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Abstract

Machine learning methods for prediction and pattern

detection are increasingly prevalent in psychological

research. We provide an introductory overview of machine

learning, its applications, and describe how to implement

models for research. We review fundamental concepts of

machine learning, such as prediction accuracy and out‐of‐
sample evaluation, and summarize standard prediction al-

gorithms including linear regressions, ridge regressions,

decision trees, and random forests (plus additional algo-

rithms in the supplementary materials). We demonstrate

each method with examples and annotated R code, and

discuss best practices for determining sample sizes;

comparing model performances; tuning prediction models;

preregistering prediction models; and reporting results.

Finally, we discuss the value of machine learning methods

in maintaining psychology’s status as a predictive science.

1 | INTRODUCTION

Psychologists are increasingly interested in adopting powerful computational techniques from the field of ma-

chine learning to accurately predict real‐world phenomena (see Yarkoni & Westfall, 2017). The current work

introduces machine learning as a collection of methods and tools that can be used in prediction. We review

fundamental concepts of machine learning, discuss its relationship with standard psychological methods, and give
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concrete guidelines to implement machine learning projects in R (Core Team, 2018) using the caret package

(Kuhn, 2015). The annotated R‐code is presented in several boxes throughout the paper. Our example analyses

in the tutorial sections can be replicated with data and scripts provided in the Supporting Information. Finally, we

provide recommendations for best practices and warn of common dangers when implementing machine learning

techniques.

2 | MACHINE LEARNING AND PREDICTION ACCURACY

Machine learning is “a set of methods that can automatically detect patterns in data, and then use the uncovered

patterns to predict future data” (Murphy, 2012, p. 1). Psychologists already have the tools to detect patterns in

data; most commonly ordinary least‐squares (OLS) regression techniques. When developing and testing theories,

such patterns (often regression coefficients) are examined for statistical significance to ascertain the effect of

predictors on outcome variables. The remaining element of machine learning, predicting future data, is becoming

increasingly important to social scientists (Alharthi, Guthier, & El Saddik, 2018; Kübler et al., 2020; Plonsky, Erev,

Hazan, & Tennenholtz, 2017; Walsh, Ribeiro, & Franklin, 2017).

When the primary goal is an accurate prediction, researchers can again use statistical models to link predictor

variables to outcome variables. The search for accurate models lies at the heart of machine learning. Now, the

primary metrics of interest are no longer model coefficients, but the accuracy of the model's predictions (i.e., how

close predictions are to observed values). Importantly, model accuracy must be evaluated using new data. Machine

learning models are fit on one data set (the “training set”), and predictions are made and evaluated using a new data

set (the “test set”). This out‐of‐sample testing avoids overestimating a model's accuracy, as models are generally

overfitted to training samples.

Testing out‐of‐sample prediction accuracy is sufficient to turn common regression analyses into machine

learning. Previous work found, for instance, that insufficient sleep is associated with suicidal intentions (Ribeiro

et al., 2012). This work, based on inferential tests, reveals a significant correlation between sleep deprivation and

suicidal thoughts. However, it does not tell us how accurately sleep predicts suicidal intentions. Is the model ac-

curate enough to implement alert systems based on sleep quality? A more recent publication featured a machine

learning study, focused on prediction accuracy, in which the risk of suicide attempts was predicted using an array of

psychological variables (Walsh et al., 2017). However, the project's prediction models did not include sleep quality

as a predictor. The potential contribution of sleep quality in a model for accurately predicting suicide attempts,

therefore, remains unquantified.

Psychology and machine learning come together whenever the research question is “How well does x predict y?”

Most psychologists use linear regression to quantify achievable prediction accuracy (e.g., Hassan, Shiu, & Shaw, 2016;

Rimfeld, Kovas, Dale, & Plomin, 2016). However, machine learning offers a wide range of alternative models that

usually lead to substantial accuracy improvements (e.g., Joel, Eastwick, & Finkel, 2017; Park et al., 2015; Plonsky

et al., 2017; Wang & Kosinski, 2018). The cited projects can be labeled “applied machine learning” and differ from most

psychological work in three ways:

1. A focus on prediction accuracy.

2. Measures of prediction accuracy for new samples.

3. Use of prediction models that, unlike typical linear regressions, are manually tuned to better fit the specific

problem at hand (see the Section 3.1.1.).

These three aspects will be described in more detail throughout the text, and always about an example research

question.
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2.1 | Example: Predicting regional differences in happiness

For demonstration purposes, we focus on an example research question: “How well can we predict county‐level

happiness (i.e., regional averages) in the United States?” We start with prediction models familiar to most psy-

chologists, linear and logistic regressions, in which outcome scores (i.e., county‐level happiness) are expressed as

mathematical combinations of predictor scores. The standard regression approach is to estimate an equation that

minimizes the distances (residuals) between the original data points and the values predicted by the regression line.

We use these familiar models to introduce the concepts of prediction accuracy and out‐of‐sample evaluation.

Subsequently, we introduce three of the most common machine learning models (plus three in the Supporting

Information) and provide sample R code to implement these models. For all code sections, we utilize the R package

caret (Kuhn, 2015), which includes a large and standardized selection of prediction models. A package following

tidyverse principles for machine learning is tidymodels (Kuhn & Wickham, 2020).

2.2 | Prediction accuracy

The central premise of supervised machine learning is to use statistical models to make (accurate) predictions.1 In

the following section, we describe the most relevant metrics for assessing accuracy. Our outcome of interest is

county‐level happiness (BRFSS, 2005‐2010; see Supporting Information) and our predictor variable is the relative

number of people drinking alcohol (measured at the county level; e.g., Bellos et al., 2013). We split the data into two

data frames, using the first for fitting (“training”) the regression model and the second for testing its accuracy (see

Section 2.3 below).

2.2.1 | Prediction accuracy for continuous outcomes

When the predicted outcome is continuous there are multiple approaches to assess accuracy. One of the most

common metrics is R2, the proportion of variance accounted for by the model. Higher R2 values signify higher

accuracy. When the residual variance (i.e., “sum of squared residuals” in the formula below) is zero, the model

makes perfect predictions and R2 ¼ 1. If the summed residuals are equal to the total variance (in the denominator),

the model is useless, predicting the mean is equally accurate, and R2 ¼ 0.
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R2 ¼ 1 �
Sum of squared residuals

Sum of squared deviations from the mean

The linear regression model based on county‐level alcohol consumption predicted 9.2% of the variance in

regional happiness.2 Equivalently, researchers could measure model accuracy by correlating predicted and

observed scores (Youyou, Kosinski, & Stillwell, 2015).

Other metrics focus on the average residual size (instead of residual proportion as in R2) with smaller residuals

signifying higher prediction accuracy. Most common are the mean absolute error (MAE; negative signs of residuals

are removed) and the root mean square error (RMSE; residuals are squared).

MAE ¼
1
n
� ∑

n

i¼ 1
|yi � ŷi|

RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n
i ¼ 1ðyi � ŷiÞ

n

s

The MAE‐metric weighs each prediction error equally, whereas the RMSE gives more weight to large errors

(due to the squaring). This makes the MAE metric easy to interpret, while the RMSE is more relevant when large

mispredictions are disproportionately costly. Evaluating either metric requires familiarity with the scale of the

outcome variable.

2.2.2 | Prediction accuracy for categorical outcomes

When the outcome variable is categorical (e.g., predicting whether a county is in the top or bottom 50% in terms of

happiness) there are again multiple options for assessing accuracy. Many measures can be extracted from the so‐
called confusion matrix, which shows the cross‐tabulation of predicted and observed values (see Table 1 for an

example).

The most prominent measure for categorical data is the accuracy score (or just “accuracy”) and is defined as the

number of correct predictions divided by the total number of predictions (i.e., the proportion of correct predictions):

Accuracyscore¼
Truepositivesþ Truenegatives

Truepositivesþ Truenegativesþ Falsepositivesþ Falsenegatives

More refined quantifications of accuracy pertain to the number of false and true positives and negatives and

are known as sensitivity (also called “recall”) and specificity.
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Sensitivity signifies how many of the positive measurements (here: above‐average counties) were predicted to

be positive cases, whereas specificity describes how many of the negative measurements (here: below‐average

counties) were predicted to be negative cases (cf. signal detection theory; Macmillan, 2002). The “precision” refers

to the number of true positives divided by all positive predictions.

Sensitivity¼ Recall¼
True positives

True positivesþ False negatives

Specificity¼
True negatives

True negativesþ False positives

Precision¼
True positives

True positivesþ False positives

Thus, if researchers want to prioritize that their model is accurately predicting “positive” cases (here: labeling

happy counties as such), they might want to focus on the model's sensitivity. If false positives are to be avoided,

then the model's precision becomes more important. When priorities are not one‐sided, the harmonic mean be-

tween precision and recall can be used (i.e., the F1 score; Scherer, Stratou, Gratch, & Morency, 2013).

F1 score¼ 2�
Precision� recall
Precisionþ recall

¼
2� Truepositives

2� Truepositivesþ Falsepositivesþ Falsenegatives

Given the many alternatives, it is always preferable to report multiple accuracy metrics (e.g., by plotting false

positive against true negative rates). Focusing on one individual metric can distort the reader's impression of

accuracy and hinders comparisons between projects (e.g., Akosa, 2017).

2.3 | Out‐of‐sample evaluation

In machine learning, accuracies are not tested on the same sample that was used to fit the prediction model (see the

distinction between training and testing above). Accuracy metrics based on training data would be biased due to

TAB L E 1 Example of a confusion matrix

Predicted value: Positive Predicted value: Negative

True value: Positive True positives False negatives

True value: Negative False positives True negatives

Note: True positives were correctly predicted to be happy above‐average, false positives were incorrectly predicted to be

happy above‐average. True (vs. false) negatives were correctly (vs. incorrectly) predicted to score below‐average.
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“overfitting,” meaning that parameters in the prediction model not only reflect the true relationships between pre-

dictors and outcome, but also idiosyncratic sample characteristics. In other words, prediction models are optimized to

predict an outcome from predictor variables in the present sample, which is straightforward with small samples and

multiple predictor variables. One could, for instance, predict the voting behavior of ten people perfectly, using their

clothing selections and favorite breakfast cereals (“if a person wears a red, worn‐out Nike sweater, and likes Fruit

Loops, predict Democrat”), but applying the same model to ten new people will likely result in no accuracy at all

because patterns exploited in the model‐fitting data do not generalize to the model‐testing data.

Accuracy scores should quantify the accuracy that can be expected when applying the model to new data. Thus,

the ideal way to test accuracy is to fit the model on one sample (training set) and evaluate the model on a different

sample (test set). We discuss two of the most common approaches to obtain training and test sets in machine learning.

2.3.1 | Train–test split (hold‐out method)

The simplest way to generate separate training and testing samples is to collect one big sample and then randomly

split it (which is how we obtained the data frames above).

An alternative (superior) method is to collect one sample for training, fit the model on this sample, preregister

the model, and then collect a new sample for the test set (cf., Brandt, 2017). We provide an example for prereg-

istering machine learning models in the Supporting Information, which can be used as a template.

When splitting the original sample, how much data should be used for model fitting, and how much should be used

to quantify the accuracy? Commonly, the training set encompasses 60%–80% of the data, while the test set has 40%–

20% (e.g., Ng, 2018). Considering the purpose of the test set is helpful when making cut‐off decisions. That is, how

many predictions does the researcher want to see before judging the model? A small test set can already inform the

researcher whether the model is close to perfect or close to useless. If more precise evaluations are needed, then the

test set needs to be larger. Another helpful heuristic is that the test set should be representative of the target pop-

ulation, which limits how small it can be. For more detailed considerations see the Section 2.5 below.

2.3.2 | K‐fold cross‐validation

Randomly splitting data into a training and test set bears risks, especially if the original sample is relatively small.

Random chance could affect the transferability of the prediction model (and the computed test accuracy). A process

called k‐fold cross‐validation offers a partial solution: this process involves repeatedly splitting the data, fitting the

model, and testing it on new data. In k‐fold cross‐validation, the data is split into k (often k¼10; Kuhn & Johnson, 2013)

equally‐sized subsets called folds. Subsequently, k rounds of model fitting, test set prediction, and accuracy evaluation

are conducted (see Figure 1). In the first round, the model is fit on the first 9 subsets, and the model is used to make

predictions for the 10th subset. In the second round, the model is fit on subset 1 through 8 plus subset 10 and

evaluated on subset 9, etc. The 10 individual accuracy quantifications obtained from this procedure are averaged to

give an estimation of the model's overall accuracy. This procedure mitigates the danger of chance affecting test ac-

curacy; permits researchers to use relatively more of their data for training the model; and highlights variability in the

model's accuracy.
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For our example case of predicting happiness with alcohol use, we can easily implement this procedure instead

of the simple train–test split.

In this case, the result of the cross‐validation procedure is in line with our initial training and test split.

However, there is some variability in accuracy estimates. In one of the 10 subsets, the model only explains 4% of

the variance (Fold 02) whereas in another it explains 18% (Fold 08). Being able to observe such variability is one

reason why it is preferable to conduct k‐fold cross‐validation instead of a train–test split, as the latter should only

be applied with very large sample sizes. The disadvantage of k‐fold cross‐validation lies in an increased need for

computational resources, which should be transparently described when discarding k‐fold cross‐validation.

2.4 | Interpreting prediction accuracy

Interpreting prediction accuracy metrics (e.g., as high or low accuracy) depends on the context and requires domain

expertise. There are different ways of evaluating prediction accuracy, and most involve comparisons with a reference

point. For psychologists, the reference point is often the measurement reliability of the outcome variable, which in-

dicates the maximum possible accuracy. When the outcome's reliability is r¼ .7, prediction cannot exceed this ceiling

without predicting random error variance. This upper limit entails, for instance, that demographic info (often

measured with perfect reliability) can usually be predicted more accurately than noisy personality scores (Kosinski,

Bachrach, Kohli, Stillwell, & Graepel, 2014). Thus, accuracy scores close to the outcome's reliability are considered

high.

Baseline (or null) models are another common standard for comparison: Simple baseline accuracies for

continuous variables might be provided by the model ŷ ¼ mean(y), and for categorical variables by ŷ ¼ mode(y). If a

new model cannot predict y substantially better than such baseline models, the performance of the new model can
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be evaluated as poor. Imagine having a model predicting relapse rates among drug addicts with an accuracy of

80.3%. This accuracy is not impressive if only 20% of investigated people relapse. Always predicting the mode (“no

relapse”) would already lead to an accuracy of 80% and the new model barely improves on that. Still, if there are no

better alternatives (e.g., human judgment), an increase of 0.3% accuracy can amount to saving many lives. That is to

say, context matters for evaluating accuracies (Sumner, Byers, Boochever, & Park, 2012).

Lastly, it is common to consider prior prediction attempts. Such reference points are commonly discussed in the

machine learning literature, where the history of classic prediction challenges receives much interest (e.g., identifying

words from speech or tumors on scans). If a model can improve historical accuracies, potentially including the accuracy

of human raters (Youyou et al., 2015), it is argued to be relatively accurate. While psychological research has yet to

develop a set of classic prediction problems, many challenges would benefit from an ongoing competition and

bookkeeping. Examples include the behavior of people in economic games (e.g., Plonsky et al., 2017), health trajec-

tories (e.g., Chekroud et al., 2016), or dispositional traits (e.g., Bachrach, Graepel, Kohli, Kosinski, & Stillwell, 2014).

2.5 | Sample sizes in machine learning

In machine learning, complicated models with many coefficients might require millions of observations (He, Zhang,

Ren, & Sun, 2016), while other models can be fit using fewer than a thousand cases (Golbeck, Robles, &

Turner, 2011). An accessible description of factors affecting required sample sizes in machine learning is provided

by Raudys and Jain (1991). However, there are no exact guidelines. Here we present four strategies to help

determine appropriate sample sizes:

1. Becoming familiar with similar research projects and making an overview containing each project's (a) predictor

variables, (b) outcome variable, (c) prediction model(s), (d) sample size, and (e) achieved prediction accuracy.

Projects with similar predictors, outcomes, and models usually indicate how accurate models will be given

specific sample sizes. We provide a short example in Table 2.

2. Look for similar data published online. In machine learning, it is common to publish data sets to stimulate

prediction competition and knowledge exchange. Acquiring a data set allows you to plot achieved accuracies of

specific models against the sample size used for training the model (i.e., learning curves). The saturation point of

such curves can give you a good reference for how much data you might need (Figueroa, Zeng‐Treitler, Kandula,

& Ngo, 2012).

3. Simulate a realistic data set based on prior knowledge on variable distributions. Multiple packages in R are

available to generate data sets with prespecified covariance structures (e.g., Goldfeld, 2018). Examining how the

accuracy of prediction models changes with different sample sizes (see Figure 2), can help in estimating realistic

accuracy levels. Note that this approach requires a priori assumptions about the data and is less feasible when

there are many predictors.

4. Collect initial data to assess model requirements. Researchers can diagnose a lack of training data by investi-

gating how the achieved testing accuracy compares to the training accuracy. If a model's training accuracy is

much higher than its testing accuracy, the model is too complex for the size of the training set, and therefore it is

severely overfitted to the training data (i.e., a high variance problem). In such instances, it is reasonable to collect

more data (or reduce model complexity; e.g. changing from nonlinear to linear models). If both training and

testing accuracy are poor, researchers can diagnose that their model is underfitted (i.e., a high bias problem) and

needs a higher degree of complexity or better predictors.

In summary, machine learning projects split data into separate training and testing sets. As the shape of the

best prediction model is determined based on the data, it is more difficult and less common to preregister required

sample sizes. However, machine learning requires extra data for out‐of‐sample evaluation and prediction models
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often include many predictors/coefficients; as a result, required sample sizes are typically large. The following

section introduces popular machine learning models, including how they can be implemented in R code, and “tuned”

to improve accuracy.

3 | COMMON MODELS IN MACHINE LEARNING

Traditional regression methods, as used above, are often not expected to constitute machine learning. However,

they are the backbone of many machine learning techniques and should be used as a reference for prediction

accuracy (Jie, Collins, Steyerberg, Verbakel, & van Calster, 2019). When it comes to boosting the achievable ac-

curacy, it is advisable to consider other methods, some of which we introduce here and in the Supporting

Information.

3.1 | Ridge regression

In standard linear regression models, the individual beta coefficients are optimized to reduce the residual sum of

squares of the outcome variable. This optimization should improve accuracy, but also guarantees that the co-

efficients are perfectly tailored to the present sample, which might diminish generalizability to other samples.

Coefficients for each predictor variable are precisely specified (to the last decimal) and even predictors that are

not truly related to the outcome variable virtually always have a non‐zero coefficient because they happen to

spuriously explain a small part of residual variance (Lever, Krzywinski, & Altman, 2016). The result is an over-

fitted model which will not perform well with new samples. This problem becomes exacerbated if the number of

predictor variables is high in relation to the number of observations, and if predictor variables are correlated

(Askin, 1982). In such cases, the high‐dimensional prediction model can explain a large proportion of variance in

the training sample, but is likely too complex for the sample size, and achieves poor accuracies on new samples

(Dana & Dawes, 2004). The need for much more data for small increases in model complexity is referred to as

the “curse of dimensionality.”

A potential solution is to use an alternative procedure that simultaneously minimizes both the residual variance

and model complexity. Ridge regression models accomplish these goals by biasing individual regression coefficients

toward zero. Hence, ridge regression models give more weight to the intercept, making predictions less variable

and decreasing the magnitude of prediction errors that emerge from poor model transferability. This simplified

model has less noise and can be more generalizable.

Statistically, ridge regression suppresses beta coefficients by changing the optimization criterion of the stan-

dard regression model. In addition to minimizing residual variance, the model also attempts to minimize the sum of

squared beta coefficients. The result is a tradeoff between residual reduction and complexity reduction, which is

expressed in the cost function to be minimized:

TAB L E 2 Example papers for predicting extraversion from Facebook material

Paper Predictor Outcome Model Accuracy Sample size

Kosinski et al., 2014 Facebook friends, groups,

likes, network density, photo

tags, statuses

Extraversion Linear regression r ¼ .31 16,900

Schwartz et al., 2013 Facebook language Extraversion Ridge regression r ¼ .38 75,000

Park et al., 2015 Facebook language Extraversion Ridge regression r ¼ .42 66,732
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Cost linear regression¼ ∑
n

i ¼ 1

�
yi � ŷi

�2

Cost ridge regression¼ ∑
n

i ¼ 1

�
yi � ŷi

�2
þ λ ∗ ∑b2

The ridge regression cost function has a parameter λ (lambda) that is absent in standard linear regression.

Lambda is an example of a hyperparameter (see next section), that needs to be manually tuned using data.

Lambda quantifies how strongly regression weights should be suppressed, thereby dictating the tradeoff be-

tween error reduction and model simplicity. Higher values of lambda lead to a stronger penalization of

regression weights and therefore a more restricted/conservative model. On the other hand, when lambda is

zero, ridge regression becomes identical to the standard OLS regression. It is standard practice to test a range

of values for lambda (either manually or automatically) and choose the value that gives the best accuracy for

new cases, but not yet the final test set (Claesen & De Moor, 2015). Next, we describe the general practice of

hyperparameter tuning and demonstrate how the specific hyperparameter lambda can be tuned for ridge

regression models.

3.1.1 | Hyperparameter tuning

For linear regressions, researchers can fit models without having to manually specify further parameters. That is to

say, if the data are the same, two researchers fitting a regression model should usually obtain the same result.

Machine learning techniques (like ridge regression) are often tuned with hyperparameters, which are not auto-

matically tuned by the data. Hyperparameters determine stable model characteristics before the model is fit to a

dataset. There are some parallels in traditional psychological methods. For example, in factor analyses, researchers

can specify model structure a priori (e.g., four factors should be extracted).

Hyperparameter settings are used to increase prediction accuracy. Often, they determine model complexity (vs.

parsimony), or the procedure with which a model incorporates new data and adjusts its coefficients. Most prediction

models use a small set of hyperparameters. Tuning them involves testing a range of possible values and selecting the

value with which the model achieves the highest out‐of‐sample accuracy. If multiple hyperparameters are tuned

simultaneously, researchers typically test ranges for each hyperparameter, and try out different combinations (i.e.,

the “value range search” becomes a “value grid search”). There are no set rules for which and how many values

should be tried out. Generally, it makes sense to try out a wide range of values, for instance, by specifying value

ranges and letting software pick random numbers within that range (Bergstra & Bengio, 2012).

Importantly, the model with the best hyperparameter values is ultimately evaluated again on new data. Most

commonly, all models are fit on sample A, and the final model is selected based on its accuracy achieved on sample

B. The accuracies achieved on sample B might still overestimate a model's true accuracy because we select the best

model out of a potentially wide range of models. Said differently, we might “manually” overfit to sample B during

hyperparameter selection. Thus, after fitting the models on sample A (the training set), and selecting the best

performing model on sample B (the development set), researchers apply the final model to a new sample C (the test

set). Notice, that we only have to introduce the development set (sample B), if we tune model hyperparameters. In

the case of linear regression above, for instance, we only had one model, allowing us to directly quantify prediction

accuracy on the test set (see Figure 3).

3.1.2 | Implementation of ridge regression

Ridge regression is useful if researchers have a large number of (intercorrelated) predictors relative to their sample

size. An example case is to predict psychological phenomena based on language (i.e., where the frequencies of
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specific words from texts are used as predictors). A regression model that predicts an outcome based on language

often has as many predictor variables as there were unique words in the dataset. Further, many words are highly

correlated in their usage leading to collinearity and unstable model coefficients. These conditions make ridge

regression a sensible choice (Schwartz et al., 2013; Zhang & Oles, 2001).

We demonstrate how to implement ridge regression by using regional Twitter language to predict regional

happiness (Wang et al., 2014). Each predictor variable pertains to the relative frequency with which a specific

word is used by Twitter users in the target region, meaning that the model includes a total of 25,902 predictors. In

other words, we ask if regional differences in word use on Twitter can be used to predict regional differences in

happiness.

Implementing the ridge regression model is similar to linear regression. However, there are three important

differences. First, we implement cross‐validation to split the data into three sets, training, development, and test (in

linear regression, we only need training and test sets). Second, we tune the hyperparameter lambda during cross‐
validation using the training data.3 Third, when training the model, we additionally specify that predictors should be

standardized (i.e., centered and scaled) before the model is fit. Given that we penalize high beta coefficients, all

predictors should be on the same scale.
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The most accurate model has a lambda value of 1.6. Notice that caret automatically selects this value and

uses it to fit the final model on all the nontest data (the training and development sets). Subsequently, we get an

R2 value for the test data which is slightly higher than in the training/tuning phase. The reason is likely that the

final model was fitted on all training and development observations, whereas before, we used a cross‐validation

approach and therefore 10% less data for model fitting. A traditional OLS regression without penalization

achieves an accuracy of R2 ¼ .11 using the same predictors, which is just marginally worse. However, some

implementations of linear regression in R throw warnings and give worse results when the number of predictors

is much higher than the number of observations. Example implementations of ridge regression in psychological

research are provided by a range of authors (Dana & Dawes, 2004; Eichstaedt et al., 2015; Ghandeharioun

et al., 2017).

3.1.3 | Alternatives to ridge regression

Some techniques offer similar approaches to ridge regression, the most prominent example being LASSO

regression. The sole difference between both model types is that LASSO weight penalization is applied to

weight magnitudes rather than squared weights. The close relation between both approaches naturally leads

to the question of which model to choose for a given problem. While there are possible theoretical consid-

erations (such as using LASSO for predictor selection, Tibshirani, 1996), many researchers treat this decision

as a tuning problem by choosing the model that appears to be more accurate. It is even possible to employ

hybrids of both approaches (elastic net regression) and finetune the contribution of each approach to weight

penalization.

3.2 | Decision trees and random forests

Decision trees are another predictive algorithm and (similar to OLS regression) it serves as the backbone for very

powerful prediction models like random forests (introduced next).

Decision trees split observations into increasingly homogeneous subgroups based on binary questions about

predictor values (e.g., “Does this observation score lower than 85 on the questionnaire?”). Accordingly, the

decision tree consists of a sequence of questions used to subcategorize the data set. Individual observations

are funneled through the tree, and at each crossway of branches, the observation is either guided to the left or

right depending on whether the answer to the specific binary question is yes or no. The tree's endnotes are

called leaves and contain homogenous subsets of the training data. Predictions are made by funneling a new

case through the tree and assigning the value that was most common in the training data that landed on the

same leaf (“majority vote”). For continuous variables, the predicted value is usually the mean of all training

observations on this leaf.

The sequence of questions, as well as the optimal cut‐off values within each branching fork, are deter-

mined when fitting the tree model to the training data. Intuitively, it is favorable to have a tree model that

leads the same outcome values to land on the same leaves and dissimilar values on different leaves. Said

differently, if a leaf only includes observations that have the same outcome value (homogenous), we can

expect new cases landing on this leaf to also have that (or a very similar) value. Conversely, if a leaf includes

observations that have a range of very different values (heterogeneous), we can be less certain about

predictions for new cases landing on this leaf. Thus, the statistical criterion which is minimized when fitting a

tree model is the heterogeneity of measurements in each of the final leaf nodes. This measure of hetero-

geneity is often an entropy score. For the hypothetical example tree in Figure 4 the formula the entropy in

leaf i is:4
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Entropyi ¼ �
#happyi

#allcasesi
� log

�
#happyi

#allcasesi

�

�
#sadi

#allcasesi
� log

�
#sadi

#allcasesi

�

The entropy of the overall model is a weighted sum of the leaves' entropies. The sequence of questions in the

tree is determined by the information gain, which quantifies the decrease in entropy after an additional data split.

At each new node, the binary question which provides the highest information gain is selected and appended to the

tree. There are alternatives to using the information entropy approach, most notably the Gini index method (e.g.,

Breiman, 2017), which can have advantages in terms of computational costs.

Very large trees (with many splits) are more successful in minimizing entropy and prediction residuals in

the training data. However, they run an increased risk of overfitting. Imagine a tree that keeps adding data

splits until each leaf only consists of a single training case. Such a tree has perfect accuracy on the training set

but generalizes poorly to new samples. Setting a maximum tree size allows researchers to control this trade‐
off. Hyperparameters that can be used for this purpose are the maximum “number of leaves” or “number of

data splits.” Here, we give an example of tuning the slightly more sophisticated hyperparameter cp (the

complexity parameter), which determines how high the minimal increase in R2 has to be for a new branch to be

drawn.

F I GUR E 4 A fictitious decision tree model used to predict county‐level happiness. Each observation has

scores on employment rate, warm climate, and a number of amusement parks. The final “leaves” at the bottom of
the tree give the model's prediction for new cases
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3.2.1 | Implementation of decision trees

In the code example, we predict regional happiness based on common census variables, including regional levels of

education, gender ratio, median age, unemployment, ratios of White and Black people, proportions of democratic

and republican voters, and population size. To show an alternative method of tuning hyperparameters, we do not

explicitly set the values for cp in the code example, but let caret pick values at random. The number of values to be

generated can be set through the argument “tuneLength.” We repeat the steps of splitting off test data, fitting

models on training data, and selecting the best model on the development data 20 times, so we can estimate the

variability in our accuracy evaluation. Alternatively, researchers can implement a nested cross‐validation procedure

(see Kuhn & Johnson, n.d.).

There are warnings because caret sometimes sets the cp parameter so high that no binary split of the data

can achieve the desired increase in R2 (resulting in an empty decision tree). As shown, the best models ach-

ieved an average accuracy of R2 ¼ .11. Decision tree models can also be visualized in tree form in the caret

package.
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Note. The split into counties with high and low employment rates is done first (at the top of the tree) as it is the

most informative (helps the most to distinguish relatively happy and relatively sad counties). After this initial split,

the employment variable is still the most informative as it is used again for splitting, etc.

As depicted in the graph, most predictor variables are excluded as they do not enable improvements higher

than the cp hyperparameter dictates.

3.2.2 | Random forest models

While the decision tree algorithm is well‐known, its prediction accuracy can virtually always be improved through

models that build on its basic structure. The most prominent extension is the random forest model, which consists

of many different decision trees (therefore called “model ensemble”). Random forest models make predictions by

averaging predictions of its trees (continuous outcome) or by selecting their most common prediction (categorical

outcome). Why are the individual trees in the forest different from each other? When building each decision tree, a

random (bootstrapped) sample of available observations is selected, and a random subset of available predictor

variables is considered for each split. Having many different decision trees based on slightly different sets of ob-

servations and predictor variables minimizes the biases of individual trees and reduces overfitting. Thus, it is often

not necessary to limit the size of the individual trees in the random forest (Breiman, 2001). Notice that the

bootstrap resampling approach inherent to random forests allows users to specify yet another technique for out‐of‐
sample validation often called out‐of‐bag validation. The according out‐of‐sample score is computed by assessing

the accuracy of decision trees on cases that were not included in the bootstrap sample used to build the tree. In the

caret package, users can obtain these scores by specifying the trainControl method as “oob.” The disadvantages of

this method are that scores cannot be easily compared with nontree‐based models, the oob score could be

confused with the biased training accuracy (depending on software), and accuracy scores are only computed with a

subsample of trees (which did not contain the corresponding test sample).

There are two primary hyperparameters to be set when fitting a random forest model. First, the number of

decision trees has to be predetermined. As higher numbers of trees do not lead to overfitting and allow for better

predictions, it is common to set this hyperparameter to a high number (e.g., 500; Oshiro, Perez, & Bar-

anauskas, 2012). Increasing the number of trees does not have disadvantages, apart from increased computational

costs. Second, the number of predictor variables that get considered at each split must be set (hyperparameter

“mtry” below). Including more variables at any stage can lead to either overfitting or better predictions, which
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means that this value must be tuned more carefully. It is common to select the square root of the number of

available predictors and systematically investigate how higher and lower values affect the performance.

3.2.3 | Implementation of random forests

In the code example, we predict regional happiness using the predictor variables introduced in the decision tree

example. Before, we used the outer loop only to quantify prediction accuracy (and the inner loop to select the best

hyperparameter). Now, we also keep track of the best hyperparameter chosen in each of the 20 iterations. Addi-

tionally, we compare the accuracies of the random forest model and the decision tree model through a paired samples

t‐test (Huang, Lu, & Ling, 2003). Inferential tests to compare model performance are common in machine learning

(Salzberg, 1997), but of smaller importance than assessing the practical significance of accuracy differences.
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Notice, that when calling “predict” with the random forest model, each tree makes a prediction, but the output

constitutes the average of all these predictions. Had the outcome variable been a dichotomous measure of

happiness, the prediction would have been the majority prediction from all decision trees. The most accurate model

(based on the inner cross‐validation) most often considers three randomly selected predictor variables at each split.

This model improves the accuracy achieved previously with the decision tree model by a substantial margin.

On the 20 iterations, the random forest provides an average increase of 7% in explained variance, which is an

increase of 57% relative to the decision tree models. Inferential tests comparing the sets of achieved accuracies

confirm that the superiority of the random forest models is not only practical but also statistically, significant (t

(19) ¼ 6.119, p < .001).

Yet, the final random forest model is not easily interpretable, as it consists of 500 distinct trees. A traditional

OLS regression model based on the same predictors achieved an average accuracy of R2 ¼ .11 on the test data.

Example implementations of decision trees and forests are provided by a range of authors in various subdisciplines

of psychology (Joel et al., 2017; Piper, Loh, Smith, Japuntich, & Baker, 2011; Plonsky et al., 2017). When trying to

further improve the accuracy of random forest models for high‐dimensional, collinear data, researchers often apply

predictor selection methods, which filter the useful predictor variables and discard the others from model building.

Various algorithms for such predictor selection (including links to R code) have been compared by Degenhardt,

Seifert, and Szymczak (2017). One way to assess the relative importance of predictors in random forest models is to

rank the predictors in terms of their average information gain (as described in the section on decision trees).

We discussed models based on linear combinations and dichotomizations of predictor variables. In the sup-

plementary material, we provide guidance for alternative modeling options based on point distances, Bayes' rule,

and predictor space transformations. These additional models help to illustrate some of the diverse approaches

used in machine learning research.

4 | DISCUSSION

Traditional psychological research aims to establish causal effects of predictor variables on outcome variables,

whereas machine learning projects aim to achieve maximal (unbiased) accuracy when predicting outcome variables.

Still, the intentions of researchers in both disciplines often converge. Psychologists are also interested in the

question of how well A predicts B, and therefore the number of papers using machine learning is growing.

Our code examples demonstrate that traditional regression models are frequently less accurate in prediction

than alternative models. By applying the methods and tools of machine learning, psychology can better serve

society as a predictive science (Yarkoni & Westfall, 2017).

4.1 | Limitations of machine learning

Critics of machine learning models have argued that they are black‐boxy, atheoretical, or too complex to allow

human interpretation (Krause, Perer, & Ng, 2016). While this is true for some of the most sophisticated models, it
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applies less so too many commonly used models (Hindman, 2015). Machine learning includes a range of clustering

methods (“unsupervised learning”), which allow for the detection of theoretically meaningful patterns in psycho-

logical data (Jordan & Mitchell, 2015). Experimental psychologists can use machine learning techniques to explore

differences between experimental conditions (Koul, Becchio, & Cavallo, 2018), and personality researchers can use

them to assess the validity of psychological constructs (Bleidorn & Hopwood, 2019). Thus, while we concentrated

on prediction accuracy, machine learning also has much to offer to theory‐driven research.

Similarly, it is sometimes argued that machine learning methods need too much data and their application is

unrealistic for many areas of psychology. Again, the required sample size depends on the context and the model

that researchers utilize. For instance, when using image data, models tend to be very complex, and one might need a

million images for building a new model from scratch. Conversely, when only two or three predictor variables are

available, say from an online survey, a linear regression model will usually require less than 1000 observations to

reach maximum performance.

Of course, the field of machine learning also has methodological struggles: Some issues, such as insufficient

data sharing, reporting, and replication are akin to challenges in psychological research (Hutson, 2018). Other is-

sues are more characteristic of machine learning, including social biases in predictive models (Veale & Binns, 2017)

or unequal distribution of computational resources (Amolo, 2018).

4.2 | Best practices

With a new set of methods and tools, there come new mistakes that can be made. Therefore, we discuss five issues

that authors and reviewers should pay attention to in psychological machine learning research. First, prediction

accuracy is accompanied by a degree of uncertainty. While a single split into training and test set gives exact

numbers of achieved accuracy, the next split usually shows a different accuracy. This instability is especially large

when the sample size is relatively small and the model includes many coefficients. Repeating the splitting process

usually leads to a more reliable estimation. However, the estimate remains uncertain and quantifications of un-

certainty (e.g., through confidence intervals) are needed.

Second, the data left‐out for final model testing should not inform the model (i.e., there should be no “infor-

mation leak”). Common dangers are to preselect predictor variables based on their correlation with the outcome

before splitting the data into training and test sets. Such practices lead to an artificially inflated measure of accuracy.

To avoid such biases, all model characteristics should be selected before the model is evaluated on the final testing

data. This should be done by selecting the best predictors, hyperparameters, and models on dedicated development

sets. An optimal procedure is to pre‐register the final model in a public repository, collect new data, and report the

accuracy that the pre‐registered model achieved on the new data.

Third, the authors should not selectively report accuracy metrics. For example, models sometimes have

seemingly small mean absolute errors, whereas the proportion of explained variance is negligible. This occurs when

the outcome variable is tightly clustered around its mean value and making predictions with small errors is

therefore easy. Reporting complementary metrics and baseline accuracies prevents misinterpretations.

Fourth, when comparing the predictive value of two competing sets of predictor variables, multiple models

should be considered. It is likely that the predictor sets are not equally compatible with all available models. Thus,

fitting two regression models and finding that one predictor set leads to higher accuracy does not imply that this set

is always more useful; it merely demonstrates that the set is more useful when using linear regression. Results may

differ when using other, potentially more accurate models. Relatedly, practical considerations might steer model

selection. A deep neural network, which requires immense computational resources might not be the optimal

choice if less costly models perform almost as well.

Fifth, common questionable research practices can be exacerbated in machine learning projects. For example,

machine learning models are often preceded by multiple preprocessing steps (e.g., standardizing predictors for
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ridge regression). Transparency is needed to evaluate and replicate prediction accuracies. One of the most powerful

techniques to guard oneself against many of the listed mistakes is to follow the necessities of open science. For

machine learning projects, this includes pre‐registering and publishing predictions models (through data and code)

and making them openly available for review and replication.

4.3 | Additional topics in machine learning

Topics that were either only briefly or not at all discussed include additional cross‐validation techniques

(Kohavi, 1995), boosting (Dietterich, 2000), reinforcement learning (Sutton & Barto, 2018), deep learning (LeCun,

Bengio, & Hinton, 2015), and advanced data preprocessing/acquisition steps (e.g., for unbalanced data; Chawla,

Japkowicz, & Kotcz, 2004). These topics warrant a review of their own, but psychologists interested in applying

machine learning themselves certainly benefit from familiarizing themselves with these concepts. Introductions to

machine learning in marketing (Brei, 2020; Kübler et al., 2017) and economics (Athey & Imbens, 2019) are also of

value for psychologists as well as general introductions, as provided by Berk (2006; 2008).

5 | CONCLUSION

We provide researchers in psychology with concrete guidance on implementing and reviewing machine learning

research. We highlighted machine learning's focus on generating accurate prediction models. Further, we intro-

duced the main metrics to quantify prediction accuracy, as well as different strategies to evaluate these accuracies

on new data. Relatedly, we described the practice of tuning machine learning models through hyperparameters, and

selecting the best hyperparameter settings on dedicated development sets, before quantifying the final model's

achieved accuracy. Further, we introduced some of the most common machine learning models, alongside anno-

tated implementations in R code. Finally, we discussed some dangers and questionable practices for implementing

machine learning models in psychological research. Together, we hope that the current review and tutorial sections

will facilitate research aiming to predict psychological phenomena.
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ENDNOTES
1 Supervised machine learning refers to cases where the goal is to predict some known outcome variable. In contrast,

unsupervised machine learning approaches refer to problems related to clustering (i.e., identifying the underlying

structure in a dataset).
2 The accuracy is substantially higher when excluding counties with unreliable scores (i.e., where predictor and outcome

only have a handful of measurements).
3 A further variable appearing in the code is called “alpha,” which is not typically part of ridge regression. Here, we

set alpha to zero, which simply tells the more general “glmnet” model that we want to compute a ridge regression model.

An alternative approach would be to directly set the method argument to “ridge” instead of “glmnet,” which would allow

us to leave out the alpha specification. However, this method appears to take more computational resources based on

our test runs, which might reflect differences in the methods' back‐end implementation.
4 Subscript i refers to the ith leaf. All variables in the formula are counts (e.g., happyi¼number of happy training cases on leaf i).
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