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ABSTRACT

Economists are often interested in estimating averages with respect to distributions of unobservables,
such as moments of individual fixed-effects, or average partial effects in discrete choice models. For
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such quantities, we propose and study posterior average effects (PAE), where the average is computed

conditional on the sample, in the spirit of empirical Bayes and shrinkage methods. While the usefulness of
shrinkage for prediction is well-understood, a justification of posterior conditioning to estimate population
averages is currently lacking. We show that PAE have minimum worst-case specification error under various
forms of misspecification of the parametric distribution of unobservables. In addition, we introduce a
measure of informativeness of the posterior conditioning, which quantifies the worst-case specification
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error of PAE relative to parametric model-based estimators. As illustrations, we report PAE estimates of
distributions of neighborhood effects in the U.S., and of permanent and transitory components in a model

of income dynamics.

1. Introduction

In many settings, applied researchers wish to estimate popula-
tion averages with respect to a distribution of unobservables.
This includes moments of individual fixed-effects in panel data,
and average partial effects in discrete choice models, which
are expectations with respect to some distribution of shocks
or heterogeneity. The standard approach in applied work is to
assume a parametric form for the distribution of unobservables,
and to compute the average effect under that assumption. For
example, in binary choice, researchers often assume normality
of the error term, and compute average partial effects under
normality. This “model-based” estimation of average effects is
justified under the assumption that the parametric model is
correctly specified.

In this article, we consider a different approach, where the
average effect is computed conditional on the observation sam-
ple. We refer to such estimators as “posterior average effects”
(PAE). Posterior averaging is appealing for prediction purposes,
and it plays a central role in Bayesian and empirical Bayes (EB)
approaches (e.g., Berger 1980; Morris 1983). Here, we focus
instead on the estimation of population expectations. Our goal
is twofold: to propose a novel class of estimators, and to provide
a frequentist framework to understand when and why posterior
conditioning may be useful in estimation. Our main result will
show that PAE have robustness properties when the parametric
model is misspecified.

PAE are closely related to EB estimators, which are increas-
ingly popular in applied economics. Consider a fixed-effects
model of teacher quality, which is our main example. When the
number of observations per teacher is small, the dispersion of
teacher fixed-effects is likely to overstate that of true teacher

quality, since teacher effects are estimated with noise. An alter-
native approach is to postulate a prior distribution for teacher
quality—typically, a normal—and report posterior estimates,
holding fixed the values of the mean and variance parameters.
The hope is that such EB estimates, which are shrunk toward
the prior, are less affected by noise than the teacher fixed-effects
(e.g., Kane and Staiger 2008; Chetty et al. 2014; Angrist et al.
2017). However, while EB estimates are well-justified predictors
of the quality of individual teachers, it is not obvious how to
aggregate them across teachers when the goal is to estimate a
population average such as a moment or a distribution function.

As an example, suppose we wish to estimate the distribu-
tion function of teacher quality evaluated at a point. Since this
quantity is an average of indicator functions, the PAE is simply
an average of posterior means—that is, of EB estimates—of the
indicator functions. This estimator is available in closed form.
However, the PAE differs from the empirical distribution of the
EB estimates of teacher effects. In particular, while the variance
of EB estimates is too small relative to that of latent teacher
quality, the PAE has the correct variance. Related applications
of PAE include settings involving neighborhood/place effects
(Chetty and Hendren 2018; Finkelstein et al. 2017) or hospital
quality (Hull 2018).

Importantly, although posterior averages have desirable
properties for predicting individual parameters, their usefulness
for estimating population average quantities is not evident. For
example, suppose that teacher quality is normally distributed.
In this case, a model-based normal estimator of the distribution
of teacher quality is consistent. Moreover, it is asymptotically
efficient when means and variances are estimated by maximum
likelihood. Hence, in the correctly specified case, there is no
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reason to deviate from the standard model-based approach and
compute posterior estimators. The main insight of this article is
that, under misspecification—for example, when teacher quality
is not normally distributed—conditioning on the data using
PAE can be beneficial.

To study estimators under misspecification, we focus on
specification error, which is the population discrepancy between
the probability limit of an estimator and the true parameter
value. In our main results, we show that PAE have minimum
worst-case specification error, where the worst case is computed
in a nonparametric neighborhood of the reference parametric
distribution (e.g., a normal). Specifically, we show that, when
neighborhoods are defined in terms of the Pearson chi-squared
divergence, PAE have minimum worst-case specification error
within a large class of estimators, for any neighborhood size
smaller than a threshold value that we characterize. In addition,
when broadening the class of neighborhoods to ¢-divergences,
we show that, while PAE do not have minimum worst-case
specification error in general in fixed-size neighborhoods, they
achieve minimum worst-case specification error under local
misspecification, that is, when the size of the neighborhood
tends to zero.

In our examples and illustrations, we find that the informa-
tion contained in the posterior conditioning is setting-specific.
This is intuitive, since although PAE have minimum worst-case
specification error under our conditions, the specification error
is not zero in general and it varies between applications. PAE
tend to behave better when the realizations of outcome variables
(such as test scores) are more informative about the values of the
unobservables (such as the quality of a teacher). Consistently
with this intuition, our local result suggests quantifying the
“informativeness” of the posterior conditioning using an easily
computable R? coefficient.

While our theoretical results focus on population specifica-
tion error, in practice PAE are also affected by sampling error,
due to the fact that the sample size—for example, the number
of teachers—is not infinite. A common approach to account
for both sampling variability and specification error is to focus
on mean squared error. In general, PAE do not have mini-
mum mean squared error: indeed, in finite samples, model-
based estimators can have smaller mean squared error than
PAE. In Bonhomme and Weidner (2018), we show how to con-
struct estimators that minimize mean squared error under local
asymptotic misspecification. However, such estimators depend
on the neighborhood size. In contrast, PAE do not require taking
a stand on the degree of misspecification through the size of
the neighborhood, and they are simple to implement and do
not depend on tuning parameters. To complement the theory,
we report the results of a Monte Carlo simulation, where we
compare the performance of the PAE to those of a model-based
estimator and a nonparametric deconvolution-based estimator.
We find that, while the model-based estimator tends to per-
form best under correct specification, the performance of the
PAE appears less sensitive to misspecification than those of the
model-based and nonparametric estimators.

To illustrate the scope of PAE for applications, we then con-
sider two empirical settings. In the first one, we study the
estimation of neighborhood/place effects in the United States.
Chetty and Hendren (2018) reported estimates of the variance

of neighborhood effects, as well as EB estimates of those effects.
Our goal is to estimate the distribution of effects across neigh-
borhoods. We find that, when using a normal prior as in Chetty
and Hendren (2018), our posterior estimator of the distribu-
tion function of neighborhood effects across commuting zones
is not normal. However, we also show through simulations
and computation of our posterior informativeness measure that
the signal-to-noise ratio in the data is not high enough to be
confident about the exact shape of the distribution. Hence, in
this setting, PAE inform our knowledge of the distribution of
neighborhood effects, and motivate future analyses using more
flexible model specifications and individual-level data.

In the second empirical illustration, our goal is to estimate the
distributions of latent components in a permanent-transitory
model of income dynamics (e.g., Hall and Mishkin 1982;
Blundell et al. 2008), where log-income is the sum of a random-
walk component and a component that is independent over
time. Researchers often estimate the covariance structure
of the latent components in a first step. Then, in order to
document distributions or to use the income process in a
consumption-saving model, they often assume Gaussianity.
However, there is increasing evidence that income components
are not Gaussian (e.g., Geweke and Keane 2000; Hirano 2002;
Bonhomme and Robin 2010; Guvenen et al. 2016). We estimate
posterior distribution functions of permanent and transitory
income components using recent waves from the Panel Study
of Income Dynamics (PSID). Our PAE estimates suggest some
departure from Gaussianity, especially for the transitory income
component.

We analyze several extensions. First, we describe the form of
PAE in several models, including binary choice and censored
regression. Second, we discuss how to construct confidence
intervals and specification tests based on PAE. Lastly, we revisit
the question of optimality of EB estimates for predicting indi-
vidual parameters. By extending our misspecification analysis
from worst-case specification error of sample averages to worst-
case mean squared prediction error, we show that EB estimators
remain optimal, up to small-order terms, under local deviations
from normality.

1.1. Related Literature and Outline

PAE are closely related to parametric EB estimators (Efron
and Morris 1973; Morris 1983). For the recent econometric
applications of shrinkage methods (James and Stein 1961; Efron
2012), see Hansen (2016), Fessler and Kasy (2018), and Abadie
and Kasy (2018). Recent contributions to nonparametric EB
methods are Koenker and Mizera (2014) and Ignatiadis and
Wager (2019).

Our analysis is also related to deconvolution and other non-
parametric approaches. However, in our framework we allow for
forms of misspecification under which the quantity of interest
is not consistently estimable, and we search for estimators that
have the smallest specification error.

In panel data settings, Arellano and Bonhomme’s (2009)
study the asymptotic properties of random-effects estimators of
averages of functions of covariates and individual effects. They
show that, when the distribution of individual effects is mis-
specified, whereas the other features of the model are correctly



specified, PAE are consistent as n and T tend to infinity. By con-
trast, in our setup, only » tends to infinity, and misspecification
may affect the entire joint distribution of unobservables.

Our analysis also connects to the literature on robustness to
model misspecification (e.g., Huber and Ronchetti 2009; Kita-
mura et al. 2013; Andrews et al. 2017, 2020; Armstrong and
Kolesar 2018; Bonhomme and Weidner 2018; Christensen and
Connault 2019). Here, our aim is to propose and justify a class
of simple, practical estimators.

The plan of the article is as follows. In Section 2, we motivate
the analysis by considering a fixed-effects model of teacher
quality. In Section 3, we present our framework and derive our
main theoretical results. In Section 4, we illustrate the use of
PAE in two empirical settings. In Section 5, we describe several
extensions. Finally, we conclude in Section 6. Replication codes
are available as online material.

2. Motivating Example: A Fixed-Effects Model

To motivate the analysis, we start by considering the following
model:

Y,‘j :ai+8ij> i=1,..,n, ]: 1,..]. (1)

To fix ideas, we will think of Yj; as an average test score of
teacher i in classroom j, «; as the quality of teacher i, and
gjj as a classroom-specific shock. There are n teachers and J
observations per teacher. For simplicity, we abstract away from
covariates (such as students’ past test scores), but those will be
present in the framework we will introduce in the next section.
Although here we focus on teacher effects, this model is of
interest in other settings, such as the study of neighborhood
effects, school effectiveness, or hospital quality, for example.

Suppose we wish to estimate a feature of the distribution of
teacher quality . As an example, here we consider the distribu-
tion function of « at a particular point g,

Fy(a) = E[Ha < a}],

which is the percentage of teachers whose quality is below a. A
first estimator is the empirical distribution of the fixed-effects
estimates@; = Y; = % ZJI , Yy, for all teachers i = 1, ..., #; that
is,

1 n
~> UVi<a} )

i=1

F () =

where FE stands for “fixed-effects” An obvious issue with this
estimator is that Y; = «; + €; is a noisy estimate of «;, where
g = } ZJI , €ij- Indeed, due to the presence of noise, for fixed

] and n tends to infinity the distribution FFE tends to be too
dispersed relative to F, (although one can show that FFE(a) is
consistent for Fy (a) as J tends to infinity jointly with # under
mild conditions; see Jochmans and Weidner 2018).

A different strategy is to model the joint distribution of
o, €1, ..., £5. A simple specification is a multivariate normal dis-
tribution with means pt, and p. = 0, and variances s2 and s2.
This specification can easily be made more flexible by allowing
for different sgj s across j, for correlation between the different
gj’s, or for means and variances being functions of covariates,
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for example. Under the assumption that all components are
uncorrelated, 4, s2, and s? can be consistently estimated for
fixed ] as n tends to infinity, using quasi-maximum likelihood or
minimum distance based on mean and covariance restrictions.

Given estimates [ly, S2, Sz, we can compute EB estimates
(Morris 1983) of the «; as

E [« |Y=Y]= ﬁa + 70\(?1 - ﬁa)’ i=1..,n (3)

where the expectation is taken with respect to the posterior
distribution of « given Y = Y; for iy, 52, s2 fixed, and p =
+; ; / is a shrinkage factor. Here, Y; are vectors containing all
Yij, j = 1,..,J. The EB estimates in (3) are well-justified as
predictors of the a;, since (when treating fio, S5, S- as fixed)
T + P (Y; — i) is the minimum mean squared error predictor
of o; under normality.
Given their rationale for prediction purposes, it is appealing
to try and aggregate the EB estimates in order to estimate our
target quantity F, (a). A possible estimator is

;ZI{MQ‘FP(Yi_Ma)Sa}: (4)

i=1

FM(a) =

where PM stands for “posterior means.” For fixed J as n tends to
infinity, the EB estimates tend to be less dispersed than the true
a;, and FPM(a) is inconsistent in general. Indeed, while in large

samples the variance of the fixed-effects estimatesis p ~1s2 > s2,
2
the variance of the EB estimates is ps> < s2, where p = 2 45-(;2 ik
&

Instead of computing the distribution of EB estimates as in
Equation (4), a related idea is to compute the posterior distribu-
tion estimator

1 n
5P
Fo@ =—3 E[lfe <a}|Y =Y,

i=1

where P stands for “posterior.” Using the normality assumption,

we obtain
- 1< a—itg — p(Y; — Iia)
Fao=-) & = , 5
«(@) n; ( T )

where ® denotes the distribution function of the standard nor-
mal. ’IEP(a) is an example of a PAE. One can check that it is
consistent for fixed J as n tends to infinity, When the distribution
ofa, €1, ..., &y is normal. Under nonnormahty,F (a) is generally
inconsistent for fixed ] as n tends to 1nﬁn1ty Moreover the

mean and variance of FP are (1 — D)ty + Py, Zl 1Y and
(1—p)s2+p° [ LY =G YY) ] respectively, which

are consistent for [ty and sa for fixed J as n tends to infinity.
The last estimator we consider here is directly based on the

normal specification for «,
i
o(*21). ®
Sa

where M stands for “model” This estimator enjoys attractive
properties when the distribution of @, €1, ..., € is indeed normal.
In this case, FM(a) is consistent for ﬁxed ] as n tends to infinity,
and it is efficient when 7, and 52 are maximum likelihood
estimates. Moreover, the mean and variance of FM are [ty and

M(a) =


https://sites.google.com/site/stephanebonhommeresearch/
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52, which are consistent irrespective of normality. However,

when «, €1, ..., &7 is not normally distributed, FM (a) is generally
inconsistent for fixed J as n tends to 1nﬁn1ty Moreover, F (a)
only depends on the data through the mean 71, and the variance

2~ In particular, F is always normal, even when the data show
clear evidence of nonnormality.

Which one of these estimators should one use? The answer
is not obvious, since they are all inconsistent as n tends to
infinity for fixed J in general. In a framework that allows for
misspecification of the normal distribution of &, €1, ..., &7, we will
show that the PAE FP (a) has minimum worst-case specification
error in certain nelghborhoods around the normal reference
distribution. To our knowledge, unlike the other three estima-
tors above, posterior estimators of distributions are novel to
practitioners. They are easy to implement, and do not depend
on additional tuning parameters. Our characterization provides
a rationale for reporting them in applications, alongside other
parametric and semiparametric estimators.

Note that one may wish to relax normality by making the
specification of «, and possibly ¢;, more flexible. Deconvolution
and nonparametric maximum likelihood estimators are often
used for this purpose (e.g., Delaigle et al. 2008; Bonhomme and
Robin 2010; Koenker and Mizera 2014). While these estimators
may be consistent even when o is not normal, consistency
relies on additional restrictions on the model. For example,
the assumptions in Kotlarski (1967) require that «, €1, ..., &
be mutually independent. By contrast, we do not impose any
such additional conditions in our framework. In Section 3,
we will show that asymptotically linear estimators have larger
specification error than PAE under the form of misspecification
that we consider.

To illustrate that an independence assumption among o,
€1, ..., & can be restrictive, consider a situation where the
researcher is concerned that the variance of ¢; depends on
a. For instance, the variance of classroom-level shocks may
depend on teacher quality. The presence of such conditional
heteroscedasticity would invalidate conventional nonparamet-
ric deconvolution estimators. By contrast, we will show that
FP(a) has minimum specification error in neighborhoods of
distributions that allow for conditional heteroscedasticity. In
Section 4 and the appendix, we will compare the finite-sample
behavior of the parametric model-based estimator, the PAE,
and a nonparametric deconvolution estimator, in data simulated
from various specifications of model (1).

In model (1), the researcher may be interested in estimating
other quantities. As an example, consider the coefficient in
the population regression of teacher quality o on a vector of

covariates W; that is,
5 = (EIWW']) "' E[Wal. 7)

In applications, it is common to regress fixed-effects estimates
on covariates to help interpret them (as in Dobbie and Fryer
2013; among many others), and to compute

n -1 n
E_— (Z W,-W,f) Z W.Y;. (8)
i=1 i=1

Alternatively, one may regress the EB estimates of «;, as given by
(3), on covariates (as in Angrist et al. 2017, and Hull 2018, for

example), and compute

n “1 p
sP = (Z W,W:) Z Wi (ﬁa + b\(?z - ﬁo{)) > (9)
i=1

i=1

which is a PAE based on a normal reference specification for «.
We will see that, in our framework, the rationale for reporting
8P or SFE depends on the form of misspecification that the
researcher is concerned about.

The framework we describe next applies to the estimation
of different quantities in a variety of settings. In Section 4 we
apply PAE to model (1) and estimate the distribution of neigh-
borhood/place effects in the U.S. (Chetty and Hendren 2018).
In addition, we show that the permanent-transitory model of
income dynamics (e.g., Hall and Mishkin 1982) has a structure
similar to model (1), and we report PAE estimates in this con-
text. Last, in other models—such as static or dynamic discrete
choice models and models with censored outcomes—our results
motivate the use of PAE as complements to other estimators
that researchers commonly report, and we provide examples in
Section 5 and analyze them in the appendix.

3. Framework and Main Results

In this section we describe our framework to study PAE, and
present our main results.

3.1. Model-Based Estimators and PAE

We consider the following class of models:

Y; = gg(U;, X)), (10)

where outcomes Y; and covariates X; are observed by the
researcher, and Uj are unobserved. The function gg is known up
to the finite-dimensional parameter 8. Our aim is to estimate
an average effect of the form

§ =Ey [6p(U, X)], (11)

where g is scalar, and known given 8. Here, fo denotes the
true density of U | X. The expectation is taken with respect to
the product fyfx, where fx is the marginal density of X. For
conciseness we leave the dependence on fx implicit. While we
focus on a scalar 8g, our results continue to hold in the vector-
valued case, as we show at the end of this section. In Appendix
S5, we discuss how to estimate quantities that depend on f;
nonlinearly.

While the researcher does not know the true f;, she has a
reference parametric density f; for U | X, which depends on a
finite-dimensional parameter o. We will allow f,; to be misspec-
ified, in the sense that fy may not belong to {f;}. However, we
will always assume that gg is correctly specified. In other words,
misspecification will only affect the distribution of U and its
dependence on X, not the structural link between (U, X) and
outcomes.

To estimate § in Equaiton (11), we assume that the researcher
has an estimator 8 that remains consistent for § under misspeci-
fication of f;. More precisely, we will only consider potential true
densities fy such that B tends in probability to the true value



under fy. For example, in the fixed-effects model (1), consistent
estimates of means and variances can be obtained in the absence
of normality.

To map model (1) to the general notation of this section,
note that in this case there are no covariates X, and the vector
of unobservables U is

Sa Se Se

The vector B is B = (a» 2 S5, 2)’ The reference distribution for
U is a standard multrvarrate normal, so the reference density f,
is known in this case — in other words, the parameter o in f,
can be omitted. We assume that the researcher has computed
an estimator B, for example by quasi-maximum likelihood or
minimum distance, which remains consistent for 8 when U is
not normally distributed.

In certain applications, the reference density depends on
some parameters o that cannot be consistently estimated absent
parametric assumptions. In Appendix S6, we describe discrete
choice and censored regression models that have this structure.
In such settings, we assume that the researcher has an estimator
o that tends in probability to some o, under fy. Unlike g, the
parameter o, is a model-specific “pseudo-true value” that is not
assumed to have generated the data. However, in our leading
example of model (1), as well as in the model’s generalizations
that we study in our empirical illustrations in Section 4, the
references to & and o, can be omitted from all subsequent
statements and derivations.

Given B\, o, a sample {Y;,X;, i = 1,..,n} from (Y, X), and
the parametric density f,, a model-based estimator of § is

n
= %ZEfa [5§(U,X) |X=Xi], (12)

i=1
where, with some abuse of notation, the expectation with respect
to fz is computed only over U. When not available in closed
form, this estimator can be computed by numerical integration
or simulation under the parametric density fz. It is easy to see
that, under standard conditions, 8™ is consistent for § under
correct specification; that is, when f;, is the true density of U | X.

To construct a posterior estimator, consider the posterior

density pg, of U|Y,X. This posterior density is computed
using Bayes rule, based on the prior f; on U|X and the like-
lihood of Y | U, X implied by gg. Formally, let U (y, x, B) = {u :
y = gp(u,x)}. We define, whenever the denominator is non-
zero,

foulx)H{u € Uy, x, B)}
[0y € Uy, x, B)}dv’
We will compute pg » analytically in our examples. In Appendix
S5 we describe a simulation-based computational approach

when an analytical expression is not available. We define the
PAE as the posterior estimator

Ppo(uly,x) = (13)

1 n
==Y By, [SE(U,X)’Yz Y,-,X:X,-], (14)
i=1
where, again, the expectation is only taken over U. Under stan-
dard regularity conditions, it is easy to see that, like 3™, the PAE
8P is consistent for 8 under correct specification.
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From a Bayesian perspective, 3P is a natural estimator to
consider when B8 and o are known. Indeed, 8® is then the
posterior mean of L . Zi:l 8g(Uj, X;), where the prior on U; is
fo» independent across i. An alternative Bayesian interpretation
is obtained by specifying a nonparametric prior on fy, and
computing the posterior mean of § under this prior, as we
discuss in Appendix S5 in the case where U has finite support.
However, a frequentist justification for 3P appears to be lacking
in the hterature Indeed under correct specification of f,, both
estimators 8° and 3™ are consistent, and, as we pornted out in
the previous section, i may have a higher variance than M. The
key d1fference between model-based and posterior estimators is
that 8° is conditional on the observation sample. An intuitive
rationale for the conditioning is the recognition that realizations
Y; may be informative about the values of the unknown U;’s. We
next formalize this intuition in a framework that accounts for
specification error.

3.2. Neighborhoods, Estimators, and Worst-Case
Specification Error

Let P(B, fo) denote the true density of (Y, U, X), where as before
we omit the reference to the marginal density of X for concise-
ness. We assume that, under P(8, fy), Eis consistent for the true
B, and T is consistent for a model-specific “pseudo-true” value
o, where Epg 1) [V, (Y, X)] = 0 for some moment function
Y. For example, B and & may be the method-of-moments
estimators that solve Y 1| 1//AA(Y,,X ) = 0. In models with no
o parameters, such as model (1) and its generalizations, we only
assume that ,3 is consistent for 8, and that Epg ) [¥5(Y, X)] =
0 for some . Throughout, we take the estimators ,3 (and
possibly 7), and the moment function v, as given. In particular,
we do not address the question of optimal estimation of 8 under
misspecification.

Given a distance measure d and a scalar € > 0, we define the
following neighborhood of the reference density f;:

Te={fo : d(fo.fo,) < € Eppo[¥po, (Y, X)]=0}.
This neighborhood consists of densities of U | X that are at most
€ away from f;, , and under which Band& converge asymptot-
ically to B and oy, respectively. The case ¢ = 0 corresponds
to correct specification of the reference density, whereas € > 0
corresponds to misspecification.

For ease of notation we omit the dependence of I'c on g,
0y and ¥, all of which we consider fixed and given in this
section. Indeed, we assume that the researcher has chosen an
estimator B, and, depending on the setting, an estimator ¢ —
our theory is silent about where these choices come from—and
that she has already observed their realized values in a large
sample. The moment function  is determined by this choice
of estimators. Moreover, in large samples, the population values
B and o, are arbitrarily close to the observed values BandG.
In our setup, we only consider densities of unobservables f; that
are consistent with those values, in the sense that the moment
restriction Ep(g f,)[¥g,0, (Y, X)] = 0 holds. This large-sample
logic is consistent with our focus on specification error; see (16)
below.

Note that the same logic might suggest imposing that other
features of the joint population distribution of the data (Y, X),
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such as means, covariances, higher-order moments, or even the
entire distribution, be kept constant for all fy € I'c. Restricting
neighborhoods in this way does not affect the results in this
section, because those are valid for all possible ¥, and one could
thus impose additional moment restrictions on fy.

Let us denote the supports of X and U as X’ and U, respec-
tively. We assume that d is a ¢-divergence of the form

Jo(u]x)
d yJo) = TN
(orse) ./x/u¢ o (u]x)

where ¢ is a convex function that satisfies ¢ (1) = 0 and ¢” (1) >
0. This family contains as special cases the x2 divergence (aver-
aged over X), the Kullback-Leibler divergence, the Hellinger
distance, and more generally the members of the Cressie-Read
family of divergences (Cressie and Read 1984). It is commonly
used to measure misspecification, see Andrews et al. (2020) and
Christensen and Connault (2019) for recent examples.

We focus on asymptotically linear estimators of § that satisfy,
for a scalar nonstochastic function y and as # tends to infinity,

)ftr (u]x) fx (x) du dx,

—~ 1
v == D V(Yo X0) + opp ) (. (15)

i=1

Note that ?S\y depends on B3, but for conciseness we leave
the dependence implicit in the notation. Many estimators can
be written in this form (see, e.g., Bickel et al. 1993). Given an
estimator 8],, we define its e-worst-case specification error as

be(y) = sup |Epegfy)[Vp.0. (Y, X)] — Eg[85(U, X)]1] .

fOe €

(16)

We will take the worst-case specification error b (y) to be our
measure of how well an estimator:S\y performs under misspecifi-
cation. It quantifies the maximum discrepancy, under any pos-
sible fy in the neighborhood I'¢, between the probability limit
of the estimator and the true parameter value. Under suitable
regularity conditions, Ep(g ) [1p,0, (Y, X)] — Ef[6p(U,X)] in
(16) is the asymptotic bias of ?S\y under P(B, fo).

By focusing on the worst-case specification error be(y), we
abstract from other sources of estimation error. Importantly,
we do not account for sampling variability. In Bonhomme and
Weidner (2018), we study an alternative approach that consists
in minimizing worst-case mean squared error under a local
asymptotic — that is, as € tends to zero, n tends to infinity,
and en tends to a positive constant. Applying this approach
to the present case gives estimators that have a smaller worst-
case mean squared error than PAE in general. However, unlike
PAE, minimum-MSE estimators depend on €, as we will discuss
Subsection 3.5. Relative to such estimators, PAE do not require
the researcher to take a stand on the degree of misspecification
€, and they are easy to implement.

3.3. Result Under Small-¢ Misspecification

Before stating our first main result, we first characterize the
worst-case specification error be(y) of estimators 5 for small
€. For conciseness, in the remainder of this section we suppress
the reference to 8, o from the notation, and we denote as E,
and var, expectations and variances that are taken under the
reference model P(B, f5,). All proofs are in Appendix SI.

Lemma 1. Let J(y,x) = ¥ (,x) — E, [W(Y,X)|X = x]. Sup-
pose that one of the following conditions holds:

(i) ¢(1) = 0, ¢(r) is four times continuously differentiable
with ¢”(r) > 0 forall r > 0, B[y (Y, X)] = 0,
E[y(Y, )¢, X)] > 0 and [y(nol| 8@l
|¢f(y, x)| are bounded over the domain of Y, U, X

(ii) Condition (ii) of Lemma S1 in Appendix S1 holds (this
alternative condition allows for unbounded y, §, ¥, but at
the cost of stronger assumptions on ¢ (r)).

Then, as ¢ tends to zero we have

be(y) = [Ely (Y.X) — (U, X)]|
€3 { ¢N2(1)var*(y(Y,X) —8(U,X)
—E, [y(Y,X) - 8(U.X) | X]
—MZ(Y,X))}Z + 0,
where A = {E[7X) 71X} E (Y, X)

~8(U,X) ¥ (Y, X))

To derive the formula for the worst-case specification error
in Lemma 1, we maximize the specification error with respect to
fo subject to three contraints: f, belongs to an e-neighborhood
of f., it is such that the moment condition is satisfied at (8, o),
and it is a density. In part (i), we focus on the case where y,
8 and ¢ are bounded. This is satisfied, for example, if those
functions and g(u, x) are all continuous, and the domain of U
and X is bounded. To accommodate situations where supports
are unbounded, such as the example of Section 2, in part (ii), we
allow for unbounded functions y, §, and v, which only requires
existence of third moments under the reference distribution.
To guarantee that b.(y) is well-defined in the unbounded
case, we require a regularization of the function ¢ (r) for large
values of .

Lemma 1 implies that the small-¢ specification error of the
PAE is, up to smaller-order terms, proportional to the within-
(Y, X) standard deviation of § (U, X) under the reference model:

bl
be(y') =€ {¢,,(1)

+ Of(e).
In the fixed-effects model (1) of teacher quality, the worst-case

specification error of the PAE FP (a) is
1
1—p ?
1+p

ks 4 a— g
b (yP) = €2 T ,
(') =€ {¢,,(1) ( O
where T(a,b) = ¢(a) [, b o@d) 1. i Owen's T function (Owen

var, (6(U,X) — E.[6(U,X) | Y,X])}2

+O(e),
1422

1956), and ¢ is the standard normal density. The specification
error decreases as the number J of observations per teacher
increases, and tends to zero as J tends to infinity and the shrink-
age factor p tends to one.

The next theorem, which holds for all functions y (y, x), sub-
ject to regularity conditions, shows that the PAE has minimum
worst-case specification error locally.



Theorem 1. Suppose that the conditions of Lemma 1 hold, and
let

Y0, %) = B [8(U,X) | Y =y, X = x].
Then, as € tends to zero we have
be(y”) < be(y) + Ofe).

(17)

3.4. Result Under Fixed-¢ Misspecification

To show our second main result, let us now focus on the case
o) = 2(t — 1)?; that is, we choose the distance measure
d(fo.f5) to be the Pearson x? divergence. For this quadratic
distance measure, we show that PAE satisfy a fixed-¢ optimality
result, which is valid for all values of € that are smaller than

var, [8(U,X) — ¥ (¥, )]

2 b
2 Supu,x [8(1/‘) x) - yP(g(U) x), x)]
where ¥ (3, x) is given by (17).

(18)

Theorem 2. Assume that E,[y(Y,X)] = 0, ¢(¥) = %(t —1)3,
and that y (Y, X) and § (U, X) have finite second moments under
the reference model. Then, for 0 < € < €, we have

be(y?) < be(y).

In Theorem 2 we show that ¥ is an exact minimizer of
the function b, (y). This is in contrast with Theorem 1, where
we relied on a small-€ approximation. The condition ¢ < €
guarantees that, for y = y*, the constraint fo(u | x) > 0 is non-
binding in the optimization problem over fy in (16), implying
that the problem has a simple analytic solution. Although, in
many settings such as model (1), the parameter of interest 8 is
not consistently estimable under our assumptions, Theorem 2
shows that PAE achieve the smallest possible worst-case speci-
fication error when the true distribution fy lies sufficiently close
to the reference distribution f, , as measured according to the
x? divergence.

If the distance measure d(fy, f,) is not a x2-divergence, or
if ¢ > €, then y* is not the exact minimizer of worst-case
specification error b, (y). Moreover, in such cases the estimator
with minimum worst-case specification error depends on € in
general. However, one can still establish a fixed-e bound on
worst-case specification error, as the next result shows.

Theorem 3. Let ¥ be asin (17), and assume that ¢ (r) is convex
with ¢ (1) = 0. Then, for all € > 0,

be(y®) < 2 inf be(y).
Y

In Theorem 3 we establish a fixed-€ bound on the worst-case
specification error of PAE, which holds for all € > 0 and all ¢-
divergences such that ¢ is convex with ¢ (1) = 0. The infimum is
taken over all possible functions y (y, x), subject to measurability
cond1t1ons, which we implicitly assume throughout the article.
Although B may not minimize worst-case specification error
for finite €, Theorem 3 shows that its worst-case specification
error is never larger than twice the minimum worst-case spec-
ification error. In addition, the factor two in Theorem 3 cannot
be improved upon in general, as we show in Appendix S5 in the
context of a simple binary choice model.

JOURNAL OF BUSINESS & ECONOMIC STATISTICS . 7

3.5. Discussion

In this subsection, we discuss several features and implications
of our main results given by Theorems 1 and 2.

3.5.1. Uniqueness

In the absence of covariates and for known parameters 8, o,
the proof of Theorem 1 shows that ' is the unique minimizer of
the first-order worst-case specification error. Likewise, y* is also
unique in Theorem 2. More generally, if covariates are present
and the parameters B, o, are estimated, then the leading order
contribution of b¢(y) is minimized if and only if y(Y,X) =
Y2V, X) + oX) + Ay (Y, X) + op, (1), for some X and w such
that B [@(X)] = 0—see part (ii) of Theorem S1 in Appendix S1
for a formal statement. Hence, while the PAE is not the unique
minimizer of the local worst-case specification error in this case,
any minimizer differs from the PAE by a zero-mean function
of X and a linear combination of the moment function . In
addition, 3° has smallest variance within the class of minimum
worst-case specification error estimators.

3.5.2. Form of Misspecification

Theorems 1 and 2 rely on specific distance measures, x
divergence for the latter and any member of the ¢-divergence
family for the former. Under other distance measures, the
PAE will not have minimum worst-case specification error in
general.

Given a distance measure, the theorems are based on non-
parametric neighborhoods that consist of unrestricted distri-
butions of U | X, except for the moment conditions that pin
down B and o,. However, if one is willing to make additional
assumptions on fy that further restrict the neighborhood, then
one can construct estimators that are more robust than 8°
within a particular class. As an example, consider the fixed-
effects model (1). Suppose that, in addition to assuming that
o, €1, ..., & are mutually uncorrelated, the researcher is willing
to assume that they are fully independent. In that case, the
distribution of o can be consistently estimated under suitable
regularity conditions, provided J] > 2 (Kotlarski 1967; Li and
Vuong 1998). However, the PAE in (5) is inconsistent for fixed
J as n tends to inﬁnity. As a consequence, the PAE does not
minimize worst-case specification error in a semi-parametric
neighborhood that consists of distributions with independent
marginals.

To elaborate further on this point, consider the coefficient
8 in the population regression of @ on a covariates vector W,
see Equation (7). A possible estimator is the coefficient :STE
in the regression of the fixed-effects estimates Y; on W, see
(8). Under correct spec1ﬁcat10n of the reference model, 3FE
is consistent for 5. However, 8°F may be inconsistent under
the type of misspecification that we allow for, since &; and
W may be correlated under f. For example, W (e.g., teacher
absenteeism) may be influenced by « and factors that corre-
late with ¢;. Theorem 1 shows that, under such misspecifica-
tion, the PAE 8° in (9) has minimum worst-case specifica-
tion error locally. Nevertheless, if the researcher is confident
that W should not enter the outcome equation, and that it is

independent of ¢j, then it is natural to report the consistent
SFE

2

estimator
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3.5.3. Posterior Informativeness

Our small-€ calculations can be used to compare the worst-case
specification errors of the PAE 3P to that of the model-based
estimator 8M. To see this, let yflg\f[a (x) = Ef, [6p(U,X) | X = x].
Using Lemma 1, the ratio of the two worst-case specification
errors satisfies

be(y")  {var, W(U,X) — E\W(U,X) | Y, XD)?
11m M = 1
=0 be(yM) {var, (v(U,X))}2

>

(19)
where v(U, X) is the population residual of (§(U,X) — yM(X))
on ¥ (Y,X), under the paranletric reference model; that is,
v(u, x) = 8(u, x) — yM(x) + A’ (g(u, x), x), where all functions
are evaluated at 8,0y, and A is as defined in Lemma 1 for the
case y = pM. Intuitively, the robustness of 3P relative to oM
depends on how informative the outcome values Y; are for the
latent individual parameters 8 (U;, X;).

In practice, we will report an empirical counterpart to the
hZ P
o
as the R? in the population nonparametric regression of v(U, X)
on Y, X under the reference model; that is,

R2 — VA (Ex[v(U,X) | Y, XD
N var, (v(U, X))

small-€ limit of 1— This quantity can be simply expressed

, (20)

where with some abuse of notation here v(U, X) denotes the
sample residual of (SE(U, X) — yglﬁ(X)) on WE,&(Y) X), and

expectations and variances are taken with respect to P(B, f3).
Using a term from Andrews et al. (2020)—albeit in a different
setting—we refer to R? in Equation (20) as a measure of the
“informativeness” of the posterior conditioning, and we will
report it in our illustrations. As an example, for Fg (a) in model
(1), the informativeness of the posterior conditioning is

a—fly 1-p
2T(T =2

o ()= ()]

In this case, the R? increases with the number J of observations
per teacher, and it tends to one as J tends to infinity.

RP=1-

1)

3.5.4. Multi-Dimensional PAE

For simplicity, in this section, we have focused on the case where
the target parameter 6 in (11) is scalar. However, our results can
be extended to multidimensional parameters. The definition of
worst-case specification error in (16) is then modified to

be(y) = sup || Ep [y (Y, X)] — Eg[8(U,X)]

foele

>

where || - || is a norm over the vector space in which y (Y, X) and
8(U, X) take values.

If | - |lx denotes the corresponding dual norm, then we
can rewrite be(y) = SUPy(, =1 be(y,v), where be(y,v) =
SUPfer, Epp,mvy (Y, X)] — Eg[vV8(U, X)]|. Our minimum
worst-case specification error results for PAE for scalar §
then apply to be(y,v) for every given vector v, and the
minimum-specification error properties are preserved after
taking the supremum over the set of vectors v with ||v||, = 1.
Thus, in the multidimensional case, PAE minimize worst-case

specification error for small € in the sense of Theorem 1, and
for fixed € under the conditions of Theorem 2. In our leading
example of Section 2, suppose we are interested in the entire
distribution function F,. In this case, the average effect is a
function indexed by a. Taking the supremum norm || - ||c over
distribution functions, we obtain that, as an estimator of F,, the
PAE minimizes worst-case specification error under suitable
conditions.

3.5.5. Mean Squared Error

While we have shown that PAE minimize worst-case specifica-
tion error locally under the conditions of Theorem 1, and for
fixed € under the conditions of Theorem 2, PAE generally do
not have minimum mean squared error (MSE). To see this, let
us assume that 8 and o, are known. In a local asymptotic frame-
work, where # tends to infinity, € tends to zero, and ne tends to
a positive constant, and under suitable regularity conditions, we
show in Appendix S5 that the estimator with minimum worst-
case MSE is given by

;SMMSE = [1 — wpe] ;S\M + Wne:ST)a
7 1 -1
Whe 1= <1+¢ ()) > (22)
2ne

which is a linear combination between the model-based esti-
mator and the PAE. The model-based estimator ;S\M, which
has the smallest asymptotic variance, will be preferred when
€ is small relative to 1/n, while the PAE, which has smallest
specification error, will be preferred when € is large relative to
1/n. However, in order to implement such estimators sMMSE
that minimize worst-case MSE, knowledge of € is required. See
Bonhomme and Weidner (2018) for an approach to minimum-
MSE estimation.

4, Simulations and Empirical lllustrations

In this section, we study two empirical applications: we esti-
mate the distribution of income neighborhood effects in the
US, and the distributions of permanent and transitory earnings
components in the PSID. We start the section by summarizing
the results of a Monte Carlo simulation exercise, in samples
generated from various specifications of model (1).

4.1. Monte Carlo Simulation: Summary of Results

While Theorems 1 and 2 show that PAE minimize worst-case
specification error under small-¢ and fixed-e misspecification,
respectively, they are silent about other forms of estimation
error. In Appendix S4, we report the results of a Monte Carlo
simulation exercise, where we compare the performance of PAE
and other estimators in finite sample in the fixed-effects model
(1), for various specifications. Here, we briefly summarize the
results from the simulation exercise.

We compare the performance of four estimators: the fixed-
effects estimator given by Equation (2), the PAE given by Equa-
tion (5), the model-based estimator given by Equation (6), and
a nonparametric kernel deconvolution estimator with normal
errors (Stefanski and Carroll 1990). We analyze two sets of



data-generating processes. When the reference normal distri-
bution for «; is correctly specified, the model-based estimator
performs best, as expected. We find that, while the PAE has
both larger bias and variance than the model-based estimator
in this case, it is less biased and less variable than both the
nonparametric deconvolution estimator and the fixed-effects
estimator, especially when the number of measurements J is
small (see Appendix Figure S1).

We next turn to data generating processes where «; is not
normal, drawn from a skewed Beta distribution. We find that
the model-based estimator is substantially biased in this case.
The nonparametric deconvolution estimator has smallest bias
when errors are normally distributed, but it is heavily biased
when errors are nonnormal. By contrast, although it has no con-
sistency guarantees in these settings, the PAE tends to perform
comparatively well in all situations, for bias and variance (see
Appendix Figure S2).

Overall, the simulations complement our theory by high-
lighting that, beyond specification error, other sources of esti-
mation error matter in practice. Under correct specification of
the reference distribution, the model-based estimator should be
preferred. At the same time, our results suggest that, at least
in the particular settings we focus on, the performance of the
PAE appears less sensitive to misspecification than those of
the model-based and nonparametric deconvolution estimators.
Moreover, we find that the robustness gains provided by the PAE
depend on the signal-to-noise ratio and the informativeness of
the posterior conditioning. We provide details on the simula-
tions in Appendix S4.

4.2. Neighborhood Effects

In this subsection and the next, we revisit two applications of
models with latent variables. In our first illustration, we focus on
a model of neighborhood effects following Chetty and Hendren
(2018), using data for the US that these authors made public.
In our second illustration, we study a permanent-transitory
model of income dynamics (Hall and Mishkin 1982; Blundell
et al. 2008) using the PSID. In both cases, we rely on a normal
reference specification and assess how and by how much the
posterior conditioning informs the estimates of the parameters
of interest.

Here we start with estimates of neighborhood (or “place”)
effects reported in Chetty and Hendren (2018, CH hereafter).
Those were obtained using individuals who moved between dif-
ferent commuting zones at different ages. The outcome variable
that we focus on is the causal estimate of the income rank at age
26 of a child whose parents are at the 25 percentile of the income
distribution. This is CH’s preferred measure of place effect.

CH report an estimate of the variance of neighborhood
effects, corrected for noise. In addition, they report individual
predictors. Here we are interested in documenting the entire
distribution of place effects. To do so, we consider the model
e = [ + & for each commuting zone ¢, where [, is a
neighborhood-specific fixed-effects reported by CH, p. is the
true effect of neighborhood ¢, and g, is additive estimation noise.
CH also report estimates s> of the variances of g for every c.
When weighted by population, the fixed-effects estimates fi,
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have mean zero. We treat neighborhoods as independent obser-
vations. The statistics we use for calculations are available at:
https://opportunityinsights.org/paper/neighborhoodsii/.  Given
the aggregate data at hand, we necessarily need to assume that
estimates [i, are independent across neighborhoods ¢, although
this might be restrictive in this setting.

We first estimate the variance of place effects ., following
CH. We trim the top 1% percentile of $2, and weigh all results
by population weights. While this differs slightly from CH’s
approach, which is based on 1/52 precision weights and no
trimming, we replicated the analysis using precision weights
in the un-trimmed sample and found similar results. We have
information about place effects in C = 590 commuting zones ¢
in our sample, compared to 595 in the sample without trimming.
We estimate a sizable variance of neighborhood fixed-effects:
var(ji.) = 0.077. In turn, the mean of s> weighted by population
is$2 = 0.047. Given those, we estimate the variance of place
effects as SIZL = Var(uc) 5, = 0.030. In this setting, the shrink-
age factor p. =57, 2 /(5 /2,L + sf) exhibits substantial heterogeneity
across commuting zones. Indeed, the mean of p; is 0.62, and its
10% and 90% percentiles are 0.21 and 0.93, respectively.

We use a normal with zero mean and variance 5%, as a prior
for p1.. Then, we estimate the distribution function of neighbor-
hood effects 1. using the PAE given by (5); that is,

Ff(a) = ch

( — Pelte )

c lﬂf c=1 3, V1= pe

where 7, are population weights. In addition, in order to ease
the visualization of the results, we will also report estimates of
densities, which are the derivatives of the PAE of distribution
functions. Note that the density of u at a can be approximated
for arbitrarily small i1 > 0 by the expectation of 1{|x —al|/h}/2h.
Taking the limit of the correspondmg PAE as h tends to zero
gives the derivative of F¥ F,, at a. We thus expect derivatives of PAE
of distribution functlons to enjoy similar minimum-worst-case
specification error properties as PAE, but we do not formalize
the required assumptions here.

In the top panel of Figure 1, we report several estimates of
distribution functions. In the bottom panel, we report the cor-
responding density estimates. In the left graphs, we show non-
parametric kernel estimates of the distribution function (respec-
tively, density) of the fixed-effects fi., weighted by population
(in solid), together with the best-fitting normal (in dashed).
The graphs show substantial nonnormality of the fixed-effects
estimates. In particular, the large variance appears to be driven
by some large positive and negative estimates fi.. In the right
graphs, we report the PAE FP of the distribution function of
true place effects ., with the associated density (in solid). In
addition, we show the normal prior, with zero mean and vari-
ance’s\i (in dashed). The posterior distribution of neighborhood
effects differs from the normal prior, although the two estima-
tors have the same variance by construction. In comparison,
neighborhood-specific EB estimates have a substantially lower
dispersion. In appendix (Figure S5, supplementary material),
we report an estimate of their distribution function FPM and

associated density. While’s\i = 0.030 and the variance associ—

ated with ﬁﬁ is 0.030, the variance of the EB estimates is only
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Figure 1. Distribution of neighborhood effects

neighborhood effects

NOTE: In the left graphs, we show the distribution of fixed-effects estimates jic (solid) and its normal fit (dashed). In the right graphs, we show the posterior distribution of
¢ (solid) and the prior distribution (dashed). The distribution functions are shown in the top panel, the implied densities are shown in the bottom panel. Calculations are

based on statistics available on the Equality of Opportunity website.

0.010. In addition, a specification test that compares model-
based estimator and PAE, which we described in Appendix S5
(supplementary material), suggests that these differences are
statistically significant. Indeed, assuming independence across
commuting zones, we obtain p-values below 0.01 at all deciles
except the bottom two.

To assess how likely it is that the posterior estimator approxi-
mates the shape of the distribution of true neighborhood effects,
we next perform two different exercises, based on a simulation
and on numerical calculations motivated by our theory. We start
with a Monte Carlo simulation, where u., for ¢ = 1, ..., Cgim,
are log-normally distributed with zero mean and variance /s\i,
and €, are normally distributed independent of . with zero
mean. We consider three scenarios for the noise variancess: the
estimates from CH, one-third of those values, and one-tenth of
those values. In this exercise, we again weigh by population. We
show the results for Cgp = 100,000 simulated neighborhoods.

In the left graphs of Figure 2, we see that, when the noise
variances are the ones from the data, the posterior density is
more skewed than the normal, yet the posterior shape is quite
different from the true log-normal distribution of w.. When
reducing the noise variances in the middle and right graphs,
the posterior distribution function and density estimates get
closer to the log-normal ones. In the right graphs, where the
shrinkage factor is 0.90 on average (as opposed to 0.62 in the
data), the posterior distribution function and density approx-
imate the highly nonnormal shape of the true distribution of
neighborhood effects very well.

We next turn to our posterior informativeness measure,
which is given by Equation (21). Note the R? coefficient varies
along the distribution. We find that the weighted average R?
across values of a is 28%, where we weigh across cutoff values
a by the reference distribution for «. This value is consistent
with the message of Figure 2, since it suggests that, while the
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Figure 2. Simulated data with log-normal ¢

0
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NOTE: Simulation with ¢ log-normal and . normal. The posterior distribution is shown in solid, the prior distribution is shown in dashed. The distribution functions are
shown in the top panel, the implied densities are shown in the bottom panel. The left graphs correspond to the noise variances?g of the data, the middle ones correspond
to the noise variances divided by 3, and the right graphs correspond to the noise variances divided by 10.

posterior conditioning informs the shape of the distribution
of neighborhood effects, the signal-to-noise ratio is not high
enough to be confident about the exact shape.

Last, we perform two additional exercises as robustness
checks. First, we incorporate the mean income y, of permanent
residents in county c at the 25% percentile as a covariate. CH
rely on information on permanent residents’ income to improve
the accuracy of individual predictions. Here, we use it to refine
the reference distribution and to improve the estimation of the
distribution of neighborhood effects. Specifically, our reference
model for . is then a correlated random-effects specification,
where the mean depends on y, linearly. Appendix (Figure
S6, supplementary material) shows small differences with our
baseline estimates. Second, we re-do our main analysis at the
county level, instead of the commuting zone level. In that case,
the signal-to-noise ratio is lower, our posterior informativeness
R? measure is 17% on average, and the appendix (Figure S7,
supplementary material) shows that the normal prior and the
posterior distributions are closer to each other than in the case
of commuting zones.

4.3. Income Dynamics

In this subsection, we consider the following permanent-
transitory model of household log-income:

Nit = Nij—1 + Vits
t=1,..,T,

Yit = nit + €irs

i=1,..,n,

where ¢;; and Vj; are independent at all lags and leads, and
independent of 1. This process is commonly used as an input
for life-cycle consumption/savings models. Researchers often
estimate covariances in a first step using minimum distance,
and then impose a normality assumption for further analysis.
However, there is increasing evidence that income components
are not normally distributed. Instead of using a more flexible
model—as has been done by Carlton and Hall (1978) and a large
subsequent literature—here we compute PAEs. The advantages
of this approach are that no additional assumptions are needed,
and that implementation is straightforward.

We focus on six recent waves of the PSID 1999-2009 (every
other year), see Blundell et al. (2016) for a description of the
data. We use the same sample selection as in Arellano et al.
(2017), and work with a balanced panel of n = 792 house-
holds over T = 6 periods. Yj are residuals of log total pre-
tax household labor earnings on a set of demographics, which
include cohort interacted with education categories for both
household members, race, state, and large-city dummies, a fam-
ily size indicator, number of kids, a dummy for income recipient
other than husband and wife, and a dummy for kids out of
the household. Our aim is to estimate the distributions of 7;
and &;. To do so, we compare normal model-based estimates
with posterior estimates, by plotting distribution functions as
well as the implied densities. The model’s structure is similar to
that of the fixed-effects model (1), and analytical expressions for
posterior estimators are easy to derive.
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NOTE: The top panel shows PAE estimates of distribution functions (in solid), and model-based estimates (in dashed), and the bottom panel shows the associated density
estimates. The left graphs correspond to the permanent income component 7jt, the right graphs to the transitory income component ¢j;. Sample from the PSID, 1999-2009.

In the left graphs of Figure 3, we show the distribution of
the permanent component 7;. In the right graphs, we show the
distribution of the transitory component &;;. We show PAE in
solid, and model-based estimators in dashed. In the top panel
we report estimates of distribution functions, and in the bottom
panel we report the implied density estimates. The estimates
show mild deviation from Gaussianity for the permanent com-
ponent, and stronger evidence of non-Gaussianity for the tran-
sitory component. In particular, the latter shows excess kurtosis
(i.e., “peakedness”) relative to the normal.

Several articles have already documented the presence of
excess kurtosis in income components, particularly in transi-
tory innovations, using parametric or semi-parametric meth-
ods. The estimates in Figure 3 share some qualitative similarities
with recent findings in the literature. For example, the estimates
of a flexible nonnormal and nonlinear model in Arellano et al.

(2017, Figure 3) are quite similar to the PAE estimates in Figure 3
for permanent components. At the same time, their estimates
of the distribution of transitory components show substantially
more pronounced non-Gaussianity and excess kurtosis rela-
tive to PAE. This finding is in agreement with our posterior
informativeness measure R?, which is 12% on average along
the distribution for the permanent component, and 8% on
average for the transitory component. This degree of infor-
mativeness suggests that posterior estimates may suffer from
substantial specification error when the reference distribution is
misspecified.

Overall, these empirical illustrations give two examples
where, starting from a normal prior, the posterior conditioning
is informative about the true unknown distributions. In both
settings, PAE are not normal. Yet, as indicated by the R?
values we report, the signal-to-noise ratios are not high enough



to be certain about the exact shapes of the distributions of
interest, thus motivating further analyses using nonnormal
specifications. PAE should be useful in other environments
where model (1) and its extensions are widely used, for example
in teacher value-added applications, where the signal-to-noise
ratio is driven by the number of observations per teacher.
Moreover, PAE are also applicable to other—nonlinear—
econometric models, as we describe in the next section.

5. Complements and Extensions

In this section, we outline several complements and extensions
that we analyze in detail in the appendix.

5.1. PAE in Other Models

PAE are applicable to a variety of settings. In many econometric
models, semi-parametric estimators—that is, robust to distri-
butional assumptions on unobservables—of § parameters are
available; see Powell (1994) for examples. In such models, PAE
provide estimators of average effects that enjoy robustness prop-
erties when parametric assumptions are violated. In Appendix
S6, we study static binary and ordered choice models, censored
regression models, and panel data binary choice models. We also
show how the White (1980) formula for robust standard errors
in linear regression can be interpreted as a PAE.

5.2. Confidence Intervals and Specification Test

Under correct specification of the reference model, it is easy to
derive the asymptotic distributions of 8™ and §° using standard
arguments. Moreover, under local misspecification, confidence
intervals that account for both model uncertainty and sam-
pling uncertainty can be constructed following Armstrong and
Kolesar (2018) and Bonhomme and Weidner (2018). However,
such confidence intervals require the researcher to set a value for
the degree of misspecification €. In Appendix S5 (supplemen-
tary material), we provide details on confidence intervals calcu-
lations. In addition, we explain how to construct a specification
test of the reference model based on the difference 37 — 3M.

5.3. Robustness in Prediction

In applications such as the fixed-effects model (1) of teacher
quality, researchers are often interested in predicting the quality
o; of teacher i. Although our focus in this article is on the
estimation of population averages, it is interesting to see how
different predictors perform under misspecification of the ref-
erence distribution. It is well known that EB estimators mini-
mize mean squared prediction error when the normal reference
model is correctly specified. However, when normality fails, the
best predictor is a different posterior mean, which does not
generally coincide with the EB estimate based on a normal prior.
Intuitively, conditioning on nonlinear functions of the data may
improve prediction accuracy.

In Appendix S3 (supplementary material), we use our
framework—applied to worst-case mean squared prediction
error instead of worst-case specification error of a sample
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average—to provide results on the robustness of EB estimators
in the presence of misspecification. We show that EB estimators
have minimum worst-case mean squared prediction error, up to
smaller-order terms, under local deviations from normality. In
addition, we derive a fixed-¢, nonlocal risk bound in the spirit
of Theorem 3.

6. Conclusion

Posterior averages are commonly used to predict individual
parameters, such as teacher quality or neighborhood effects, and
they play a central role in Bayesian and EB approaches. In this
article, we have provided a frequentist justification for posterior
conditioning when the goal of the researcher is to estimate a
population average quantity. We have shown that PAEs have
minimum worst-case specification error under various forms
of misspecification of parametric assumptions. PAE are simple
to implement, and our analysis provides a rationale for report-
ing them in applications alongside other parametric and semi-
parametric estimators, as well as a simple way to assess the
informativeness of the posterior conditioning. As an example,
Arnold et al. (2020) recently reported PAE to document judge
heterogeneity in the context of bail decisions. While we have
used a linear fixed-effects model as a running example due to its
popularity, there are other possible applications, some of which
we discuss in the appendix.

Supplementary Materials

The supplementary material contains an appendix with proofs, simulations,
and extensions, as well as codes for replication.

Acknowledgments

We thank to two anonymous referees, Manuel Arellano, Tim Armstrong,
Raj Chetty, Tim Christensen, Nathan Hendren, Peter Hull, Max Kasy, Derek
Neal, Jesse Shapiro, Xiaoxia Shi, Danny Yagan, and audiences at various
places for comments.

Funding

Bonhomme acknowledges support from the NSE Grant SES-1658920.
Weidner acknowledges support from the Economic and Social Research
Council through the ESRC Centre for Microdata Methods and Practice
grant RES-589-28-0001 and from the European Research Council grants
ERC-2014-CoG-646917-ROMIA and ERC-2018-CoG-819086-PANEDA.

References

Abadie, A., and Kasy, M. (2018), “The Risk of Machine Learning,” Review
of Economics and Statistics, to appear. [2]

Andrews, I, Gentzkow, M., and Shapiro, J. M. (2017), “Measuring the
Sensitivity of Parameter Estimates to Estimation Moments,” Quarterly
Journal of Economics, 132, 1553-1592. 3]

Andrews, I., Gentzkow, M., and Shapiro, J. M. (2020), “On the Informative-
ness of Descriptive Statistics for Structural Estimates,” Econometrica, 88,
2231-2258. [3,6,8]

Angrist, J. D., Hull, P. D., Pathak, P. A., and Walters, C. R. (2017), “Lever-
aging Lotteries for School Value-Added: Testing and Estimation,” Quar-
terly Journal of Economics, 132, 871-919. [1,4]

Arellano, M., Blundell, R., and Bonhomme, S. (2017), “Earnings and Con-
sumption Dynamics: A Nonlinear Panel Data Framework;” Economet-
rica, 85, 693-734. [11,12]



14 e S.BONHOMME AND M. WEIDNER

Arellano, M., and Bonhomme, S. (2009), “Robust Priors in Nonlinear Panel
Data Models,” Econometrica, 77, 489-536. [2]

Armstrong, T. B., and Kolesar, M. (2018), “Sensitivity Analysis
Using Approximate Moment Condition Models,” arXiv preprint
arXiv:1808.07387. [3,13]

Arnold, D., W. S. Dobbie, and P. Hull (2020), “Measuring Racial Discrim-
ination in Bail Decisions,” (No. w26999). National Bureau of Economic
Research. [13]

Berger, J. (1980), Statistical Decision Theory: Foundations, Concepts, and
Methods, New York: Springer-Verlag. [1]

Bickel, P. J., Klaassen, C. A. J., Ritov, Y., and Wellner, J. A. (1993), Efficient
and Adaptive Inference in Semiparametric Models, Baltimore: Johns Hop-
kins University Press. [6]

Blundell, R., Pistaferri, L., and Preston, I. (2008): “Consumption Inequality
and Partial Insurance,” American Economic Review, 98, 1887-1921. [2,9]

Blundell, R., Pistaferri, L., and Saporta-Eksten, I. (2016), “Consumption
Smoothing and Family Labor Supply;” American Economic Review, 106,
387-435. [11]

Bonhomme, S., and Robin, J. M. (2010), “Generalized Nonparametric
Deconvolution With an Application to Earnings Dynamics,” Review of
Economic Studies, 77, 491-533. [2,4]

Bonhomme, S., and Weidner, M. (2018), “Minimizing sensitivity to model
misspecification,” arXiv:1807.02161. [2,3,6,8,13]

Carlton, D. W,, and Hall, R. E. (1978), “The Distribution of Permanent
Income,” in Income Distribution and Economic Inequality, New York:
Halsted. [11]

Chetty, R., Friedman, J. N., and Rockoff, J. E. (2014), “Measuring the
Impacts of Teachers I: Evaluating Bias in Teacher Value-Added Esti-
mates,” American Economic Review, 104, 2593-2632. [1]

Chetty, R., and Hendren, N. (2018), “The Impacts of Neighborhoods on
Intergenerational Mobility: County-Level Estimates,” Quarterly Journal
of Economics, 133, 1163-1228. [1,2,4,9]

Christensen, T., and Connault, B. (2019), “Counterfactual Sensitivity and
Robustness,” unpublished manuscript. [3,6]

Cressie, N., and Read, T. R. C. (1984), “Multinomial Goodness-of-Fit Tests,”
Journal of the Royal Statistical Society, Series B, 46, 440-464. [6]

Delaigle, A., Hall, P,, and Meister, A. (2008), “On Deconvolution With
Repeated Measurements,” Annals of Statistics, 36, 665-685. [4]

Dobbie, W., and Fryer, R. G. Jr (2013), “Getting Beneath the Veil of Effective
Schools: Evidence from New York City,” American Economic Journal:
Applied Economics, 5, 28-60. [4]

Efron, B. (2012), Large-Scale Inference: Empirical Bayes Methods for Estima-
tion, Testing, and Prediction, Vol. 1. Cambridge: Cambridge University
Press. [2]

Efron, B., and Morris, C. (1973), “Stein’s Estimation Rule and its Competi-
tors — An Empirical Bayes Approach,” Journal of the American Statistical
Association, 68, 117-130. [2]

Fessler, P., and Kasy, M. (2018), “How to Use Economic Theory to Improve
Estimators,” to appear in the Review of Economics and Statistics. [2]

Finkelstein, A., Gentzkow, M., Hull, P,, and Williams, H. (2017), “Adjusting
Risk Adjustment — Accounting for Variation in Diagnostic Intensity;
New England Journal of Medicine, 376, 608-610. [1]

Geweke, J., and Keane, M. (2000), “An Empirical Analysis of Earnings
Dynamics Among Men in the PSID: 1968-1989,” Journal of Economet-
rics, 96, 293-356. [2]

Guvenen, E, Karahan, E, Ozcan, S., and Song, J. (2016), “What Do Data
on Millions of U.S. Workers Reveal about Life-Cycle Earnings Risk?”
Econometrica. [2]

Hall, R., and Mishkin, F. (1982), “The Sensitivity of Consumption to Transi-
tory Income: Estimates from Panel Data of Households,” Econometrica,
50, 261-81. [2,4,9]

Hansen, B. E. (2016), “Efficient Shrinkage in Parametric Models,” Journal of
Econometrics, 190, 115-132. [2]

Hirano, K. (2002), “Semiparametric Bayesian Inference in Autoregressive
Panel Data Models,” Econometrica, 70, 781-799. [2]

Huber, P. ., and Ronchetti, E. M. (2009), Robust Statistics, 2nd ed., Hoboken,
NJ: Wiley. [3]

Hull, P. (2018), “Estimating Hospital Quality with Quasi-Experimental
Data,” unpublished manuscript. [1,4]

Ignatiadis, N., and S. Wager (2019), “Bias-Aware Confidence Intervals for
Empirical Bayes Analysis,” arXiv:1902.02774. [2]

James, W., and Stein, C. (1961), “Estimation with Quadratic Loss,” in Proc.
Fourth Berkeley Symp. Math. Statist. Prob., 1,361-379. Univ. of California
Press. [2]

Jochmans, K., and Weidner, M. (2018), “Inference on a Distribution From
Noisy Draws,” arXiv:1803.04991. [3]

Kane, T. J,, and Staiger, D. O. (2008), “Estimating Teacher Impacts on
Student Achievement: An Experimental Evaluation’, National Bureau of
Economic Research (No. w14607). [1]

Kitamura, Y., Otsu, T., and Evdokimov, K. (2013), “Robustness, Infinites-
imal Neighborhoods, and Moment Restrictions,” Econometrica, 81,
1185-1201. [3]

Koenker, R., and Mizera, I. (2014), “Convex Optimization, Shape Con-
straints, Compound Decisions, and Empirical Bayes Rules,” Journal of
the American Statistical Association, 109, 674-685. [2,4]

Kotlarski, I. (1967), “On Characterizing the Gamma and the Normal Dis-
tribution,” Pacific Journal of Mathematics, 20, 69-76. [4,7]

Li, T, and Vuong, Q. (1998), “Nonparametric Estimation of the Measure-
ment Error Model Using Multiple Indicators,” Journal of Multivariate
Analysis, 65, 139-165. [7]

Morris, C. N. (1983), “Parametric Empirical Bayes Inference: Theory and
Applications,” Journal of the American Statistical Association, 78, 47-55.
[1,2,3]

Owen, D. B. (1956), “Tables for Computing Bivariate Normal Probabilities,”
The Annals of Mathematical Statistics, 27, 1075-1090. [6]

Powell, J. L. (1994), “Estimation of Semiparametric Models,” Handbook of
Econometrics, 4, 2443-2521. [13]

Stefanski, L. A., and Carroll, R. J. (1990), “Deconvolving Kernel Density
Estimators,” Statistics, 21, 169-184. [8]

White, H. (1980), “A Heteroskedasticity-Consistent Covariance Matrix
Estimator and a Direct Test for Heteroskedasticity,” Econometrica: Jour-
nal of the Econometric Society, 817-838. [13]



	Abstract
	1.  Introduction
	1.1.  Related Literature and Outline

	2.  Motivating Example: A Fixed-Effects Model
	3.  Framework and Main Results
	3.1.  Model-Based Estimators and PAE
	3.2.  Neighborhoods, Estimators, and Worst-Case Specification Error
	3.3.  Result Under Small-ε Misspecification
	3.4.  Result Under Fixed-ε Misspecification
	3.5.  Discussion
	3.5.1.  Uniqueness
	3.5.2.  Form of Misspecification
	3.5.3.  Posterior Informativeness
	3.5.4.  Multi-Dimensional PAE
	3.5.5.  Mean Squared Error


	4.  Simulations and Empirical Illustrations
	4.1.  Monte Carlo Simulation: Summary of Results
	4.2.  Neighborhood Effects
	4.3.  Income Dynamics

	5.  Complements and Extensions
	5.1.  PAE in Other Models
	5.2.  Confidence Intervals and Specification Test
	5.3.  Robustness in Prediction

	6.  Conclusion
	Supplementary Materials
	Acknowledgments
	Funding
	References


