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Abstract 
Recent research has shown fresh evidence that consonant and 
vowel are synchronised at the syllable onset, as predicted by a 
number of theoretical models. The finding was made by using 
a minimal contrast paradigm to determine segment onset in 
Mandarin CV syllables, which differed from the conventional 
method of detecting gesture onset with a velocity threshold 
[1]. It has remained unclear, however, if CV co-onset also 
occurs between the nucleus vowel and a consonant cluster, as 
predicted by the articulatory syllable model [2]. This study 
applied the minimal contrast paradigm to British English in 
both CV and clusterV (CLV) syllables, and analysed the 
spectral patterns with signal chopping in conjunction with 
recurrent neural networks (RNN) with long short-term 
memory (LSTM) [3]. Results show that vowel onset is 
synchronised with the onset of the first consonant in a cluster, 
thus supporting the articulatory syllable model.  
Index Terms: coarticulation, LSTM, RNN, consonant cluster, 
synchornisation 

1. Introduction 
Evidence for co-production between syllable initial segments 
has been shown from the very early days of phonetic research, 
e.g., the observation of lip rounding at the beginning of /ku/ 
[4], tongue rising at the start of /bi/ [5], and simultaneous 
articulation between onset cluster [6] [7]. This has led to 
models that predict CV synchrony at the syllable onset, 
including the articulatory syllable model [2], the Task 
Dynamics (TD)/Articulatory Phonology (AP) frameworks [8] 
and the synchronisation model of the syllable [9]. The 
strongest claim among these models is that the co-onset 
happens between the vowel and the very first consonant in an 
onset cluster, and the syllable is the domain of coarticulation 
[2]. The articulatory syllable hypothesis, however, has been 
disputed by the observation of anticipatory coarticulation [10] 
[7]. Further uncertainty about the hypothesis is brought about 
by the c-center effect [11], whereby the vowel appears to be 
aligned to the center of the consonant cluster rather than the 
onset of the first consonant. The c-center effect, together with 
more recent findings of CV asynchrony in CV syllables [12] 
[13] [14] have also brought uncertainties about the CV 
synchrony assumption in the strong version of the TD/AP 
framework [8]. It is not until recently that empirical evidence 
for full CV synchrony was shown for Mandarin Chinese [15] 
by applying a minimal triplet paradigm. The present study is a 
continuation of this line of work by examining CV alignment 
in consonant clusters in British English. 

1.1. Current theories and findings on cluster and vowel 
alignment 

Contemporary research on the time alignment of consonant 
clusters is predominantly focused on the c-center effect [16], 
developed under the AP framework [17]. In AP, the onset of C 
is said to be synchronous with the vowel due to their in-phase 
coupling relationship, while the coupling relationship between 
cluster components is anti-phase [18]. Therefore, a 
competitive coupling demand arises when both cluster 
components are coupled in-phase with the vowel, but anti-
phase with each other. The competing demand is resolved 
through the c-center mechanism, in which the cluster 
components remain anti-phase with each other, but the 
rightmost component shifts more into the vowel to make space 
for the added consonants [11]. Under the c-center hypothesis, 
empirical studies have compared relative time lags between 
cluster and singleton conditions, where the time lag is 
calculated as the midpoint of singleton or cluster consonants 
subtracted from the time of an anchor point, usually the coda 
consonant or vowel offset [19] [20] [21] [22] [23] [24]. The c-
center effect is said to be observed if the c-center to anchor 
lags are equal between the singleton and cluster condition.  
The time lag measurements calculated this way are prone to 
confounds, such as prosodic effects including word edge 
lengthening [19] and potential variation in vowel duration. 
More importantly, observed c-center effects could be due to 
segment compression, as it is well known that consonants are 
shortened in clusters compared to singletons [25] [26] [27] 
[28]. Given the compression, it is predictable that the relative 
time lags would tend to be equal between singleton and cluster. 
The more appropriate approach would be to directly compare 
the onset time of the consonant with that of the vowel at the 
beginning of the syllable. For that purpose, however, it is 
critical to find a reliable way of determining segment onsets. 

1.2. Methods of determining segment onset 

Most articulatory or acoustic studies examining dynamic/time 
series data use the velocity threshold method to determine 
movement onset [1]. Specifically, the onset of a gesture is 
located as when its associated movement (e.g., F2 or TTy—
tongue tip height) reaches 20% of its peak velocity. However, 
onsets determined this way may be subject to confounds, such 
as articulatory stiffness difference between C and V [1], 
undershoot [29] and other concurrent articulations [15]. A 
more effective way to control these confounds is through the 
use of minimal contrasts [30], which has long been the norm 
in investigating many other aspects of speech [31]. A minimal 
pair method is shown to be able to control for confounds in 
studying dynamic articulatory movements [32] [30], in which 
the onset of a segment is defined as when articulation or 
acoustics becomes significantly different between members of 
a contrastive pair [32] [30] [33]. For example, the onset of /i/ 
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in /li/ can be located as when /li/ becomes sufficiently 
different from /lu/ in terms of F2 or lip protrusion [15] [34] 
[30]. The minimal pair method was later adapted into a 
minimal triplet paradigm to investigate CV onsets in Mandarin 
[15] [34]. To detect onsets of both C and V, a CV triplet 
consisting of two minimal pairs are used to contrast both the 
consonant and the vowel. The consonant pair differed in terms 
of the onset C, and the vowel pair in terms of V. With the 
minimal triplet paradigm, the first articulatory evidence for 
CV co-onset was found [15]. 

1.3. Combining the minimal triplet paradigm with signal 
chopping and neural networks 

Previous acoustic studies using the minimal triplet paradigm 
have so far used a single formant to track segmental 
movements [15] [34]. But spectral changes involve more than 
just one formant. To further improve the processing of 
acoustic contrast in minimal pairs, the present study explored 
Mel-frequency cepstral coefficients (MFCC) in place of 
formants. Another advantage of MFCCs is that they are not 
interrupted by an obstruent consonant, even if it is voiceless. 
To process the high dimensional MFCC data for tracking 
acoustic differences over time, we adapted the signal chopping 
method developed in Tilsen [3]. The main idea is that, when 
there is enough acoustic information in the data for a classifier 
to distinguish between the V or C/CL pair, movement towards 
the contrastive targets have started. For each contrastive pair 
in a triplet, neural network classifiers are trained to classify the 
word category in the training set then the accuracy of the 
model is obtained by the test set. To identify segment onset 
time, we truncated the time series data frame by frame and 
trained a classifier for each truncated dataset. Segment onset is 
located when the model accuracy falls to or below chance 
level on the truncated dataset. For example, when the 
truncated dataset consist of 0.05 s of the original time series 
data and the model accuracy falls to chance level, the segment 
onset is recorded as 0.05 s for this minimal pair. 
The neural networks used are LSTM RNNs. RNNs are 
powerful models for sequential data such as time series speech 
data. However, naïve RNNs cannot grasp long distance 
dependencies in the data due to problems with 
vanishing/exploding gradients [35]. LSTM units can handle 
the vanishing gradient problem [36] and have been able to 
deliver high accuracy results in speech recognition [37] [38]. 

2. Method 

2.1. Stimuli 

A total of 18 triplets were designed in the study, 9 for the 
singleton condition and the other 9 for the cluster condition. 
As shown in Table 1, all words in each triplet have the same 
syllable structure. In each triplet, the first two words/syllables 
differ in terms of V and the second and third in terms of onset 
C/C1. Therefore, the C/CL and V onsets in the second word 
can be determined as when acoustics features become 
distinctly different between the C and V pairs, respectively. 
The cluster design aims to test whether the vowel is 
synchornised with the start of the whole cluster. Note that for 
triplet 6 in the cluster block, there are no consonant clusters 
with a C1 minimal contrast with /sk/ in English, so only a 
vowel pair is included. Around 20% of the stimuli contain 
simple pseudo words, which all participants pronounced 
successfully. The singleton and cluster conditions are matched 

as much as possible while keeping the number of pseudo 
words to a minimum. The target words were embedded in the 
carrier phrase ‘see a _ today’. 10 repetitions were produced in 
randomised blocks, which yielded 5200 tokens in total (52 
words × 10 repetitions × 10 speakers). 15 tokens were 
excluded from analysis due to mispronunciation or 
spontaneous pausing. 

Table 1: stimuli.  

Triplets Singleton Cluster 
1 bar bee dee blah blee glee 
2 pit pot cot plit plot clot 
3 fee four sore flee floor slaw 
4 sit sot fot slit slot flot 
5 sal seal shiel spal speel spiel 
6 sah see fee scar ski 
7 caught keat Pete clawt cleat pleat 
8 git got bot grit grot brot 
9 dip dop cop drip drop crop 

2.2. Data collection and processing 

5 female and 5 male British English speakers participated as 
subjects. All the participants have a Standard Southern British 
accent and are aged between 20 and 40. Due to the COVID-19 
pandemic, the recording took place over Zoom. Participants 
all used an external microphone or a headset during recording, 
and the original sound feature was turned on to avoid audio 
enhancement in the Zoom application. Participants read aloud 
the sentences with the embedded stimuli while being recorded 
at a sampling rate of 32 kHz. The tokens were annotated in 
Praat in the format of [siɘCnV]. The left and right boundaries 
are determined by the voice onset of /i/ in ‘see’ and the end of 
voicing for the vowel in the target word, respectively.  
The 15-dimensional MFCC features were extracted using 
python_speech_features1 with a 25 ms Hamming window in 5 
ms intervals. Cepstral Mean Subtraction (CMS) was 
performed on the MFCC features for individual speakers, 
which can mitigate any noise or channel distortion in the 
recording [39]. The first order derivatives were calculated for 
all 15 MFCCs, which yielded a 30-dimensional feature vector 
per frame. 

2.3. LSTM RNN analysis with signal chopping 

2.3.1. Analysis procedure with signal chopping 

All the tokens are aligned at the voice onset of /i/ in ‘see’ (i.e., 
the first boundary). For each minimal pair in a triplet, the 
training set consists of 7 repetitions of the minimal pair from 
all the speakers, which results in 140 tokens in total (7 
repetitions × 2 words × 10 speakers). The testing set has the 
remaining 3 repetitions containing 60 tokens. The targets are 
binary class labels for each utterance. The original feature 
sequences (i.e., before signal chopping) are all trimmed to be 
the same duration as the shortest token overall for that 
minimal pair, so that no padding was necessary. A classifier is 
trained on the training set, then the model accuracy is obtained 
using the testing set. The training and testing sets with N 
original frames are truncated frame by frame until N = 5 (i.e., 
0.025 s in duration). An accuracy score is recorded for each 

                                                                  
1 https://github.com/jameslyons/python_speech_features (v0.6.1). 
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truncated dataset from the classifier. Note that a classifier is 
trained from scratch for each truncated dataset. The entire 
chopping analysis procedure is repeated 10 times for each 
minimal pair, by randomly assigning repetition blocks to the 
training and testing sets. 

 
Figure 1: Mean network accuracy across 10 trials for 

one triplet as a function of remaining sequence 
duration. Shaded ribbons indicate standard error of 
the mean. The C pair and V pair are colour coded as 

blue and red respectively. 

An example of a triplet is shown in Figure 1. The C and V 
onsets are recorded as the sequence duration when prediction 
accuracy drops to or below 0.6 without returning above it, as 
no categorical information can be detected from that point on. 
We used 0.6 instead of 0.5 as the threshold due to evidence for 
above chance classifier performance reported by studies using 
permutation testing. In a permutation test, the features and 
labels are permuted to destroy the underlying class structure, 
and a null accuracy distribution is estimated from repeatedly 
training classifiers on the permuted data. Ojala and Garriga 
[40] shows the upper confidence bound of the null accuracy 
distribution can go up to 0.4 for a 3-class classifier. In Tilsen 
[3], 0.1 above the chance level was used. Combrisson and 
Jerbi [41] reported that for a 2-class classifier with a similar 
training sample size to ours, the classifier needs to obtain an 
accuracy of around 0.6 or higher to reach significance 
compared to the null distribution. Therefore, 0.6 was chosen 
as the threshold for the current analysis to avoid Type I errors. 
In total, 350 onsets are collected from the analysis (35 
minimal pairs × 10 randomised trials). Finally, Linear Mixed 
Effects Models (LMEMs) are constructed to test whether 
C/CL onsets differ from V onsets in time. For the LMEM, 
syllable type (cluster vs. singleton) and onset type (C/CL vs. 
V) are included as fixed effects and the repetition 
randomisation as a full random effect. Likelihood ratio tests 
are used to test for significance of the fixed effects. An 
interaction model is constructed by including an interaction 
term between syllable and onset types to test whether the 
effect of onset type differs between singleton and cluster 
conditions. 

2.3.2. LSTM RNN architecture 

All the neural networks have identical structures and 
hyperparameters2. The N × 30 feature sequences are fed into 
the input layer. The hidden layers consist of 2 bi-directional 
LSTM layers with variational dropout. Variational dropout has 
been shown to prevent overfitting for gated RNN networks 
better than the conventional dropout method [42] [43]. The 
                                                                  
2  Full network details can be found at https://github.com/Clara-
liu/English_alignment_LSTM 

output layer is one dimensional with a sigmoid activation 
function to predict the probability of the word class. To avoid 
model bias, the network structure and hyperparameters were 
tuned by using grid search with 5-fold validation on data from 
a pilot study, i.e., the training and testing data in the analysis 
from section 2.3.1 were not used during model tuning. 
The main purpose is to use machine learning (ML) methods to 
test for the presence of categorical acoustic information over 
time. Therefore, although network performance can be further 
optimised for each analysis individually, it is not essential for 
the current purpose. 

3. Results 

3.1. LSTM RNN Signal chopping results 

Results of using signal chopping with LSTM RNNs are 
presented in Figure 2. Each plot in the Figure correspond to a 
triplet in Table 1. i.e., C1 correspond to the first cluster triplet 
– ‘blee’ vs. ‘blah’ vs. ‘blee’. The shaded areas indicate the 
mean acoustic onset and offset of the voiceless, closure or 
frication interval of the onset C/CL for each individual triplet. 
In general, a similar trend to Figure 1 can be observed for all 
the triplets in Figure 2. As more frames are truncated, or in 
other words, the shorter the remaining sequence duration, the 
lower the model accuracy. For the consonant minimal pairs, 
model accuracy stays high and drops sharply before the 
acoustic closure/frication of the onset C/CL. Some of the 
vowel pairs follow the same pattern, such as triplet S8, S7, C7, 
S2, S1 and S3. On the other hand, classification accuracy for 
the other vowel pairs drops once the voiced portion of the 
contrasting syllable is fully truncated, which is indicated by 
the right boundary of the shaded rectangles. This is more so 
for triplets with fricative onsets (e.g., S5). However, the 
accuracy rate for these vowel pairs oscillates around or hover 
slightly above 0.6 during the voiceless or frication intervals, 
indicating the presence of some categorical information in the 
acoustic features. For all the triplets, the model accuracy for 
both the consonant and vowel pairs fall to and remain below 
0.6 when the MFCC feature sequences only contain the voiced 
portion of [siɘ]. Most importantly, the neural network 
classifiers start performing below the 0.6 accuracy threshold at 
around the same truncation point for the C and V pairs in each 
triplet. For example, for C1, the blue and red lines correspond 
to model accuracy for the V and C pairs as a function of 
truncation, and they both fall below 0.6 at around 0.15 s. The 
C/CL and V onsets are collected as when accuracy falls to or 
under 0.6 for all triplets and randomised trials.  

3.2. LMEM results for consonant and vowel onsets 

Figure 3 shows the segment onset times collected in 2.3.1. 
According to the segment onsets determined by the current 
analysis, consonant and vowel onsets do not differ much from 
each other, for both syllables with singleton and cluster onsets. 
LMEMs shows that onset time does not differ between onset 
types (t = -0.83l; X2(1) = 0.67, p = 0.41). The model fit does 
not improve significantly by adding an interaction term for 
onset type and syllable type (t = -1.69; X2(1) = 2.82, p = 0.09). 
Therefore, onset type has no significant effect on onset time 
for either singleton or cluster syllables.
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Figure 2: Mean prediction accuracy as a function of remaining sequence duration. The grey ribbons indicate standard error 

of the mean. The shaded areas indicate mean intervals of frication, closure or aspiration of C/ CL. The facet labels 
correspond to the onset type and triplet number in Table 1. e.g., C1 – first triplet in the cluster condition. 

 

 
Figure 3: Mean consonant and vowel onsets by 

syllable type. The error bars represent 95% of the 
confidence interval. Onset type is indicated by colour 

and syllable type by the x-axis. 

4. Discussion 

4.1. Acoustic evidence for onset C/CL and V synchrony 

By combining signal chopping with neural networks and the 
minimal triplet paradigm, we were able to track overall 
spectral movement over time. The results showed that a neural 
network classifier can detect categorical information in the 
acoustic signal around the same time for the onset C/CL and 
the nucleus vowel. Therefore, the results support the notion of 
synchronisation – that the start of the vowel is synchronised 
with the onset consonant [9], for both singleton and cluster 
onsets [2]. Most importantly, contrary to the prediction of the 
c-center hypothesis, the results do not show that the cluster 
onset precedes the vowel onset. 
Figure 2 shows that movement towards a contrasting vowel 
target start well before the acoustic landmark of the onset 
consonant (e.g., start of frication in /s/). As reported in the 
classic spectrographic study of Öhman [10], this is widely 
believed to be anticipatory coarticulation with the vowel. 
However, by adding a consonant contrast in the minimal 
triplet paradigm, it has become clear that the movement 
toward the onset consonant also starts well before the acoustic 
landmark, as can be seen in Figure 2. Tilsen [3] has found 
similar results regarding articulatory onset for the onset 

consonant, although no vowel contrast was examined. The 
current results therefore suggest that the widely reported 
anticipatory coarticulation is the true onset of the syllable, 
since the vowel and consonantal movements begin 
simultaneously before the commonly assumed syllable 
boundary (i.e., acoustic landmark of the onset C).  

4.2. Degree of coarticulation in relation to coarticulation 
resistance 

It is important to note that CV synchrony does not entail 
complete coproduction of onset consonant and vowel. If an 
articulator is needed for both C and V, articulation needs to be 
sequential for that particular articulator [44] [15] [9] [2]. 
Therefore, the more articulators the onset C or cluster segment 
requires, the less overall coarticulation occurs. This is related 
to the phenomenon of coarticulation resistance [45] [46] [47]. 
For example, ultrasound imaging studies have shown that 
tongue shape varies less at consonant midpoint in fricatives 
than in plosives [48] [49]. This is also reflected in Figure 2. 
For the vowel minimal pairs, the classifiers achieve better 
accuracy for triplets with plosive onsets (triplet 1,2,7,8 and 9) 
than fricative onsets (triplet 3,4,5,6), indicating more overall 
vowel coarticulation in the former. 

5. Conclusions 
This study has found acoustic evidence for onset C/CL and V 
synchrony, by combining a novel signal chopping method [3] 
and the minimal triplet paradigm [34] [15]. The finding not 
only replicates, for British English, previous findings of CV 
synchrony in Mandarin [15] [34], but also offers fresh support 
for the articulatory syllable model [2] whereby vowel 
articulation starts with the very first consonant in an onset 
cluster. The results also demonstrate the effectiveness of using 
high dimensional acoustic measurements such as MFCC in 
combination with ML for phonetic research.  
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