ [0.4, 0.6) R/O ∈ [0.6, 0.8) R/O ∈ [0.8, 1]

0.2 1.19% 9.78% 18.90% 41.84% 28.29%
0.5 1.15% 8.89% 18.85% 41.91% 29.20%
0.8 1.02% 8.68% 19.47% 41.83% 29.00%

8 Evaluation

Here we begin by evaluating how the confidence with which JABBIC assigns
a match to a query file changes across time. This allows us to determine the
optimal search timeframe prior to when query files were downloaded. We then
evaluate the extent to which JABBIC can improve the prioritization for collection
and analysis of unknown files already prefiltered by reputation scores. We then
compare the detection times by VirusTotal with those expected from JABBIC if
used as a second stage triage system. Lastly, we compare the triage performance
of JABBIC with n-gram, co-occurrence, and set-based matching baselines.

8.1 Longitudinal decay of triage performance

The R/O scores of local matching provide a measure of the confidence associated
with the triage of a given query file. On this basis, the 115,705 query files,
downloaded solely on 31 October 2015, can be triaged with very high confidence
based on files downloaded up to 7 days before; 35.17% and 41.53% of R/O scores
are in ranges [0.6, 0.8) and [0.8, 1], respectively (Fig. 6). We recommend that the
confidence with which a query and match file are paired by malware family is
evaluated based on the following confidence levels: high (R/O ∈ [0.6, 1]) and
cannot tell for R/O ∈ [0, 0.6). We justify this recommendation based on the
results from subsection 7.1.

Fig. 6: Confidence decay when query files downloaded on 31 October 2015 are
triaged based on matches from every previous day.



14 O. C. Bordeanu et al.

8.2 Reliability of file reputation scores

File reputation scores are not consistent across files belonging to the same mal-
ware families. For example, 616 files with malware family zusy had reputation
scores denoting low, medium, and high levels of risk. To understand the scale
of this observation, we look at the reputation scores of files associated with
each malware family. We use 87,532 labeled unique file hashes and their repu-
tation scores, including files that are neither queries nor matches, which span
across 2,460 malware families. For each malware family, we count the number of
files that fall within it and calculate the standard deviation of their reputation
scores. The higher the standard deviation of reputation scores of files belonging
to a malware family, the lower the triage reliability of those scores since these
files are expected to pose similar threat levels and thus have reputation scores as
close as possible. We find that for 42.13% of labeled files, belonging to 21.22% of
malware families, the standard deviation of reputation scores is 30. For 84.28%
of labeled files, belonging to 29.63% of malware families, the standard deviation
of reputation scores is 20. Files with low-risk levels are thus not necessarily less
suspicious than those with higher risk levels.

Next, we exemplify how JABBIC can prefilter unknown files with negative
reputation scores. Consider that the current date is 31 October for which a large
volume of telemetry is received by malware analysts who then identify 115,705
unknown files flagged as suspicious by the reputation score system. We also hold
telemetry data of files which were downloaded the previous day and known to
be malicious. For each unknown file, JABBIC lookups are then carried out to
identify their local matches from the previous day. JABBIC results show that
80.44% of (query, match) pairs have R/O scores of at least 0.6, meaning that
they are most likely to have the same malware family.

Fig. 7: Triage of query files with R/O scores in range [0.6, 1]. Prioritization for
collection and analysis of query files. A: Reputation scores of query files from
highest to lowest priority); B: Confidence R/O scores of query files ordered by
reputation scores; C: Query files ordered by confidence R/O scores (1 for highest
priority and 0.6 for lowest priority) at low granularity; D: Query files ordered
by confidence R/O scores at high granularity ([0.9, 1], [0.8, 0.9), [0.7, 0.8)], and
[0.6, 0.7))
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In Fig. 7 we illustrate the prioritization of files using the reputation score
system and JABBIC. Query files, sorted in ascending order by their reputation
scores, are matched with known malicious files whose reputation scores do not
reflect similar levels of maliciousness despite being very likely to have the same
malware family (heatmaps A and B). Most notably, query files with lowest pri-
ority would have been prioritized for collection and analysis much earlier judging
by the risk levels of their match files. Similarly, most of query files with highest
priority for collection and analysis are matched with known files having much
lower priority. Heatmaps A and B indicate what we have already shown: (query,
match) pairs have significantly different levels of risk despite belonging to the
same malware families. Therefore, file reputation scores are at most reliable for
an initial triage of unknown files as either potentially malign or benign but not
for further prioritization of malign files. In heatmaps C and D from Fig. 7, query
files are sorted in descending order by the confidence R/O scores with which
JABBIC paired them with known malicious files.

8.3 JABBIC triage vs. VirusTotal

VirusTotal reports both the date when a file was submitted for analysis and the
date it was detected as malign. We show the number of days elapsed since query
files were submitted to VirusTotal until they were detected as malicious. Out
of 113,642 unique query files which had at least one match in any previous day
with an R/O score in range [0.6, 1], 7,320 (6.44%) were submitted for scanning
on VirusTotal by third parties and found malicious (include singletons which are
malignware not belonging to a malware family). The detection times of these files
by VirusTotal are shown in Table 5. More than half of the query files found as
malicious on VirusTotal were detected over 20 days after they were submitted for
scanning. We also include the detection times for all hashes that we scanned and
found on VirusTotal to show that similar detection times are relevant beyond
the sample of query files (Table 5). JABBIC could have triaged and flagged as
suspicious over half the query files in less than a day if not hours, depending on
the search space size, when compared to over 20 days as per VirusTotal.

Table 5: Number of days until detection by VirusTotal.
0 days 1-9 days 10-19 days >= 20 days

Detected query hashes (N=7,320 ) 33.10% 8.31% 3.13% 55.10%
All detected hashes (N=216,582 ) 31.53% 7.41% 3.62% 57.12%

8.4 Variant Baselines

State-of-the-art triage systems require binary-level analysis for which reason
we are not able to compare their performance against that of JABBIC which
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is a telemetry-based triage approach. Instead, we compare the performance of
JABBIC with Skip-gram and CBOW, fastText [7], TF-IDF [29], Bloom filters
[21], and LSH [9] which are commonly used in malware detection systems based
on string-level similarity of opcodes, network packet payloads, application pro-
gramming interface (API) method calls, instruction sequences, and binary strings
[17, 33, 32, 5, 6]. We used fastText with 3 to 6 grams, meaning that the embedding
of each download event component was represented by a bag of 3 to 6 n-grams.
For LSH and Bloom filters we converted each download event into 5-shingle sets.
For example, download event, identified by its file hash CA756..., ‘China169
Backbone 218.58.225.7 dxdown.rilibiao.com.cn/cx/2015092118/’ is shin-
gled into 5-character substrings ‘China’, ‘hina1’, ‘ina16’, and so forth. Given the
small number of 5-character shingles (e.g., not exceeding 50 shingles) per down-
load event, the size of each Bloom filter was set to 1000 with 7 hash functions
to ensure a false positive rate not higher than 0.001, as confirmed by this online
Bloom filter calculator [1]. As per Table 6, the overall performance of JABBIC

not only surpassed that of all baseline methods but was also much faster than
those whose performance was relatively close, particularly set-based matching
with LSH and Bloom filters.

Table 6: Triaging performance of Jabbic compared with n-gram, co-occurrence,
and set-based matching models.

Matching
method

(a) Individual performance

based on all labeled (query,match) pairs

(b) Performance comparison based on

(query, match) pairs with queries for which both Jabbic and the baseline found a labeled match Searching time

(≈ hours)% same malware family N % same malware family (Jabbic) N % same malware family (baseline) N

Jabbic 82.4 3,517 – – – – 5
Skip-gram 23.95 1,027 68.10 840 28.04 731 1

CBOW 7.56 1,680 88.41 2,260 11.37 888 1
fastText (3-6 grams) 68.60 1,258 72.38 1,086 73.18 548 1

TF-IDF 74.74 1,437 72.41 1,131 80.56 607 12
Bloom filters (5 grams) 81.26 1,446 83.58 1,657 89.18 647 124

LSH (5 grams) 80.85 1,504 84.14 1,766 89.57 671 310

JABBIC and variant baselines are compared on query files and their matches down-
loaded on 31 and 1 October 2015, respectively, irrespective of their R/O scores. ( a) The
individual performance results are reported based on how many (query, match) pairs,
out of all labeled pairs, were found to have the same malware family; (b) Results are
reported based on those query files for which both JABBIC and each baseline method
have found a match in order to determine their relative performance on the same query
files. For example, 348 query files were found in 840 and 731 labeled (query, match)
pairs identified by JABBIC and Skip-gram, respectively.

9 System Performance

Training Word2Vec models for each day was carried out on a home machine using
5 CPU cores with 2 worker threads per core. The lookup process was carried out
in batches of 1,500 query file hashes, required 1 CPU core and approximately
140GB of RAM. The average training and search times are shown in Table 7. The
lookup time ought to scale approximately linearly with the number of unique
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files in the search space. The search time of 115,705 query files in a sample
of 1,070,606 download events (daily average) took close to 5 hours, so even an
order-of-magnitude increase should still produce results on useful timescales (and
could be mitigated further by the use of multiple machines/cores).

Table 7: System performance assuming an average training/search space size of
1,070,606 download events.

Machine specifications Running time

Training 6-core CPU at 2.2GHz, 32GB RAM ≈ 1.3 minutes/model
Lookups 32-core CPU at 2.4GHz, 256GB RAM ≈ 5 hours/115,705 queries

9.1 JABBIC limitations

JABBIC lookups rely on the alignment of one vector space to the other, which
requires that some file hashes are found in both vector spaces (i.e., downloaded
in both days). If no file hashes are common to both vector spaces, then the
alignment of one vector space to another is not possible. However, we found that
a sufficiently high number of file hashes were downloaded not only from one day
to another but also across multiple days, thereby the alignment of vector spaces
should not pose any issues in similar analyses, particularly in the case of malware
or potentially unwanted programs (PUP) ecosystems. It is also necessary to know
whether file hashes from all previous timeframes are either benign or malicious,
otherwise they cannot be used to infer the threat level of a query file.

9.2 Data limitations

The malware ecosystem has changed since the period between 2015 and 2016
for which the results in our analysis are reported. NortonLifeLock [10] reported
an 8,500% and 46% increase in file-based coinminer and ransomware infections
on endpoint computers in 2017 alone, respectively, when compared to previous
years when these types of attacks were not as common. Nevertheless, the means
of propagation continue to rely on droppers or a combination of multiple vectors
among which droppers are still present. For instance, file-based cryptojacking
spreads in a similar fashion as traditional malware and continues to be preva-
lent [27]. As such, despite the malware ecosystem increasingly shifting towards
ransomware and cryptojacking attacks, it is still common that their distribu-
tion vectors rely on users downloading the payloads from malicious hosts. For
this reason, malware contextual information – such as payload domains, URLs,
IPs, and ASes – is as relevant to newer types of attacks that rely on dropper
vectors. We thus argue that JABBIC is a useful triage tool as long as file-based
malware – where their distribution is leveraged by drive-by downloads and other
social engineering techniques – continue to be part of the malware ecosystem
landscape.
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9.3 Evasion

JABBIC lookups work under the assumption that the context of malicious file
download for a given malware campaign presents similarity over time. JABBIC

does not make any assumptions about the number of times a file SHA2 has
been downloaded. Indeed, it makes no difference whether or not all files hashes
are unique as long as some or all delivery infrastructures are being reused. This
makes JABBIC less prone to evasion when compared to signature-based or heuris-
tic detection. One way JABBIC could thus be evaded is if malware writers would
avoid reusing, either fully or partially, the same delivery infrastructures over
periods longer than 7 days. Another way to evade JABBIC is to drop a higher
number of benign files using the same delivery infrastructures that they use to
distribute malware and PUPs. This would increase the chance that the returned
local match is benign, tricking the system into assessing the level of threat of its
corresponding query file as inconclusive. However, these evasion techniques are
both atypical for the pay-per-install ecosystem and financially infeasible given
the scalability of the required pay-per-install services and delivery infrastruc-
tures.

10 Conclusion

We proposed a back-end file triage system that operates on top of file repu-
tation score systems used by security vendors to prioritize the collection and
analysis of unknown files downloaded by their clients. When compared to state-
of-the-art malware triage systems that use binary-analysis, JABBIC can function
along client protection solutions installed on end-hosts and using only download
telemetry data. We showed that JABBIC is more reliable for the second stage
triage of files flagged as potentially malign by the reputation score systems,
which allows for better prioritization of files for collection and analysis. Lastly,
we showed that the files triaged by JABBIC could have been flagged as suspicious
much earlier than online scanning services such as VirusTotal.
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