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Abstract: A quantum state feedback control method is proposed in this paper. The state of a two-level open quantum system is
estimated online based on the continuous weak measurement and the compressed sensing theory. Based on the state estimated
online and the Lyapunov stability theorem, the state feedback control law used to transfer the quantum state is designed. More-
over, three numerical simulation experiments are implemented in the MATLAB environment: the state transfer from eigenstates
to eigenstates, superposition states to superposition states, and superposition states to mixed states. The experimental results
verify high performance of the proposed feedback control based on the state estimated online.
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1 Introduction

Different from classic measurements, quantum states can-
not be obtained from the results of direct measurements, so
efficient quantum state reconstruction is required and be-
comes an attractive research topic. Quantum state tomogra-
phy (QST), a method of reconstructing quantum states [1, 2],
recovers the quantum state from complete observations of
projection measurements of repeated preparations. For the
state density matrix of n qubits, the dimension is: d = 2n,
and the number required for the complete measurement of
the density matrix is: d× d = 2n× 2n = 4n. Obviously, the
number of measurements required for QST increases expo-
nentially as the number of qubits increases [1], and the state
reconstruction of QST is offline. For the state reconstruction
of a high-qubits system, QST is more difficult to implement.
In order to obtain the state information of a quantum system,
people may introduce a detection system to associate with
the quantum system, then measure the detection system di-
rectly. The information of an interested quantum state can be
inferred by the measurement records of the detection system.
If the interaction strength between the system and the detec-
tion system is rather weak, this kind of measurement is the
weak measurement [3]. Quantum continuous weak measure-
ment refers to continuous weak measurement of the quantum
system, which can be used to realize the online estimation of
quantum states. Compressed sensing (CS) provides a solu-
tion to the problem of reducing the number of measurements
in quantum state estimation [4–6]. CS tells us that: if the
rank of a state density matrix r is much smaller than its di-
mension d, (r << d), then the state density matrix can be
reconstructed with only a small amount of randomly sam-
pled measurement records [7, 8]. Gross proved that one can
reconstruct the state density matrix with only O(rd log d)
measurement records using the Pauli measurement operators
[9]. CS can be applied to the online estimation of quantum
state and it improves the efficiency of calculation.

The feedback control of quantum system requires sys-
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tem’s state at any time. Therefore, online state estimation
becomes the premise of quantum feedback control based on
measurements [10, 11]. With the development of the quan-
tum control theory and quantum information technology,
some researches have been achieved about the state transfer
for the open quantum systems, such as, the state transfer of
optimal control based on perturbation theory [12], the pop-
ulation transfer based on fast adiabatic process technology
[13], the manipulations between eigenstates of the quantum
system based on optimal measurements [14], and the state
transfer based on Lyapunov stability theorem [15, 16]. How-
ever, these researches were either for the open-loop control
or closed-loop control based on the program. Therefore, how
to use quantum continuous weak measurement to obtain s-
tate information, estimate quantum state online, and design
an estimated state-based feedback quantum control system
to realize the state transfer with high precision is a valuable
and challenging research.

In this paper, we consider a two-level open quantum sys-
tem with decoherence effect. The research task is to design a
state feedback control law based on Lyapunov stability the-
orem to realize the state transfer from any initial state to any
desired target state. In the research process, the indirect mea-
surement with weak influence on the estimated state is used,
and the measurement result containing the state information
is obtained by continuously performing the weak measure-
ment. The state estimation becomes an optimization prob-
lem after obtaining required measurement results. The com-
pressed sensing theory is used for minimizing the number of
the measurements when the density matrix has certain struc-
ture. Based on the estimated state, a state feedback controller
for the state transfer is designed according to the Lyapunov
stability theorem. Appropriate control parameters are deter-
mined in the simulation experiments, and three numerical
simulation experiments are carried out for the states transfer
from eigenstates to eigenstates, superposition states to su-
perposition states, and superposition states to mixed states,
respectively. The experimental results are also analyzed.

The structure of this paper is organized as follows: the
procedure of the online estimated state-based feedback con-



trol for an open quantum system is established in Section 2.
In Section 3, the estimated state-based feedback control law
is designed by means of the Lyapunov stability theorem. In
Section 4, numerical simulation experiments are implement-
ed in MATLAB environment, also the experimental results
are analyzed. The full paper is summarized in Section 5.

2 Online State Estimation for Feedback Control
of Open Quantum System

The structure of the online estimated state-based feedback
control for an open quantum system is shown in Fig. 1, in
which the controlled system is a two-level open quantum
system with the decoherence effect, the part in dotted line is
a complete online estimation process of quantum states, and
the controller is a state feedback controller based on Lya-
punov stability theorem. In this paper, the online estimated
state of the quantum system is used to design the controller
as feedback state.
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Fig. 1: Structure of the state transfer of the quantum system
with online estimated state.

First, the dynamic equation of the controlled system in
Fig. 1 can be written as:

ρ(t+ dt)− ρ(t) = − i
~

[H(t), ρ(t)]dt

+

[
Lρ(t)L† −

(
1

2
L†Lρ(t) +

1

2
ρ(t)L†L

)]
dt

ρ(0)=ρ0

(1)

where, ρ(t) represents the state density matrix of quantum
system; ~ is Planck constant and let ~=1 for simplicity;

H(t)=H0+
2∑

j=1

Uj(t)Hj is the whole Hamiltonian, H0 is

the free Hamiltonian, Hj is the control Hamiltonian, and
H1=σx, H2=σy , in which σx, σy, σz are Pauli operators,
Uj(t) is the external control value for the state transfer; L
is the lindblad operator; let D[L, ρ] = Lρ(t)L† − 1/2 ∗(
L†Lρ(t) + ρ(t)L†L

)
, which represents the deterministic

decoherence effect brought by the measurement process and
manifests as the drift term of the lindblad form.

In the online estimation of quantum state, a detection sys-
tem is introduced to associate with the controlled system and
the projection measurement is performed on the detection
system. Then, the measurement operators acting on the con-
trolled system can be derived based on the measurement re-
sults [17]. The measurement values that contain the state
information of controlled system are obtained by means of
measurement operators. Finally, the quantum state can be
reconstructed by solving an optimization problem consisting
of measurement values, measurement operators and system
state. When performing continuous weak measurements on

a one-qubit system, the measurement operator group con-
tains only M0(∆t) and M1(∆t) operators according to the
complete operator condition: (M)

2
+ (M⊥)

2
= I . By se-

lecting the appropriate operator L, the corresponding weak
measurement operators M0(∆t) and M0(∆t) can be con-
structed respectively:

M0(∆t) = I −
(
L†L/2 + iH(t)

)
∆t

M1(∆t) = L ·
√

∆t
(2)

where, I is a second-order identity matrix.
Combining the formula (2) and the system dynamics e-

quations in formula (1), and let t = ∆t · k, the evolution
equation in discrete form of open quantum system can be
written as:

ρ(k + 1) = M0ρ(k)M†0 +M1ρ(k)M†1 (3)

where, k = 1, 2, ..., N ,N is the total number of system mea-
surements and estimations in the simulation experiment.

The weak measurement operators are also constantly
changing over time in the process of continuously weak mea-
surement. According to the relationship between the mea-
surement operator and the system state, the evolution equa-
tion in discrete form of the weak measurement operator can
be written as:

M(k + 1) = M†0M(k)M0 +M†1M(k)M1 (4)

By using the measurement operators to make contin-
uously weak measurement on the quantum system, the
corresponding measurement values can be obtained. In
theory, the measurement value can be obtained by cal-
culating the inner product value of the density matrix ρ
and the measurement operator M , namely: y = tr(M†ρ).
Therefore, the problem of reconstruction density matrix
ρ can be transformed into the following optimization
problem: ρ̂ = arg min ‖ρ‖∗ s.t. y=Avec(ρ), in which,
‖ρ‖∗ is the kernel norm of ρ, ρ̂ is the density matrix
to be estimated, vec(·) vectorizes a matrix to a column
vector. The sampling matrix A is the matrix with all
the sampled measurement operators M(k): A(k) =(
vec(M(k)) · · · vec(M(2)) vec(M(1))

)†
, k =

1, 2, ...,m. When the sampling time k is greater than m,
A(k) remains unchanged. We can obtain a measurement
record sequence according to the measurement value y(k)
at each sampling time as [y(1), ..., y(k − 1), y(k)] =
[tr(M(k)†ρ(k)), ..., tr(M(2)†ρ(k)), tr(M(1)†ρ(k))]. When
the sampling time k is greater than m, the number of the
measurement record remains m.

When the quantum state is nearly pure, a nuclear norm ter-
m can be added to the cost function. When consider a gen-
eral case, the quantum state reconstructions problem can be
written as an optimization function with quantum constraints
on the density matrix as

ρ̂ = arg min ‖A · vec(ρ)− y‖2
s.t. ρ̂ = ρ, ρ ≥ 0, tr(ρ) = 1

(5)

For the online state estimation of the one-qubit quantum
system in this paper, the system state in discrete form is ρ(k).



The measurement operator at any moment is M(k), which
is a 2 × 2 matrix, and we can obtain the sampling matrix
A = vec((M(k))

†
) with 4×1 dimension. The measurement

value in the simulation experiment is: y=(y(k)). After that,
the LS optimization algorithm of CVX in MATLAB is used
to solve the optimization problem in formula (5) to obtain
the online estimated state ρ̂(k) of the quantum system.

3 Design of State Feedback Controller Based on
Online State Estimation

The basic idea of using a quantum control method based
on Lyapunov stability theorem is to select a Lyapunov V (x)
and make it satisfy V̇ (x) ≤ 0. The key point is to select a
suitable Lyapunov function [18]. Based on the real-time on-
line estimated state of quantum system, the Lyapunov func-
tion based on state distance is selected as [19]:

V =
1

2
tr((ρ̂(t)− ρf )

2
) (6)

where, ρ̂(t) is real-time estimated state of the quantum sys-
tem, and ρf is the desired target state.

The first derivative of the time obtained by the Lyapunov
function V is obtained:

V̇ = tr( ˙̂ρ(t)(ρ̂(t)− ρf ))

=

2∑
j=1

Uj(t) · tr((i[Hj , ρ̂(t)])(ρ̂(t)− ρf ))

+ tr((D[L, ρ̂(t)]− i[H0, ρ̂(t)])(ρ̂(t)− ρf ))

= U1(t) · T1 + U2(t) · T2 + C

(7)

where, Tj=tr((i[Hj , ρ̂(t)])(ρ̂(t) − ρf )), j = 1, 2, is a re-
al function on the online estimated state of the system;
C=tr((D[L, ρ̂(t)]− i[H0, ρ̂(t)])(ρ̂(t)− ρf )), is the drift ter-
m, and its sign is undeterminable; U1 and U2 are the control
laws to be determined.

The main idea of designing the control laws in this paper
is to offset the influence of the drift term C by applying one
of the control effects, and design another control action to
make V̇ (x) ≤ 0 hold. There is a fractional expression in
the control laws: when T1 and T2 are both zero, V̇ = C, the
mathematical calculation causes singularity due to the uncer-
tainty of the value C. In this way, the negative semi-definite
condition of V̇ (x) ≤ 0 cannot always be established, and the
method of designing the control laws based on Lyapunov sta-
bility theorem will no longer be applicable. Therefore, this
paper introduces a threshold variable θ in the design of the
control laws. By judging the size relationship between Tj
and θ, it is divided into three cases, and the corresponding
control action is designed to offset the drift term C while
satisfying V̇ < 0 as much as possible, so that the value of
the Lyapunov function V is continuously reduced, and the
desired control precision can be achieved. The specific de-
sign process of the control laws is as follows:

1) In equation (7), when the real function |T1| > θ, the
design control law U1(t)=−C/T1 is used to cancel the drift
term, and the design control law U2(t)=− g2 · T2 is used to
make V̇ =− g2 · T 2

2 ≤ 0 hold. At this point the control laws
can be written as:

U(t) =

[
U1(t)
U2(t)

]
=

[
−C/T1
−g2 · T2

]
(8)

where, g2 is a positive adjustable control parameter.
2) When the real function|T1| < θ, |T2| > θ, the design

control law U2(t)= − C/T2 is used to cancel the drift term,
and the design control law U1(t)= − g1 · T1is used to make
V̇ =− g1 · T 2

1 ≤ 0 hold. At this point the control laws can be
written as:

U(t) =

[
U1(t)
U2(t)

]
=

[
−g1 · T1
−C/T2

]
(9)

where, g1 is a positive adjustable control parameter.
3) When |T1| < θ and |T2| < θ, the value of the Lyapunov

function V is calculated to determine the degree of approx-
imation of the system state to the desired target state. If the
transfer error ε0 is reached, the control target is considered
to be implemented, and the controlled system has been trans-
ferred from the initial state to the target state, otherwise the
values of the control parameters g1 and g2 are reselected.

The flow chart of the control laws based on the Lyapunov
stability theorem is shown in Fig. 2. The execution condition
of the dotted arrow needs to satisfy the following two cases:
(1) when |T1| < θ, |T2| < θ is established at the same time,
and the transfer error is not within the allowable range of the
control precision ε0; (2) when the system evolves according
to the control law designed under the conditions 1) and 2),
the control target cannot be achieved. When the above two
conditions occur, the values of the control parameters g1 and
g2 need to be re-selected.
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Fig. 2: Flow chart of designed control law.

4 Simulation Experiments of State Transfer and
Result Analysis

In this section, the simulation experiments of state transfer
are carried out in the MATLAB environment. The three s-
tate transfer are respectively from the eigenstate to the eigen-
state, from the superposition state to the superposition state,
and from the superposition state to mixed state, then the ex-
perimental results are analyzed, respectively.

In the online estimation process of the open quantum sys-
tem based on continuous weak measurement, a 1/2 spin



particle ensemble ρ is considered as the object of the on-
line estimation, which is under z direction with a constan-
t magnetic field Bz and x direction control magnetic field
Bx = A cosφ. In Schrodinger picture, the initial state of
the spin is ρ0, and ρ(k) represents the state at time of k.
It is assumed that the damage caused by the measurement
to the system is weak, that is, the weak measurement in-
tensity tends to zero. Applying a continuous weak measure
to the system S, the initial observation operator is M(0).
The experimental sampling period is ∆T = 0.01, and the
threshold variable is θ=5 × 10-4. The lindblad operator is
L = σz = diag([1,−1]) and the initial measurement op-
erator is M(0) = σz = diag([1,−1]). The expected state
transition error of quantum system is taken as ε0=10-3 in the
experiment.

4.1 State transfer from eigenstate to eigenstate
In this section, we mainly study the state transfer from

the initial state ρ0 = diag([0, 1]) to the target state ρf =
diag([1, 0]) of the quantum system. Fig. 3 is the exper-
imental results of the state transfer from the eigenstate to
the eigenstate, where, Fig. 3(a) shows the state transfer tra-
jectory on the Bloch ball, the red solid line corresponds to
the transfer trajectory of system state in real time, the blue
dashed line corresponds to the online estimated state, the red
o represents the initial state ρ0 of the system, the green o
represents the system target state ρf , and the blue ∗ repre-
sents the initial state of the real-time estimated state ρ̂0, Fig.
3(b) shows the variation of each element of the state density
matrix of a one-bit system, Fig. 3 (c) shows the control laws
curve, and Fig. 3(d) shows the variation curve of Lyapunov
function, which represents the change of system transfer er-
ror ε. In this experiment, the parameters in the control law
are respectively taken as g1 = 2, g2 = 2.5, the interaction
intensity of continuous weak measurement is ξ=0.2, and the
evolution time is N = 150.

It can be seen from the simulation result curve of Fig. 3
that after 120 evolutions, the transfer error between the sys-
tem state and the target state reaches ε=2.6×10-3, and the de-
signed quantum Lyapunov control law based on online state
estimation quickly realizes the state transfer from eigenstate
to eigenstate.

In order to further verify the effectiveness of using the
online estimation state as feedback state based on con-
tinuous weak measurement and compressed sensing the-
ory, we We calculate the system fidelity to indicate the
performance of online estimation of the quantum state.
The formula for defining fidelity is defined as: f(k) =

Tr

√
ρ̂(k)

1
2 ρ(k)ρ̂(k)

1
2 , where, ρ(k) is the true density ma-

trix of the system at time k and ρ̂(k) is the corresponding
online estimated density matrix. Fig. 4 is the fidelity curve
of online estimation of quantum state.

From Fig. 4, we can see that the fidelity of the estimated
state reaches above 99.4%. It means that online estimation
of quantum state can be achieved by the continuous weak
measurement and compressed sensing theory. Moreover, it’s
effective and achievable to use the online estimated state for
designing the state feedback control law.

(a) State transfer trajectory on the Bloch
ball
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Fig. 3: Experiment results of the eigenstate transfer.
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4.2 State transfer from superposition state to superpo-
sition state

In this experiment, the initial state of quan-
tum system is selected as superposition state
ρ0=[15/16

√
15/16;

√
15/16 1/16] and the target state is

also superposition state ρf = [3/8 -
√

15/8; -
√

15/8 5/8].
Fig. 5 is the experiment result of the state transfer from
superposition state to superposition state.

(a) State transfer trajectory on the Bloch
ball
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Fig. 5: Experiment results of the superposition state
transfer.

Fig. 5(a) shows the state transfer trajectory on the Bloch
ball, Fig. 5(b) shows the variation of each element of the s-
tate density matrix of a single-bit system, Fig. 5(c) shows the

control law curve, and Fig. 5(d) shows the variation curve of
Lyapunov function. In this experiment, the parameters in
the control law are respectively taken as g1 = 2, g2 = 18,
the interaction intensity of continuous weak measurement is
ξ=0.1, and the evolution time is N = 150.

It can be seen from the simulation experimemtal results
of Fig. 5 that after 140 evolutions, the transfer error between
the system state and the target state reaches ε=4×10-4. Com-
paring Fig. 3(c) with Fig. 5(c), it can be seen that the state
transfer from the superposition state to the superposition s-
tate requires a larger amount of control than the state transfer
from the eigenstate to the eigenstate. When the system state
moves to the target state, the control is still needed to main-
tain the state.

4.3 State transfer from superposition state to mixed s-
tate

In this section, we mainly study the state transition from
the initial superposition state ρ0 = [3/8 -

√
15/8; -

√
15/8 5/8]

to the mixed state ρf = [3/5 1/5; 1/5 2/5]. Fig. 6 is the ex-
periment result of the state transfer from superposition state
to mixed state, where, Fig. 6(a) shows the state transfer tra-
jectory on the Bloch ball, Fig. 6(b) shows the variation of
each element of the state density matrix of a one-bit system,
Fig. 6(c) shows the control laws curve, and Fig. 6(d) shows
the variation curve of Lyapunov function. In this experimen-
t, the parameters in the control law are respectively taken
as g1 = 2, g2 = 16, the interaction intensity of continu-
ous weak measurement is ξ=0.45, and the evolution time is
N = 250.

(a) State transfer trajectory on the Bloch ball
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Fig. 6: Experiment results of state transfer from
superposition state to mixed state.

It can be seen from the simulation results of Fig. 6 that
when the target state of the system is mixed state, the quan-
tum Lyapunov control laws can effectively change the evolu-
tion trajectory of the system state and realize the state trans-
fer from superposition state to mixed state. After 230 evo-
lutions, the transfer error between the system state and the
target state reaches ε=5× 10-4.

The experimental results show that for the online esti-
mation state of the system obtained by quantum continuous
weak measurement and compressed sensing theory, the con-
trol law designed based on Lyapunov stability theory can re-
alize the state transfer from different initial states to the tar-
get states of open quantum system. Compared with the state
transition between the eigenstates, the control required for
the state transfer from the superposition state to the super-
position state and the mixed state is stronger, and the time
required is longer.

5 Conclusion

The control laws proposed in this paper was based on the
online state estimation and the Lyapunov stability theorem
to realize the state feedback control of the open quantum
state. Numerical simulation experiments were done to verify
the effectiveness of using the designed control laws for the
system state transfer. Moreover, the state feedback control
of the open quantum system based on online quantum state
estimated proposed in this paper can be extended to the state
transfer control for the multiple-qubit systems.
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