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Abstract

The boundary element method is an efficient algorithm for simulat-
ing acoustic propagation through homogeneous objects embedded in free
space. The conditioning of the system matrix strongly depends on physical
parameters such as density, wavespeed and frequency. In particular, high
contrast in density and wavespeed across a material interface leads to an
ill-conditioned discretisation matrix. Therefore, the convergence of Krylov
methods to solve the linear system is slow. Here, specialised boundary
integral formulations are designed for the case of acoustic scattering at
high-contrast media. The eigenvalues of the resulting system matrix ac-
cumulate at two points in the complex plane that depend on the density
ratio and stay away from zero. The spectral analysis of the Calderén pre-
conditioned PMCHWT formulation yields a single accumulation point.
Benchmark simulations demonstrate the computational efficiency of the
high-contrast Neumann formulation for scattering at high-contrast media.

1 Introduction

The boundary element method (BEM) numerically solves the Helmholtz equa-
tion by discretising a boundary integral equation at material interfaces [1, 2, 3].
The reformulation of a volumetric scattering model into a surface potential
problem gives the BEM several computational advantages over numerical meth-
ods such as the finite element method that directly discretise the Helmholtz
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equation. The BEM does not require artificial boundary conditions for exte-
rior scattering. Efficiency is obtained through preconditioned linear solvers and
the fast multipole method or hierarchical matrix compression for matrix arith-
metic [4, 5]. Modern BEM implementations can accurately simulate large-scale
wave scattering phenomena in acoustics, electromagnetics and elastodynam-
ics. On the downside, the computational efficiency of BEM can deteriorate
significantly for specific material configurations. This article studies geome-
tries that involve material interfaces with high contrast in mass density and
acoustic wavespeed for which standard boundary integral formulations become
ill-conditioned.

Among the many different boundary integral formulations for acoustic trans-
mission problems [6], the first-kind PMCHWT (Poggio-Miller-Chang-Harrington-
Wu-Tsai) [7, 8, 9] and the second-kind Miiller boundary integral equations [10]
are among the most widely used. A well-established functional analysis of these
boundary integral formulations is available [11, 12]. This study considers the
specific case of high-contrast media and analyses the influence of the mass den-
sity on the conditioning of the linear system obtained by Galerkin discretisation.
Specifically, large jumps in density and wavespeed at material interfaces lead to
slow convergence of iterative linear solvers such as GMRES. This deterioration
in computational efficiency has been observed in numerical simulations reported
in acoustic BEM literature (e.g. [13, 6]) but no spectral analysis or specialised
boundary integral formulations have been presented so far. The present work
analyses the eigenvalue accumulation points for the standard boundary inte-
gral formulations and designs novel boundary integral formulations that remain
well-conditioned for high-contrast media.

The simulation of acoustic scattering at high-contrast materials is of great
interest to a variety of engineering applications. In biomedical ultrasound mod-
elling, the presence of bone requires computationally efficient algorithms [14]. In
underwater acoustics, resonances occur at water-air interfaces [15]. In material
sciences, acoustic metamaterials can have arbitrary effective density character-
istics [16]. In the field of computational electromagnetics, high dielectric or
magnetic contrasts are common in metamaterials, and specialised boundary in-
tegral formulations for Maxwell’s equations have recently been designed that
are efficient for high-contrast media [17, 18].

The present study follows the same approach as in [17, 18] for electromag-
netics by designing novel boundary integral formulations for acoustics based
on a mix of direct interior and indirect exterior representation formulas. The
only study that has considered these acoustic formulations (also called mixed-
potential formulations) so far is [6], where we provided benchmarks of a wealth
of formulations, but only at low-contrast media and without a detailed analysis
of their efficiency. Here, we present the design of the novel high-contrast for-
mulations, analyse their spectrum and perform computational simulations. The
high-contrast formulations are of the second kind with two accumulation points
that depend on the density contrast. Furthermore, being indirect formulations,
they require only half of the boundary integral operators present in standard
formulations, such as the PMCHWT and Miiller formulations. Hence, the novel



formulations are quicker to assemble, have faster matrix-vector multiplications,
and require less memory. Finally, Calderén preconditioning will be applied to
the PMCHWT formulation, which has been shown to improve the conditioning
at low-contrast media for acoustics [13, 19] and electromagnetics [20, 21, 22].
The Calderén preconditioned PMCHWT has a single accumulation point and
remains well conditioned for a wide range of density ratios and frequencies but
has a high computational footprint at large-scale simulations.

The boundary integral formulations for acoustic scattering at high-contrast
media will be designed in Section 2. It will be shown in Section 3 that the
Calderon preconditioned PMCHWT and the high-contrast formulation are lin-
ear systems with accumulation points of eigenvalues, which yields well-conditioned
formulations at high-contrast media. Section 4 provides extensive numerical
simulations of the BEM, corroborating the conditioning of the formulations at
high-contrast media. The computational benchmarks also include numerical
simulations at multiple objects as well as large-scale geometries.

2 Formulation

The boundary integral formulations for high-contrast media will be derived for
a single penetrable object. The extension to the more general case of multiple
scattering will be explained at the end of this section.

2.1 Model equations

Let us consider a three-dimensional bounded object denoted by 2~ whose sur-
face I' is piecewise smooth. The unbounded exterior region is denoted by Q7.
The acoustic pressure field in the exterior is denoted by piot and can be decom-
posed into an unknown scattered field ps., and a known incident field pi,. as
Ptot = Psca + Pinc. In the interior, the acoustic pressure field is denoted by pins.
Harmonic wave propagation through material with a linear response can then
by modelled by the Helmholtz equation as

—Apsca — kipsca =0 in Q+7

—Apint — k2 Ping = 0 in Q7

Y Prot = YpPint on T, (1)
i’)/]j\;ptot = p%%(zpint on I,

limy o |1 (a\r|psca - Zk—i—psca) =0.

Here, k+ and ps denote the wavenumber and mass density in region QF, re-
spectively. The Dirichlet and Neumann traces are defined by

vEp(x) = lim p(y) for x € T and y € QF, (2a)
y—ox

yip(x) = lim Vp(y) - n for x € T and y € QF, (2b)
y—x



where the unit normal vector n points towards the exterior domain. The last
equation is the Sommerfeld radiation condition for outgoing wave fields where 2
denotes the imaginary unit. Furthermore, it is assumed that the incident wave
field satisfies the Helmholtz equation with wavenumber k.

2.2 High-contrast boundary integral formulations

Any field that satisfies the Helmholtz system can be represented by surface
potentials at the material interface [1, 2, 3]. Let us use a direct representation
formula for the interior field, that is,

Pint = Vﬁwi - ’C7¢7~ (3)

Differently, the exterior field is represented by one of the following indirect
representation formulas:

Psca = V+¢+7 (4a)
DPsca = 7IC+¢+- (4b)

Here, ¥V and K denote the single-layer and double-layer potentials operators,
which are given by

VEy](x / G (x,y)¢(y)dy for x € QF, (5a)
[KEe](x // Faly Gi (x,y)o(y)dy forx € QF,  (5b)

for the Green’s function
GE(x,y) = ::;x__; for x,y € QF and x # y. (6)

Since the interior field is represented by the direct formula (3), the surface
potentials are the traces of the pressure field [2], that is,

¢_ = ’YL_)pinM (73‘)
Y™ = YNDPint- (7b)

On the contrary, the exterior surface potentials do not have a direct physi-
cal meaning since the exterior field is given by the indirect representation for-
mula (4). Taking the traces of the scattered field towards the surface yield

’yEpsca = V+1ZJ+ s (83)

1
fY]J\r[psca = (T+ - 2I> '(/]+ (8b)



for the indirect single-layer representation (4a), and

1
VBpsca - - <K+ + 2I> ¢+7 (93)
IVJJ\rrpsca = D+¢+ (9b)

for the indirect double-layer representation (4b). Here, I denotes the identity
operator and

Vii/’ // GE(x,y)(y) dy forxeT, (10a)
(K9] (x / T G y)oly) dy for x eI, (10)
[Ti¢] (x) (x,y)¢ forxeT, (10c)

[D¥¢] (x) = — o (X) / /F Fhy) G*(x,y)¢(y)dy forxel,  (10d)

are the single-layer, double-layer, adjoint double-layer, and hypersingular bound-
ary integral operators, respectively.

Notice that the set of two boundary integral equations (8) has three unknown
surface potentials: 'yﬁpmt, ’Y?\;ptota and ¢*. Similarly, the set of two boundary
integral equations (9) has three unknown surface potentials: WEptot, 'ﬁ(,ptot, and
¢*. At the same time, the interior representation formula (3) is written in terms
of the two unknown surface potentials v, ptot and 7y prot. In the design of most
boundary integral equations (cf. [6]), the two interface conditions couple the
pairs of two traces at each interface, resulting in a well-defined set of boundary
integral equations. This case is different, with an additional surface potential
T or ¢t present in the formulation. Hence, the standard design procedures
will fail.

The design of the high-contrast formulations follows a different approach
than usual and includes the Neumann-to-Dirichlet (NtD) and Dirichlet-to-Neumann
(DtN) maps. The interior NtD and DtN maps are implicitly defined as

Axep (YnPine) = YpPint, (11a)
A]StN (’yz)pint) = ’y;]pint (11b)

and are also known as the Poincaré-Steklov and Steklov-Poincaré operators.
There are two equivalent expressions for these operators [3], that is,

1 —1
Asip = <21+K‘> Vo, (12a)

A = (D7) <;I - T‘) (12b)



and
1 —1
Ajew = (21 - T‘) D, (13a)
1 (1
Agw = (V) (21 + K) : (13b)

Notice that no exterior NtD or DtN maps can be used since the exterior field is
represented by an indirect formula. Furthermore, no closed-form expressions of
these operators are available due to the presence of the inverse operators.

Now, the idea is to use the NtD and DtN maps, as well as the transmission
conditions (1), to design relations between the exterior traces. Specifically, one
can write

_ _ _ p—
’Y$ptot = YpPint = ANtD'YNpint = ZANtDV;ptot, (143)

’Y]J\rlptot = Ziry]:/'pint = ZJABtNrprint = ZJA]Sthgptot- (14b)
These relations can be used to eliminate one of the unknown field traces in
the sets of boundary integral equations (8) and (9). By either eliminating the
Dirichlet trace or the Neumann trace from the two sets of boundary integral
equations, four different boundary integral formulations appear [6]. Here, we
will only consider the two formulations that result in well-conditioned systems.

In the case of the set of boundary integral equations (8) that correspond to
the indirect single-layer representation (4a), the surface potential ¢ is part of
H~Y/2(T). Since the Neumann trace is part of #~'/2(T') as well, the Dirichlet
trace will be eliminated. That is, substituting relation (14a) into the set of
boundary integral equations (8) yields

%A;ItDPY?\;ptot - ’ygpinc - V+1/J+, (15&)
1
’VJJ\rfptot - ’ij\princ = <T+ - 2-[) Tl)+~ (15b)

Similarly, the surface potential ¢ is part of H'/2(I") which suggests eliminating
the Neumann trace from the double-layer formulation. That is, substituting
relation (14b) into the set of boundary integral equations (9) yields

1
'YBptot - 7$pino = - (I(jL + 21> ¢+a (16&)

P+ p—
7ADtN7$ptot - Vj—cpinc = D+¢+- (16b)
Both sets of boundary integral equations (15) and (16) are well-defined with
two independent equations for two unknown surface potentials. However, these
formulations cannot be discretised yet due to the presence of the NtD and DtN
operators.



To solve the issue of having the NtD and DtN operators, which have no
closed-form expressions, their expressions in terms of (inverse) boundary integral
operators will be substituted. That is, two expressions (12) are available for the
NtD map and two expressions (13) for the DtN map. Hence, two different
versions of the boundary integral equation (15a) can be designed, as well as
two different versions of the equation (16b). Here, the expression (12b) will be
substituted into equation (15a) to obtain

_ -1 /1 _
Zt (D ) <2I - T > ’Y]-‘\_rptot - ’nginc = V+7/)+' (17)

When multiplying the equation from the left by the hypersingular operator, the
set of boundary integral equations (15) becomes

1 _ _ _
(21 =T ) 7]—Gpt0t - ZiD V+¢+ = %D 'nginm (183‘)

1
TN Prot + (21 - T+) U =YX Pinc- (18b)
Notice that these boundary integral equations are both part of #~'/2(T"), which
would not have been the case if the expression (12a) was chosen. Similarly,
substituting expression (13b) for the DtN map into the boundary integral equa-
tion (16b) yields

\—1(1 _
Zi (V ) (21 + K ) ’7$ptot - ’V]J\r[pinc = D+¢+~ (19)

Multiplication from the left by the single-layer operator converts the set of
boundary integral equations (16) into

1
<21 + KJr) ¢+ + Vgptot = 7$pinca (2()&)
oy Dot 4 (214 K ) vbpes = 2Vt 20D
T+ + YpProt = Y Pinc- (20b)
P+ 2 P+
In summary, the two sets of boundary integral equations read
%I -1 7%va+ '7]4\}ptot _ %D77Bpinc (213)
I =TT [ [ 97 VPime |’
1 + +
*I+K I ¢+ Y pPinc
2 D
- _ = |p_1,2 21b
[,’QV D I+ K ] [vﬁpmj [’,;V VR Pine (21b)

which will be called the high-contrast Neumann and Dirichlet boundary integral
formulation, respectively. Notice that the Neumann version maps H~/2(T) x
H~1/2(T) into H~/?(T') x H~/2(T) and the Dirichlet version maps H'/?(T") x
HY2(T) into HY/2(T') x H'/?(T'). Out of the eight different boundary integral
formulations that can be designed by this framework of mixed potentials (cf. [6]),
these are the only two that are completely defined in the same function space
and are, therefore, the only second-kind boundary integral formulations.



2.2.1 Extension to multiple scattering

The high-contrast formulations can readily be extended to the case of multiple
scattering from a set of disjoint objects. That is, let us consider objects £2,,
for m = 1,2,...,¢ with interior wavenumber k,,, and density p,,, that are all
embedded in the exterior region )y with wavenumber ko and density py. Then,
the boundary integral formulation reads

Bi1 Bz -+ Bl |wm [ f1
By Bas -+ By Uz fa (22)
By Be -+ By |we L fe
with the blocks given by
(i — 17— D_V+
. ) m . m mm
B’H’Lm - I I gl _ T%m | ) (23&)
(0 — o Uy
— p m mn :
Bin 0 e } if m # n, (23b)
+
mPto
Uy = ’YN%ert t] , (23c)
[£2- DD mPinc
f = | Pm i Dm ] (23d)
’YN’mplnc
for the Neumann high-contrast formulation, and
[ i+ K, I
Bmm - pm V Drtnn %I + K- :| 5 (24&)
Bon = _ Vm D:;m } if m #n, (24b)
_ ¢+ }
Uy = m , 24c¢
_757mptot ( )
r +
VYD mPinc
m = T/ — 24d
f _/;T m 7]4\}7mpi11c:| ( )

for the Dirichlet high-contrast formulation.

2.3 Standard formulations

The most widely used boundary integral formulations for Helmholtz transmis-
sion problems are the PMCHWT and Miiller formulations, which are given by

—Kt—K~ Vt4£Lvy-
P+

7$ptot 'Ymec (25)
DY +5:D™  TT+T~

’Y[T/ptot P)/Nplnc




and
I-KT+K- V*—'Z—;V*

'YBptot _ '_nginc (26
DY —Z:p= 4+ TH-T- - ’ )

Y3 Prot Y3 Pine

respectively. The PMCHWT formulation is a first-kind boundary integral equa-
tion and the Miiller formulation is of second kind.

Since the PMCHWT formulation is of first kind, it is often preconditioned
to improve the convergence of the linear solver. One of the most effective tech-
niques is to use the Calderdn identities, in specific the projection property of
the Calderén operators. The Calderén preconditioned PMCHWT formulation
reads

2

+ - + 4 P
~Kt—K~ VitV v Prot
DY+ 25D~ TY+T~ | 7Pt

—K* =K~ VY42V [y pie o7

B D+ + Z%D7 T+ + T FYIT/'pinc ( )

which is a well-conditioned formulation [19, 13]. All of these formulations can
readily be extended to multiple scattering [6].

Notice that the standard formulations, which are based on direct represen-
tation formulas, include both density contrasts p_/p+ and py/p_ in the system
matrix. Hence, an imbalance in matrix elements may occur at high-contrast me-
dia. Differently, the high-contrast Dirichlet and Neumann formulations include
a single density contrast only: either p_/p; or p;/p_, respectively.

2.4 Numerical discretisation

The numerical discretisation of the boundary integral formulations follows a
Galerkin method with piecewise linear (P1) elements, associated to each node
in a triangular surface mesh. Notice that PO elements could be used for the
H1/2 (T") spaces as well. However, since operator products are present, these
PO elements would have to be defined on the dual mesh [23], which increases
the computational overhead.

3 Spectral analysis

The linear system resulting from the BEM is a dense matrix. Solving this sys-
tem for large-scale simulation is computationally expensive and iterative linear
solvers are preferred over direct factorisations [24, 25]. Since the complex-valued
matrix is not Hermitian, the GMRES solver [26] will be used. The convergence
of Krylov solvers depends on the spectrum of the matrix, where a low con-
dition number and clustering of eigenvalues typically lead to small numbers of
iterations. The second-kind boundary integral equations have good convergence
properties since these formulations are in the form of an identity operator plus a
compact operator, which yields a spectrum with eigenvalues accumulating near



a fixed point. For this reason, first-kind boundary integral formulations are of-
ten preconditioned such that the preconditioned system is of second kind. First,
we will analyse the spectral properties of operator products. Then, this analysis
will be applied to the high-contrast formulations and the Calderén precondi-
tioned PMCHWT formulation. Both have accumulation points that depend on
the density ratio across the material interface.

The following spectral analysis relies on the compactness of the (adjoint)
double-layer operator. Hence, the material interface I' is assumed to be C2
smooth, for which the boundary integral operators are compact [12, 27, 3]. No-
tice that the boundary integral formulations can be applied to Lipschitz surfaces
as well (cf. [28]) but at the expense of corner singularities and lack of compact-
ness properties.

3.1 Operator products

Let us consider the operator products of single-layer and hypersingular operators
that are present in the formulations. The Calderén identities [2] state that

1

VD= 1I - K2, (28a)
1 2

DV = 11T (28b)

Since the double-layer and adjoint double-layer operators are compact, there is
an accumulation point at 1/4. In other words, the eigenvalues of these operator
products are clustered around the point 1/4 in the complex plane. Since the
Calderodn identities hold for operators with the same wavenumber only, these re-
sults cannot be used directly for operator products with different wavenumbers.
Still, single-layer and hypersingular operators with wavenumber k; are compact
perturbations of single-layer and hypersingular operators with wavenumber ko,
respectively [29, 19, 30, 31]. For this reason, the spectrum of operator products
ViDy and D;V; also accumulate at 1/4. This is computationally validated in
Figure 1, where one can also observe a larger spread in eigenvalues for higher
contrasts in wavenumber.

3.2 High-contrast formulations
The matrix of the Neumann high-contrast formulation (21a) can be written as
1y 7 _erp-y+ 1] _eep-y+ -
=TT —EEDVA [ EDVE T 0] oy
I Ir—7+ I i 0 Tt

Since the adjoint-double layer is a compact operator, the accumulation points
will be determined by the first matrix on the right-hand side. By definition, any
eigenvalue pair (A, v) of this matrix satisfies

G e

i1 V2 V2

10
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(a) Operator Vi D or, equivalently, D2V1. (b) Operator V2 D; or, equivalently, Dq V.

Figure 1: The eigenvalues of operator products for k1 = 7 and ks € {0.007,6.93},
calculated at a sphere with unit radius and 1262 degrees of freedom. The red
cross visualises the expected accumulation point at 1/4.

The second row states that vi = (A — )v,. Substitution of which into the first
row yields
2
1
LDy, = </\ - ) va. (31)
p— 2
Since the operator product D~V has an accumulation point at 1/4, the accu-
mulation point Ay of the Neumann high-contrast formulation satisfies

1 - 1\?

This quadratic equation is solved for

3 L2 [py
AN=-F -,/ —.
v=g ko (33)

With an equivalent analysis, one can show that the accumulation point of the
Dirichlet high-contrast formulation (21b) is given by

= (34)

~ 1
Ap=—- =% .
2 P+

[\V]

This spectral analysis concludes that the high-contrast formulations have two
accumulation points that are independent of the wavenumber and stay away
from zero. Furthermore, the accumulation points of the high-contrast Neumann
and Dirichlet formulations only grow towards infinity when the interior or ex-
terior density tends to zero, respectively, and only with a speed proportional

11



to the square root of the density ratio. Hence, these formulations are expected
to be well-conditioned for high-contrast media. An exceptional case where the
accumulation point could become zero is when acoustic metamaterials with a
negative effective mass density are considered [32]. The accumulation points are
computationally validated in Section 4.2.

3.3 Calderén preconditioned PMCHWT

The system matrix of the Calderén preconditioned PMCHWT formulation (27)
can be written as

2

Cll 012
= 35
{021 OQJ (35)

—K* K~ Vt4+5=v-
D* +5:D™  TH 41T~

with
C1=KTKT+ K"K +K Kt+K K~
+viDt 4+ Prvtp- £ P2y-pt yv-D-,
P

P+
Cho = —KtVH —L=gty- gyt gy
P+ P+
A VTt v 4 eyt Py
P+ P+

Cor = —DYK+ — DK~ —Prp-Kg+ _PEp-K-
p- p-
+1tpt + P2 rtp- s 7Dt PEro Do,
p— p—

Coo =DV + 22DtV P p-y+ 4 pv-
P+ p—
+ Tt + T T+ T T+ T T

By substituting the Calderén identities (28), these expressions simplify to

Ci = %1 FKYK 4+ K K* + Z—fvﬂ)* + Z—;V*Dt (37a)
Cha = Zi (VT =KtV )+ VT — KV, (37b)
Cor =T~ D" —DYK~ + Z—* (T*D~ — D™ K*V), (37¢)
Cao = %I +TYT~ 4+ 77Tt + Z—;Dﬂ/* + Z{D*Vf (37d)

This leaves us with expressions of operator products with different wavenumbers
only.

12



Let us first consider the off-diagonal blocks, for which we need the following
Calderén identities [2]:

VT — KV =0, (38a)
TD — DK =0. (38D)

As discussed in Section 3.1, a change in wavenumber is a compact perturbation
of the boundary integral operator and these Calderén identities also hold for
operator products with different wavenumbers, except for a compact pertur-
bation. Hence, operators C1o and Cs; are compact and do not influence the
accumulation points of the spectrum [19].

Concerning the diagonal blocks, products of the double-layer and adjoint
double-layer operators are compact and products of single-layer and hypersin-
gular operators accumulate at 1/4, as was shown above. Hence, the Calderén
preconditioned PMCHWT formulation has a single accumulation point given
by

S Lo Pt P

Ao ==+

TR T (39)

This spectral analysis concludes that the formulation is well-conditioned since
the accumulation point stays away from zero for any frequency and density ratio.
Furthermore, the accumulation point only tends to infinity when either of the
density ratios tends to infinity. These accumulation points are computationally
validated in Section 4.2.

The same analysis also shows that when considering only the exterior or
interior Calderén operator as preconditioner [6], two accumulation points are
present: i + Lf;—t and i + fﬁ. Since such a spectrum will lead to ill-conditioned
systems at high contrast media, this Calderén preconditioning approach will not
be considered here.

4 Results

This section provides the results of computational benchmarks that validate the
efficiency of the boundary integral formulations at high-contrast media.

4.1 Settings

Let us first summarise the computational settings of the benchmarks.

4.1.1 Boundary integral formulations

Five different boundary integral formulations will be considered for the com-
putational benchmarks: the standard PMCHWT and Miiller formulations, the
Calderén preconditioned PMCHWT formulation, and the novel high-contrast
formulations, as summarized in Table 1. Since the high-contrast formulations
are based on an indirect representation of the fields, only half the number of

13



boundary integral operators need to be assembled, compared to the direct for-
mulations. Notice that the computational complexity of the standard formu-
lations can be improved by exploiting the symmetry between the double-layer
and adjoint double-layer operators.

The high-contrast Neumann and Dirichlet formulations require less opera-
tions for each matrix-vector multiplication. That is, for a single matrix-vector
multiplication of the entire system, the number of individual matrix-vector mul-
tiplications of boundary integral operators is £ + 3¢2. Differently, the standard
formulations require 4¢ + 4¢2 dense operations for each multiplication of the
system matrix. Furthermore, Calderén preconditioning doubles the cost of a
matrix-vector multiplication. While operator sums can be calculated explicitly
to reduce the time for each matrix-vector multiplication, this cannot be per-
formed anymore for fast arithmetic with the fast multipole method or hierarchi-
cal matrix compression. Furthermore, operator products are never calculated
explicitly. Instead, separate matrix-vector multiplications are performed. Fi-
nally, the presence of identity operations in the boundary integral formulations
does not incur significant computation time since these are sparse operators.

Table 1: The boundary integral formulations for scattering at multiple pen-
etrable objects, with the number of dense boundary integral operators to be
assembled and the number of dense matrix-vector multiplications, where ¢ de-
notes the number of scatterers.

formulation #operators #matvecs
High-contrast Neumann (21a) 20 + 202 0+ 30°
High-contrast Dirichlet (21b) 20 + 202 0+ 302

PMCHWT (25) 40+ 402 A0+ 402
Miiller (26) 40+ 402 A0+ 402
Calderén PMCHWT (27) A0+ 402 80+ 812

4.1.2 Numerical parameters

All boundary integral formulations are implemented with version 3 of the open-
source BEMPP library [33, 34, 23]. The meshes are generated with Gmsh [35]
and MeshLab [36]. The spectra and condition numbers are calculated with dense
matrix assembly, while hierarchical matrix compression with a tolerance of 10~°
is used when solving the system. The linear solver is GMRES with a relative
tolerance of 10~7 as convergence criterion, without restart, and implemented
with the library SciPy [37].

4.1.3 Material parameters

No attenuation will be considered for the acoustic propagation. Hence, the
wavenumber is given by
k=2rf/c (40)
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for a given frequency f in Hz and a wavespeed ¢ in m/s. See Table 2 for
characteristic values of materials commonly found in acoustical engineering.

Table 2: Physical parameters of the scattering media [38, 39, 40, 41].

material p [kg/m®] ¢ [m/s]

air 1.225 340
fat 917 1412
water 1025 1500
bone 1912 4080
basalt 2740 3350
iron 7725 4094
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Figure 2: The eigenvalues of the boundary integral formulations for exterior
water and interior bone. The frequency is 500 Hz, ki = 2.09, k_ = 0.77, the
geometry is a sphere with unit radius, and the surface mesh has 177 nodes. The
red crosses depict the expected accumulation points.

4.2 Spectrum of formulations

The high-contrast Neumann and Dirichlet formulations and the Calderén pre-
conditioned PMCHWT formulation have eigenvalue accumulation points that
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depend on the density ratio, as given by Equs. (33), (34), and (39), respectively.
For this purpose, let us consider a spherical domain and calculate the eigenval-
ues of the system matrix of the boundary integral formulations. The density
ratio between water and bone at the interface is moderately high. The results
in Figure 2 clearly show the accumulation of the eigenvalues at the expected
points. Furthermore, this benchmark also suggests clustering of eigenvalues for
the standard PMCHWT and Miiller formulations.

4.3 Conditioning with density contrast

The accumulation points of the high-contrast materials directly depend on the
density ratio across a material interface. For this reason, the condition number
of the system matrix is expected to depend on the density ratio as well. Let us
benchmark the influence of the density ratio on the condition number by con-
sidering a spherical object. Two benchmarks will be performed, one where the
wavespeed remains constant with changing density and one where the wavespeed
is related to the density by a constant material compressibility. In the following,
the relative density will be defined as p_/p4.

First, let us consider a benchmark where the interior density changes and the
exterior density remains constant. The surface mesh and frequency are fixed.
In both materials, the wavespeed will be fixed to ¢ = 1500 (resembling water),
thus yielding a constant wavenumber across the entire benchmark. Figure 3
depicts the condition number of the boundary integral formulations, for a wide
range of interior densities. Figure 4 depicts the spectra for the high-contrast
cases of p_/p; =10"% and p_/p, = 10%.
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—e PMCHWT
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€ 10°
2
S 104
2
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10 1073 107 10! 10° 10* 102 103 104
relative interior density

Figure 3: The condition number of the boundary integral formulations with
respect to the relative density of the interior material: p_/p;. The surface
mesh on the unit sphere has 784 nodes, which holds 8 elements per wavelength
at a frequency of 1250 Hz. The wavespeed is constant and kb = k_ = 5.24.
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Figure 4: The eigenvalues of the boundary integral formulations for the bench-
mark described in Figure 3. The red crosses depict the expected accumulation

points.

The benchmarks show that the PMCHWT and Miiller formulations become
ill-conditioned for high density contrasts. Differently, the Calderén precondi-
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tioned PMCHWT formulation remains well-conditioned for the entire range of
density contrasts. This behaviour is expected since this formulation has a single
accumulation point. Moreover, since the interior and exterior wavenumbers are
equal, the cross terms of the operator products (37) cancel out exactly.
Regarding the high-contrast formulations, the Neumann version remains
well-conditioned for high interior densities while the Dirichlet version remains
well-conditioned for low interior densities. This behaviour is consistent with the
spectral analysis that shows a set of two accumulation points that depend on the
density ratio, see Eq. (33). For the high-contrast Neumann formulation, both
accumulation points converge towards 1/2 when the interior density is relatively
high while these two accumulation points diverge when the interior density is
relatively low. The accumulation point of the Dirichlet version behaves in op-
posite direction, that is, the two accumulation points converge towards 1/2 for
relatively low interior densities and diverge for relatively high interior densities.
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Figure 5: The condition number of the boundary integral formulations with
respect to the relative density of the interior material: p_/p;. The surface
mesh of the sphere has 784 nodes and the frequency of 39.5 Hz is chosen such
that at least 8 elements per wavelength are present in all cases. The wavespeed
depends on the density with a constant compressibility so that ky = 0.166 and
0.00524 < k_ < 5.24.

The previous benchmark assumed a constant wavespeed for changing density.
This has physical limitations since the acoustic wavespeed in a material depends
on the mass density. A commonly used relation that models this dependency is
by considering .

c= —— 41

B “
where 8 denotes the compressibility of the material [42]. The second benchmark
for the influence of the interior density uses a constant compressibility. Hence,
the density influences the wavenumber as well. All physical parameters are

taken to resemble water, and the mesh and frequency are fixed. The mesh was
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generated with at least eight triangles per wavelength for the highest frequencies
in the benchmark. Figure 5 presents the conditioning of the boundary integral
formulations and Figure 6 the spectra for the highest density contrasts.

As before, the standard PMCHWT and Miiller formulations become ill-
conditioned at high density ratios, as expected. Differently than before, the
other formulations also show deterioration of the conditioning at high-contrast
media, even though much better conditioned than the standard formulations.
Looking at the spectra, clustering of the eigenvalues is still visible but now with
eigenvalues close to zero as well. Since the accumulation points of the eigenval-
ues depend on the densities only, the worse conditioning has to be attributed
to a higher contrast in wavenumber. The operator products present in both the
Calder6n preconditioned PMCHWT formulation and the high-contrast formu-
lations diverge from the Calderdn identities that are only valid for zero material
contrast. The only formulation that keeps a constant condition number with
respect to density ratio is the high-contrast Neumann formulation when the
interior material has a higher density than the exterior.

4.4 Conditioning with frequency

The results presented above clearly demonstrate a strong influence of the den-
sity ratio on the conditioning of the discretisation matrix, as well as the ratio
in wavespeed. Another physical parameter that strongly influences the condi-
tioning of the boundary integral formulation is the frequency of the wave field.
The following benchmarks will demonstrate the influence of the frequency and
material contrast in terms of the condition number of the system matrix and
the number of iterations required for the GMRES iterative solver. Different
materials will be used, with a low-contrast ratio between water and fat, an in-
termediate contrast ratio between water and bone, and a high-contrast situation
with air and iron materials. See Table 2 for the physical parameters.

The following benchmarks consider a unit cube, that is, the length of all
edges is normalised to one. The incident wave field is a plane wave with direction
vector [1/v/3 1/v/3 1/v/3]. The triangular surface meshes are generated at
each frequency, with at least 6 elements per wavelength. The smallest mesh
has 202 vertices and the largest one 3068 vertices. Figures 7 and 8 present
the condition number and the number of GMRES iterations, respectively. The
vertical lines indicate the resonance frequencies of a rigid cube, given by

kn :w\/(nm)2+(ny)2+(nz)2 for ng,ny,n, =1,2,3,.... (42)

In the case of transmission problems, different resonances can occur as well [43,
44].

Comparing the condition number in Fig. 7 with the GMRES convergence in
Fig. 8, it is clear that the condition number of the system matrix is a good first
estimate for the convergence behaviour of the GMRES algorithm. However,
significant discrepancies between matrix conditioning and GMRES convergence
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Figure 6: The eigenvalues of the boundary integral formulations for the bench-

mark described in Figure 5. The red crosses depict the expected accumulation
points.
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Figure 7: The condition number with respect to the frequency of the wave field.
The geometry is a unit cube with a mesh density of 6 triangles per wavelength.

can be observed as well. These differences are not surprising since the conver-
gence of GMRES depends on the entire spectrum [45] and might be quick for
nearly singular systems [46].

The different benchmarks at different material interfaces clearly demonstrate
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Figure 8: The number of GMRES iterations with respect to the frequency of
the wave field. The geometry is a unit cube with a mesh density of 6 triangles
per wavelength.

the influence of the material contrast on the efficiency of the boundary integral
formulations. At low contrast in density and wavespeed, such as for the water-
fat interface, the PMCHWT and Miiller formulations are very efficient while the
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high-contrast formulations perform poorly. This is different when high material
ratios are present in the configuration. For example, at the air-iron interface, the
high-contrast Neumann formulation clearly outperforms all other formulations
in terms of efficiency.

The frequency has a profound influence on the computational efficiency:
the condition number increases and GMRES requires significant more itera-
tions to converge. This deterioration in efficiency already starts at moder-
ate frequencies and is on top of the increased number of degrees of freedom
necessary to guarantee six elements per wavelength. This behaviour is well
known and high-frequency simulations require specialised techniques from high-
performance computing (cf. [5]). The OSRC preconditioner can improve the
convergence at high frequencies for first-kind formulations such as the PM-
CHWT [47] but cannot be applied directly to second-kind formulations such as
the high-contrast and Miiller formulations.

Another influence of the frequency on the conditioning of the system is the
presence of spikes at specific frequencies. Boundary integral formulations are
known to suffer from resonances in the acoustic transmission problem [48, 49].
In the case of rigid bodies, combined-field formulations such as the ones of
Brakhage-Werner [50] and Burton-Miller [51] can resolve spurious resonances [52].
This approach has been extended to transmission problems (cf. [29, 53, 54]) but
a stability analysis at resonance frequencies is outside the scope of this study.

4.5 Multiple scattering

All boundary integral formulations considered in this work can be extended
to multiple scattering at disjoint simply-connected penetrable objects that are
embedded in an exterior medium. Then, the system matrices have 2¢ x 2¢ blocks
of individual boundary integral operators, as in Eq. (22) for the high-contrast
formulations. Each of the objects can be composed of a different material and,
therefore, material interfaces with a low contrast in material parameters as well
as high-contrast interfaces can be present in the same configuration.

Table 3 presents the number of GMRES iterations needed to solve the system
matrix for a configuration of seven spheres. As expected, the standard formu-
lations are very efficient at low-contrast problems involving water and fat only.
When all interior materials resemble bone, the number of iterations increases for
these formulations, which is even worse for the high-contrast water-iron inter-
faces. Differently, the high-contrast Neumann formulation is more efficient for
high-contrast than for low-contrast transmission problems, which is consistent
with the spectral analysis and the previous benchmarks.

The multiple scattering also allows for benchmarking the presence of inter-
faces with different material ratios. For example, the case ‘fffbfff’ has six
spheres made of fat and the middle one resembles bone. Even with only one
high-contrast interface, the number of GMRES iterations already increases con-
siderably for the standard formulations, in comparison with the case of fat ma-
terials only: almost three times the number of GMRES iterations are needed.
The convergence of the high-contrast Neumann formulation deteriorates only
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Table 3: Number of GMRES iterations for multiple scattering. All objects
are spheres of radius 1 centered at location (34,0,0) for j = 0,1,2,...,¢ — 1.
The incident plane wave field has direction (1/v/3,1/4/3,1/4/3) and frequency
f = 2353 Hz. The entire mesh has 11270 nodes and at least 6 elements per
wavelength. The exterior domain resembles water, and the interior materials
either fat (£), bone (b), or iron (i). The wavenumbers are kyater = 9.86, kfar =
10.5, kbone = 3.62, and Kkiron = 3.61.

interior high-contrast high-contrast PMCHWT Miiller Calderén

materials Neumann Dirichlet PMCHWT
fffffff 95 442 36 36 19
bbbbbbb 84 119 340 302 184
iiiididii 70 505 348 335 204
fffbfff 105 648 98 96 53
fffifff 102 666 110 103 67
bbfffbb 119 845 258 232 142
iifffii 115 985 292 282 183

slightly when different types of materials are present. This benchmark confirms
that the high-contrast formulation can already have a superior efficiency when
only few high-contrast interfaces are present in a multiple-scattering configura-
tion.

4.6 Large-scale benchmark

The final benchmark will be a large-scale simulation. As geometry, a mo’ai
statue [55] will be used that is 2.42 meters tall, 1.05 meters wide and 83 cm thick.
The acoustic parameters resemble basalt in the interior and air in the exterior
medium. Hence, there is a large contrast in the wavespeed (cpasalt/Cair = 9.85)
and density (ppasals/pair = 2236.7). The incident wave field is a plane wave with
direction vector [1 /3 1/V3 —1) \/3], unit amplitude, and a frequency of
3477 Hz (k4 = 64.3 and k_ = 6.52). The surface mesh has 35447 vertices and
at least 7 elements per wavelength. The simulation was performed on a compute
node with two 10-core Intel(R) Xeon(R) CPU E5-2630 v4 sockets, a clock speed
of 2.4 GHz, hyperthreading activated (40 threads total), and a shared memory
of 752 GB.

Table 4 presents the computational performance of the different formula-
tions. The high-contrast Neumann formulation significantly outperforms all
others on this high-contrast benchmark. The time to assemble the system ma-
trix is only two thirds of the time for the standard formulations. Notice that it
is not half of the assembly time since the adjoint double-layer operator does not
require assembly: it is the transpose of the double-layer operator. Furthermore,
the assembly time depends on the type of operator since the computational
performance of the hierarchical matrix compression depends on the regularity
of the kernel, with the single-layer operator the quickest and the hypersingu-
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Table 4: The number of GMRES iterations and calculation (wall-clock) time
for the large-scale benchmark. Time is indicated in the format h:mm:ss.

formulation #iterations assembly solve iteration
High-contrast Neumann 1852 36:06 21:05 0.68 s
High-contrast Dirichlet 4668 36:05  1:22:52 1.07 s
PMCHWT 4690 55:05 1:53:36 1.45s
Miiller 4690 55:05  2:01:43 1.56 s
Calderén PMCHWT 4081 55:05  2:46:55 245 s

(b) The magnitude of the acous-
(a) The real part of the acoustic pressure on a tic pressure at the surface, calcu-
vertical plane in the exterior volume, calculated lated with the Calderén precondi-
with the high-contrast Neumann formulation. tioned PMCHWT formulation.

Figure 9: The acoustic field for the large-scale benchmark.

lar operator the most expensive operator to assemble in compressed format.
Assembling the Calderén preconditioner does not incur any overhead since it
equals the system matrix.

Concerning the time to solve the system, a large part the computation time of
GMRES is spent on the matrix-vector multiplication of the compressed system
matrices. As expected, the high-contrast formulations require only half the
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time per iteration compared to the standard formulations. Moreover, Calderén
preconditioning doubles the calculation time of each GMRES iteration. While
Calderén preconditioning improves GMRES convergence, this is not sufficient
to improve the overall time to solve the system. The high-contrast Neumann
formulation is by far the best conditioned system and requires, in total, only 57
minutes compared to almost 3 hours for the PMCHWT and Miiller formulations.
Figure 9 depicts the acoustic field scattered from the penetrable structure.

5 Conclusions

This study analysed the influence of the mass density on the BEM’s efficiency
to solve acoustic transmission problems. High contrast in material parameters
(density and wavespeed) between the homogeneous bounded object and the
exterior medium causes ill-conditioning of the system matrix. The convergence
of GMRES deteriorates quickly, and the BEM requires long computation times.

Novel high-contrast formulations were designed using a mix of a direct repre-
sentation formula for the interior and an indirect representation for the exterior
fields, with transmission modelled through Neumann-to-Dirichlet maps. Eight
different boundary integral formulations can be devised with this approach, of
which two are of the second kind and thus well-conditioned. The high-contrast
Neumann and Dirichlet formulations’ performance was compared against the
PMCHWT, Miiller and Calderén-preconditioned PMCHWT formulations.

A spectral analysis of the boundary integral formulations resulted in ex-
plicit expressions of the eigenvalue accumulation points in terms of the mate-
rials’ density. The high-contrast Neumann and Dirichlet functions have two
eigenvalue accumulation points each: % + 5v/p+/p- and % + 5v/p—/ps, re-
spectively. Hence, eigenvalues stay away from zero for any density ratio. For
the high-contrast Neumann formulation, the accumulation points converge to
a single point when the interior density is much higher than the exterior. For
the Dirichlet version, this is the case when the density in the interior is much
lower than in the exterior material. Furthermore, the Calderén preconditioned
PMCHWT has a spectrum that accumulates around % + 4”’%_ + 4’171 in the com-
plex plane. These theoretical results were numerically validated on canonical
test cases.

Extensive numerical benchmarks were performed for various materials, analysing
the spectrum, condition number, and GMRES convergence. Small-scale simu-
lations on a sphere show increasing ill-conditioning of the standard PMCHWT
and Miiller formulations at large density ratios while the high-contrast formu-
lations and Calderén-preconditioned PMCHWT remain well-conditioned. For
intermediate-scale simulations on a cube, the GMRES convergence slows down
with increasing frequency. The traditional formulations are most efficient for
low-contrast materials such as water and fat (p_/py = 0.895). All formula-
tions behave similarly for intermediate-contrast materials such as water and
bone (p_/py = 1.87). When considering high-contrast media such as air and
iron (p_/p4 = 6306), the high-contrast Neumann formulation significantly out-
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performs all other formulations. A benchmark simulation on seven spheres
confirms that the high-contrast Neumann formulation can already outperform
traditional boundary integral formulations when few high-contrast interfaces
are present in a multiple-scattering configuration. An additional advantage of
the high-contrast formulations is that they need less boundary integral oper-
ators, yielding faster matrix algebra and reducing memory consumption. Fi-
nally, a large-scale benchmark at a mo’ai statue shows a reduction of hours in
computation time when the novel high-contrast formulations simulate acoustic
propagation in high-contrast media.
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