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Abstract: 

On behalf of the International Society for Magnetic Resonance in Medicine (ISMRM) 

Quantitative MR Study Group, this article provides an overview of considerations for the 

development, validation, qualification, and dissemination of quantitative MR (qMR) methods. 

This process is framed in terms of two central technical performance properties, i.e., bias and 

precision. Although qMR is confounded by undesired effects, methods with low bias and high 

precision can be iteratively developed and validated. For illustration, two distinct qMR methods 

are discussed throughout the manuscript: quantification of liver proton-density fat fraction, and 

cardiac T1. These examples demonstrate the expansion of qMR methods from research centers 

toward widespread clinical dissemination. The overall goal of this article is to provide trainees, 

researchers and clinicians with essential guidelines for the development and validation of qMR 

methods, as well as an understanding of necessary steps and potential pitfalls for the 

dissemination of quantitative MR in research and in the clinic. 
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INTRODUCTION 

Magnetic resonance probes a wide array of tissue contrasts, spectral properties and anatomical 

information. Based on this wealth of contrast mechanisms, a variety of quantitative MR (qMR) 

methods that extract quantifiable information from MR acquisitions (1-3)  have been proposed and 

continue to emerge from the MR research community. Upon successful development and 

validation, qMR methods enable improved standardization in the detection, staging, and treatment 

monitoring of diseases, both in research and in clinical practice (4-7). On behalf of the 

International Society for Magnetic Resonance in Medicine (ISMRM) Quantitative MR Study 

Group, we provide an overview of the process of development of qMR methods, as well as 

guidelines for their technical validation, clinical qualification, application, and dissemination. To 

illustrate this process, we provide examples from two distinct qMR methods: quantification of 

liver proton-density fat fraction (PDFF), and T1 quantification in the myocardium (cardiac T1 

mapping; see Figure 1). These two methods were selected based on their substantial interest within 

the MR research community, important existing and potential applications, and major advances 

toward widespread clinical use. Importantly, the current status of development and remaining 

challenges are different for these two methods, which helps illustrate the diversity in the field of 

qMR.  

 

Liver Proton-Density Fat Fraction Quantification: Proton-density fat fraction (PDFF) has been 

developed, validated, and applied for the assessment of tissue triglyceride concentration (8). 

Although chemical shift encoded (CSE) fat-water imaging was introduced nearly 40 years ago (9), 

the development of quantitative techniques that measure PDFF has accelerated over the past two 

decades (10-17). Using either MRS (16) or MRI (8) acquisitions, PDFF measures the concentration 

of MR-visible triglyceride protons relative to all MR-visible protons (from triglycerides and 

water), which has multiple research and clinical applications. Recent technical developments and 

validation studies (see below) have led to widely available techniques. These techniques are 

particularly promising for the quantification of liver fat, e.g., in the assessment of non-alcoholic 

fatty liver disease (NAFLD). 

Cardiac T1 Mapping: Although cardiac T1 mapping was first developed in the 90s (18), the field 

accelerated more recently when the promise to enable non-invasive assessment of diffuse fibrosis 

emerged (19). As the T1 relaxation time depends on the mobility in the macromolecular 
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environment, over time cardiac T1 mapping has proved useful in many clinical applications (20). 

Initially, semi-quantitative relaxation measurements in the myocardium based on Look-Locker 

sequences were explored (21,22). However, these methods lacked the reproducibility and 

reliability to serve as a quantitative tool in clinical application. With the introduction of the 

Modified Look-Locker Inversion Recovery (MOLLI) (23) and shortened MOLLI (shMOLLI) (24) 

methods, myocardial T1 mapping became feasible on a voxel-by-voxel basis in a single breath-

hold and with high visual T1 map quality. This facilitated the widespread use and application to 

numerous ischemic and non-ischemic cardiomyopathies (25,26). Continuous method development 

and refinement have led to increasingly sensitive and reliable T1 measurements of the heart, paving 

the way for routine clinical use (20). 

TECHNICAL PERFORMANCE OF QMR METHODS 

The development and validation of qMR methods requires a framework for describing their 

technical performance. The two major technical performance properties of a qMR method (Figure 

2) are: i) the bias, which includes the properties of linearity, the regression slope and intercept, and 

the fixed bias, and ii) the precision, which is described by the repeatability and reproducibility. 

These metrics are described in detail below and summarized in Table 1. Previous works in qMR 

have used deviating terminologies, including “accuracy” or “robustness,” to describe technical 

performance. However, in this work we use, and encourage others to use, metrics based on bias 

and precision, as established by the quantitative imaging metrology community (27,28). A glossary 

of the terminology used throughout this paper can be found in Supporting Information Table S1.   

Bias 

Bias describes the systematic tendency of qMR measurements to differ from the ground-truth value 

of the measurand (i.e., the underlying quantity of interest). To define bias, let Xi denote the ground-

truth value of the measurand for the i-th subject, and Yij
 denote the j-th qMR measurement for the 

i-th subject. Ideally, the measurements and the ground truth possess an affine linear relationship, 

as follows (29,30): 

 𝑌𝑖𝑗 = 𝛽0 + 𝛽1𝑋𝑖 + 𝜖𝑖𝑗 (1) 
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where 𝛽0 is the intercept, 𝛽1 is the regression slope, and ϵij is a random effect, which we assume 

is independently and identically distributed from a normal distribution with mean zero and 

variance 𝜎2 (which captures the precision).  

To measure bias, the ground-truth value can sometimes be ascertained by using a reference 

method. Although the ground-truth should be conceptually well defined, its estimation via a 

reference method is generally imperfect and requires careful design. Such a reference method may 

be invasive or non-invasive, and based on MR or other modalities. Importantly, a reference method 

should be independent from the qMR method under evaluation (e.g., should not be obtained from 

the same source data), as any dependence between the two measurements may lead to an 

underestimation of the qMR method’s bias. Furthermore, to be accepted as a reference method, its 

measurements must be highly concordant with the ground truth, and its performance (bias and 

precision) must be substantially better than the performance of the method under evaluation (28). 

These requirements often complicate the acquisition of a reference method in vivo.  

For this reason, investigators often rely on reference objects (“phantoms”) to assess bias. The 

design of phantoms is driven by the technique they will be testing and the specific tissues or MR 

properties they will mimic, as well as additional considerations such as traceability and long-term 

stability (31). It is important that phantoms themselves are systematically measured prior to use, 

which is sometimes achieved using gold standard NMR measurements (32), the best available 

reference method on MRI systems, or non-MR methods. With a standard phantom, such as the 

ISMRM/NIST system phantom  (33), or a well-characterized home-built phantom, the technical 

performance of a qMR method can be estimated, as an approximation of in vivo technical 

performance. Although phantoms are highly effective in many qMR applications, there are cases 

where phantoms may be of limited value, as existing phantom designs do not adequately replicate 

the relevant signal properties, spatial distribution, or temporal dynamics found in tissue (34).  

In a phantom study (or in vivo, if a suitable reference method is available), measurements are 

obtained at multiple values Xi (e.g., corresponding to different phantom compartments) over the 

range of the true value, X. Ideally, at least 10 nearly equally spaced values Xi should be chosen 

(29), covering the range of values of interest. This range usually includes the normal range 

expected in a healthy reference cohort as well as values observed under influence of the pathology 

or condition of interest. For each value i, the individual bias or % bias is calculated as: 

 𝑏𝑖 = (𝑌̅𝑖 − 𝑋𝑖) ;                  %𝑏𝑖 = [(𝑌𝑖̅ − 𝑋𝑖)/𝑋𝑖] × 100 (2) 
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where 𝑌𝑖̅  is the mean over the potentially repeated measurements on the same phantom 

compartment (or subject). Finally, some qMR methods may present a constant bias that is not 

dependent on the true value of the measurand. In these cases, the fitted line in Eq. 1 will be parallel 

to the identity line, with regression slope 𝛽1 close to one, and regression intercept 𝛽0 that provides 

an estimate of the bias (29).  

Over N observations, we can estimate the fixed bias: 

 𝑏̂ = ∑ %𝑁
𝑖=1 𝑏𝑖/𝑁 (3) 

A 95% confidence interval (CI) for the fixed bias should be reported with the estimate of bias (35). 

Note that small values of fixed bias are often well tolerated. For example, under typical conditions, 

confidence intervals for a new patient's measurement constructed under the no-bias assumption 

provide nominal coverage as long as the fixed bias is <12% of the wSD (36). 

Because the bias sometimes depends on the true value of the measurand, the bias profile can 

be evaluated by plotting the estimate of bias from each value of Xi (i.e., bi) against the true values 

Xi. Note that the relationship between measurements and ground truth may generally be nonlinear, 

particularly when considering a broad range of measurand values. However, the assumption of 

linearity is often an appropriate approximation and greatly simplifies the statistical analysis. To 

assess the property of linearity, we fit an ordinary least squares (OLS) regression of the Yij’s on 

Xi’s. One way to test the appropriateness of a linear model is to formally test for significant non-

linearities (curvature) (29). Sequential tests can be performed starting with a third-order (cubic) 

regression: Y = β0 + β1X + β2X2 + β3X3 . If the third order coefficient β3  is not significantly 

different from zero, then the process can be repeated with a second-order (quadratic) regression: 

Y = β0 + β1X + β2X2. If the quadratic term β2 is not significantly different from zero, then the 

hypothesis of a linear model cannot be rejected, and a linear fit can be used: Y = β0 + β1X (29). 

Ideally, R-squared (R2) will be greater than 0.90 (35). The regression slope, 𝛽1, should be reported 

along with its 95% CI. As a general rule, a slope in the range [0.95, 1.05] is acceptable (35). 

Sometimes, the linear relationship in Equation 1 holds only for a certain range of the values of the 

measurand, so it is important to assess this property over the likely values of the measurand. It 

may be that linear relationships hold for various ranges of the true value, but 𝛽0 and 𝛽1 differ for 

each range or even vary by subject characteristics (e.g., age or body mass index). 
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Finally, once the bias is known, the qMR method could, in principle, be calibrated to the 

reference to eliminate bias. However, this is not a common approach. Indeed, the bias itself often 

arises from uncorrected confounding factors that may affect various acquisitions or patients 

differently (37,38). For this reason, bias is often not reproducible, and calibration-based correction 

should be approached with caution.  

 

Precision 

Precision describes the tendency of the measurement system, when used repeatedly in several 

“replicate” measurements on the same subject, to produce different values (27). The precision of 

a method has enormous practical importance. Indeed, the required number of participants for 

clinical studies increases with 𝜎2and is therefore driven by the precision of a qMR method, which 

determines their cost and feasibility (39). The precision is also a major factor affecting the 

method’s ability (including sensitivity and specificity) to detect a specific condition, and 

determines the minimum detectable change (see Figure 3). In contrast to bias, the evaluation of 

precision does not require a reference method, and therefore in vivo evaluation of precision is often 

highly feasible.  

Some studies use spatial variability in a homogeneous phantom or tissue as a heuristic to 

evaluate precision metrics. While this may be an acceptable approximation with certain simple 

imaging methods, spatial variability of system properties (e.g. B0 and B1
+ heterogeneities) often 

render this approximation inadequate, even if the region of interest appears homogeneous to the 

observer. In particular, this spatial variability method cannot be used to evaluate precision metrics 

if spatial information is used in the image reconstruction or parametric mapping (e.g., 

regularization in compressed sensing). Instead, precision metrics should be evaluated in studies 

that obtain and compare multiple replicate measurements.  

Test-retest studies allow estimation of precision. When the same MR system and experimental 

conditions (including acquisition parameters) are used for all replicate measurements on the same 

subject over a short span of time, we refer to this as the repeatability condition. When the replicates 

are obtained under different conditions (e.g., different field strengths, different MRI vendors, 

platforms, or software versions, different individual scanners, different pulse sequences or 

acquisition parameters, different image analysis software, different readers, or long delay between 

acquisitions), we call this the reproducibility condition [3]. With qMR, we often characterize 
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precision by either the within-subject standard deviation, denoted wSD, or the within-subject 

coefficient of variation, denoted wCV. Note from Equation 1, 𝑤𝑆𝐷 = √𝜎2, and 𝑤𝐶𝑉 = √𝜎2/𝑌̅𝑖. 

The wCV is often used when the variability in the measurements is much higher for large true 

values or when the measurements are log-normally distributed (thus, Xi and Yij in Equation 1 would 

need to be measured on a logarithmic scale). 

Precision studies are often small because of cost, ethical, and technical concerns (29,30,40). 

For these reasons, meta-analysis is often required to pool estimates from multiple studies (41). A 

general rule of thumb to obtain a reliable estimate of precision is >35 subjects with two or more 

replicates (36). 

For each subject in a test-retest study, the qMR measurement is performed at time point 1 

(denoted Yi1) and time point 2 (Yi2). Additional time points can be included, if available. For each 

subject, we can calculate the mean and SD of the measurements: 𝑌̅𝑖 = (𝑌𝑖1 + 𝑌𝑖2)/2 and 𝑆𝐷𝑖 =

√(𝑌𝑖1 − 𝑌𝑖2)2/2. From the N subjects, we estimate the mean wSD or wCV as: 

 

 𝑤𝑆𝐷̂ = √∑ 𝑆𝐷𝑖
2𝑁

𝑖=1 /𝑁;            𝑤𝐶𝑉̂ = √∑ (𝑆𝐷𝑖
2/𝑌̅𝑖

2)/𝑁𝑁
𝑖=1  (4) 

  

Importantly, 95% CIs for wSD and wCV should also be reported (35). Implicit in Equation 4 

is the assumption that wSD (or wCV) is constant over the range of measurand values. This 

assumption should be assessed by calculating the estimates for several ranges of 𝑌̅𝑖 or even for 

various patient and/or disease characteristics, to determine a precision profile (42,43). 

Two useful precision metrics are the repeatability coefficient (RC and %RC), estimated as: 

 𝑅𝐶̂ = 2.77 × 𝑤𝑆𝐷̂;        %𝑅𝐶̂ = 2.77 × 𝑤𝐶𝑉̂ × 100 (5) 

and the reproducibility coefficient (RDC and %RDC), estimated analogously. These metrics 

describe the smallest significant difference between two repeated measurements on a subject and 

assuming a normal distribution for the replicate measurements (27,30). These metrics can be used 

as thresholds to discern between differences due to measurement imprecision and differences due 

to a true change in the measurand. 

 In evaluating reproducibility, the experimental conditions across replicate measurements can 

be altered in various different ways (see above). Ultimately, the widespread dissemination of a 
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qMR method will require establishment of reproducibility across conditions such as different 

centers, MRI vendors, or patient populations. However, such multi-center, multi-vendor studies 

are expensive and complex, and may not be appropriate for a newly developed qMR method. A 

practical approach is to evaluate reproducibility in multiple studies of increasing complexity, 

beginning with relatively simple studies at a single center and vendor (44), while building up 

toward more ambitious studies (45).   

In evaluating precision, it is important to carefully design and describe the specific procedures 

followed. For example, repeatability may be evaluated by performing consecutive scans within the 

same scanning session, in order to establish the effects due to MR system adjustments and noise. 

However, repeatability is often determined by scanning the subject in separate sessions over a 

short time interval, including repositioning and re-localizing between sessions, in order to capture 

additional variability due to other factors such as subject positioning (29). In general, the 

experimental design to study precision may be different for different methods or applications. 

Thus, it is important to meticulously report the parameters and conditions that are kept identical 

and those which may have changed between replicate measurements, to enable replication and 

interpretation of the results.  

Examples 

Liver PDFF Quantification 

Liver PDFF quantification methods have been validated in multiple studies including evaluation 

of bias in PDFF phantoms (both commercially available and home-built) (46,47), in vivo liver 

imaging (48), and ex vivo livers (49). In a recent meta-analysis (48), liver PDFF had high linearity 

and low bias with respect to the MRS-determined reference PDFF value in 23 studies, which 

included a total of 1,679 subjects. Test-retest repeatability studies have also been performed 

(48,50). Recently, high linearity and low bias of multi-center PDFF measurements (47) has been 

demonstrated by shipping a phantom to multiple centers in a “round-robin” study, and evaluating 

measurements on the same phantom across centers, vendors, platforms, field strengths, and 

acquisition parameters. In addition, the reproducibility of PDFF measurements in the liver, 

including across field strengths and MRI vendors, has also been demonstrated in multiple studies 

(48,51). 
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Cardiac T1 

Bias and precision have been the dominating criteria in analysis of cardiac T1 mapping methods 

[35]. Multiple studies have shown that different T1 mapping methods provide varying profiles of 

bias and precision. 

Inversion recovery-based methods have been shown to exhibit good repeatability but large 

biases, while saturation recovery methods have been shown to reduce bias at the cost of reduced 

repeatability  (52-54). For example, the most commonly used myocardial T1 mapping technique, 

the inversion recovery-based method MOLLI, is known to be subject to multiple confounding 

factors and exhibits substantial bias (55). However, given its excellent repeatability and visual 

image quality, the sequence is highly popular among users (23). Even though some studies have 

shown initial evidence of multi-center or multi-vendor reproducibility with tightly controlled 

protocols (56), the reproducibility is generally compromised due to the measurand confounders 

(see next section). Thus, it is recommended to obtain center and protocol specific reference ranges 

in healthy subjects, before using MOLLI for quantitative diagnosis (20).  
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Table 1: Technical performance metrics. 

Metric Definition Liver PDFF Cardiac T1 (MOLLI) 

Linearity  Ability to provide 

measurements that are 

proportional to the true 

value as described in 

Equation 1 

r2 =0.96 and no evidence of 

significant higher-order terms 

in regression analysis of 

measurements vs true value 

(48).  

r2 = 0.996, magnitude of higher order 

terms < 0.0001(52). 

Regression 

slope 
1 in Equation 1 0.975 (48). 0.919 (52). 

Fixed bias Difference between average 

measurement and true value 

<0.2% (48). 4.2% (52). 

Bias (or 

precision) 

profile 

A table or figure illustrating 

the estimates of the bias (or 

precision) over the range of 

true values and/or other 

relevant characteristics 

See Yokoo et al., 2018 (48). See Roujol et al., 2014 (52,57). 

Repeatability A measure of precision 

describing the variability in 

measurements on a subject 

over a short period of time 

using the same imaging 

system and experimental 

conditions (27) 

Repeatability coefficient of 

2.9% (48). 

Repeatability coefficient of 2.0% (52) - 

4.6% (58) 

Reproducibility A measure of precision 

describing the variability in 

measurements on a subject 

using different 

experimental conditions 

(different systems, and/or 

pulse sequence parameters, 

and/or measurements 

separated by a long period 

of time, etc) (27) 

Reproducibility coefficient 

(across different hardware 

systems or reconstruction 

software) of 4.3% (48). 

Highly variable. In tightly controlled 

studies, 2.1% has been reported (59), 

however, a meta-analysis showed >7% 

reproducibility in healthy subjects (60). 

For this reason, it is not recommended to 

compare MOLLI T1 values across systems 

and parameters, due to system specific 

biases (20).  
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CONFOUNDING FACTORS IN MR 

In qMR, a wide variety of confounding factors may introduce bias or poor precision. Table 2 

provides illustrative categories and examples of qMR confounding factors. A poll distributed 

among the members of the ISMRM Quantitative MR Study Group queried the frequency, 

relevance, and potential correction mechanisms for confounding factors used in the quantitative 

MR community. Supporting Information Figures S1-S6 summarize the poll results. 

 

Table 2: Types of qMR confounding factors and illustrative examples 

Hardware/system 

imperfections 

Physiological 

effects/motion 

Signal model imperfections Other artifacts and 

noise 

B0 heterogeneities and 

off-resonance 

Respiratory motion Additional relaxation mechanisms 

(not included in model) 

Partial volume 

B1 heterogeneities Cardiovascular 

motion/pulsation 

Slice profile 

imperfections 

Eddy currents Intestinal peristalsis Spectral complexity (additional 

resonances, J-coupling, etc.) 

Imperfect spoiling 

Gradient nonlinearities Bulk body motion Parallel imaging artifacts 

System drift Blood flow Exchange (multi-pool) Noise 

 

Hardware and system imperfections 

The presence of magnetic field heterogeneities (both B0 and B1) (61), gradient nonlinearities (62), 

concomitant gradients (63,64), eddy currents (65), system drifts (66), timing errors (67), and other 

system imperfections, is unavoidable in MR applications. These effects may result in tolerable 

artifacts in qualitative MR as long as the relative visual contrast between tissues is preserved, but 

may introduce substantial bias and poor precision in qMR methods. 

Physiological effects and motion 

Physiological motion effects include respiration, cardiovascular motion and pulsation, intestinal 

peristalsis, and bulk patient motion, among others. These effects often result in artifacts, ghosting, 
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and mis-registration in the acquired images (68), which can in turn introduce bias and poor 

precision in qMR. Blood and tissue motion during the acquisition can also introduce artifacts, 

phase offsets, and dephasing that confound the quantification. 

Signal model imperfections 

Practical qMR methods rely on simplified signal models. The presence of signal effects that are 

not included in the model introduces bias in qMR measurements. These effects may be due to 

additional relaxation mechanisms, incomplete approach to steady state, diffusion, spectral 

complexity, etc. Signal model imperfections can lead to poor reproducibility in qMR, as these 

effects will often manifest differently for varying experimental conditions, including different 

systems, field strengths, and acquisition parameters. Ideally, signal models should be based on 

specific biophysical assumptions about the tissues of interest. However, biophysical modeling is 

challenging in certain applications, and so signal “representations” are often used, which enable 

fitting of the acquired data but are not based on specific tissue models (69). For example, the 

diffusion tensor representation provides a useful approximation to the diffusion-weighted MR 

signal at moderate b-values, but is not based on specific tissue modeling assumptions (69). Such 

signal representations have demonstrated clinical value, but their quantitative performance needs 

cautious consideration. For example, bias may not be meaningful if the measurand does not 

represent a physical property of the tissue, and reproducibility across changes in acquisition 

parameters is often challenging.  

Other artifacts and noise 

A variety of additional imaging artifacts, including partial volume, slice profile imperfections, 

imperfect spoiling, parallel imaging artifacts, and noise can confound qMR methods. For example, 

imperfect slice profiles due to finite-duration excitation pulses lead to a distribution of flip angles 

across the slice and may also introduce crosstalk between slices (70,71). In addition, noise in the 

acquired imaging data propagates into the subsequent qMR measurements. The propagation of 

noise is generally dependent on the acquisition parameters and the choice of signal model; more 

complicated models with many free parameters often result in higher noise amplification. Further, 

manipulation of MR signals prior to qMR measurement can affect the noise distribution, which 

affects the bias and precision of qMR methods. For example, noise in complex MR data is well 
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modeled by a Gaussian distribution. However, qMR sometimes relies on magnitude images (e.g., 

in diffusion MRI, or cardiac T1 mapping as discussed throughout this paper). This magnitude 

operation has several important effects, including the elimination of phase information, and the 

introduction of an additional bias. Indeed, regions of low signal magnitude, as commonly observed 

in methods such as diffusion MRI or relaxometry, deviate substantially from a Gaussian noise 

distribution (72). If subsequent qMR processing implicitly assumes a Gaussian noise distribution 

(e.g., in methods that rely on least-squares fitting, as described below), bias and poor 

reproducibility may result from the inaccurate noise assumptions (73,74). 

For these reasons, different processing pipelines of the same data can lead to differences in 

the resulting qMR measurements. For example, even filtering of the image data can introduce 

biases in the quantification when nonlinear models are being used. Thus, using transparent open-

source toolboxes or custom-built processing for qMR should be preferred over black-box tools, 

when reproducibility is targeted. 

Finally, when using MR-based reference methods for validation of qMR, even the reference 

method itself may not be immune to the presence of confounding factors such as physiological 

effects and motion. This limitation of the reference method may complicate the evaluation of qMR 

bias in vivo.  

Examples 

Liver PDFF Quantification 

Quantification of PDFF is affected by multiple confounding factors, including: 

T1 recovery: The short T1 relaxation time of fat compared to that of water in the liver can lead 

to bias (overestimation) of PDFF (12) in acquisitions that include T1 weighting. 

T2* relaxation: T2* decay across multiple echoes can appear as interference between fat and 

water signals, and therefore can introduce bias and poor reproducibility in PDFF 

quantification (see Figure 4) (13,14,75,76). 

Spectral complexity of fat signals: Unlike water signals, which result in a single MR 

resonance, fat signals arise from protons located in various positions within the triglyceride 

molecule. These protons, in turn, lead to a multi-peak spectrum from fat (15,77). If 

unaccounted for, this spectral complexity leads to bias and poor reproducibility across 

acquisition parameters, particularly the echo time combination. 
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Phase errors: Phase errors, such as those arising from eddy current effects, can introduce bias 

and poor reproducibility in PDFF quantification (78,79). 

Over the past two decades, these and other confounding factors have been systematically 

identified, characterized and addressed using various acquisition and post-processing-based 

approaches (see the Technical Development section below). 

Cardiac T1 

Quantitative cardiac imaging is particularly challenging due to the impact of cardiac and 

respiratory motion. Confounders, as described above, often have an imaging method-specific 

impact on the quantification. Additionally, subject-specific effects are often substantial. Various 

existing and emerging technical developments seek to mitigate these effects (55,57,80-83). The 

most relevant confounders for cardiac T1 mapping include: 

Heart rate: Acquisitions commonly need to be synchronized with the heartbeat to minimize 

cardiac motion effects. The subject-specific heart rate may influence the bias and/or 

precision. Introduction of alternative mapping schemes or heart rate-resilient timing has 

helped to alleviate this confounder (55,57,80). 

k-Space acquisition: In some methods, only the effect of the magnetization preparation is 

modeled. In this case the disruption of the magnetization by RF pulses used for the k-space 

acquisition can cause bias in the quantification. Specifically, this may render the 

quantification susceptible to physiological factors such as T2 relaxation (57) or 

magnetization transfer (84), or system-related properties such as off-resonance (85) or flip 

angles (86). The dependency on system-related parameters makes it paramount to use 

identical sequences and sequence parameters in cardiac T1 mapping,  when reproducibility 

across centers and MRI scanners is desired. 

Partial-volume effect: Cardiac acquisitions are commonly limited in the achievable 

resolution due to motion constraints. This results in partial-voluming, where voxels are 

partially filled with different tissue types at tissue interfaces. As a result, the area that can 

reliably be evaluated is further reduced, rendering the quantification dependent on accurate 

delineation of the region of interest (87,88). 
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TECHNICAL DEVELOPMENT AND VALIDATION 

The development of qMR methods is typically an iterative process including design of acquisition, 

modeling and signal fitting methods. This technical development can be framed as an optimization 

of bias and precision metrics (see Figure 5), subject to specific constraints such as scan time, or 

hardware performance.  

Acquisition 

Once the basic physical mechanism to be probed has been selected and potential confounders have 

been identified, aspects of protocol design and optimization can be considered. A common goal is 

to select pulse sequences and parameters such that the measurand can be determined with low bias 

and high precision, subject to a set of timing, hardware, and other constraints. Acquisition design 

will often begin by selecting a pulse sequence where the measurand of interest can be directly 

probed, while minimizing the effect of confounding factors. Next, an acquisition that includes 

multiple scans with different parameters can be designed to enable estimation of the measurand. 

In applications where thermal noise is the dominant source of noise (as opposed to, e.g., 

physiological noise), acquisitions with higher imaging SNR may substantially improve bias (12) 

or precision (89). The choice of acquisition parameters may be driven by heuristics, and also 

refined using quantitative tools such as sensitivity analysis (90,91), or noise propagation analysis 

(e.g., Cramer-Rao lower bounds, CRLB)  (11,92-94). 

Liver PDFF Quantification 

The choice of pulse sequence for quantification of PDFF is driven by the desire to obtain chemical 

shift-encoded data with proton-density contrast (e.g., avoiding confounding effects due to T1 and 

T2 relaxation), and with rapid scan times (e.g., to enable whole-liver coverage in a single breath-

hold while avoiding motion artifacts). For these reasons, the pulse sequence of choice for MRI-

based liver PDFF quantification is a multi-echo spoiled gradient echo (SGRE) sequence, either 

using 2D multi-slice or 3D imaging (8,17). In addition, small flip angles are used in order to avoid 

T1 bias (12). Other confounding factors are typically addressed by postprocessing/modeling (see 

below). Optimal acquisition parameters, such as echo times, have been determined using CRLB 

analysis (11).  
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Cardiac T1 

A multitude of pulse sequences for cardiac T1 mapping have been proposed and novel method 

development remains an active area of research. Generally, these acquisitions can be decomposed 

into three integral parts: 1) contrast sensitization; 2) k-space acquisition; 3) motion compensation. 

Typically, preparation pulses are used to sensitize the imaging signal to the T1 relaxation time 

of the tissue. Inversion pulses are most widely used in T1 mapping, including the commonly used 

MOLLI sequence and its variants (23,24,55). Saturation recovery has also been proposed with the 

potential to minimize bias caused by various confounding factors as described above (57,80). 

However, due to a decreased dynamic range, saturation recovery preparation typically results in 

lower T1 mapping precision as compared with inversion preparation. 

Cardiac T1 mapping is typically performed using multiple electrocardiogram (ECG)-triggered 

snapshot images, with each image obtained during a single diastolic quiescence, i.e., all k-space 

lines necessary for image reconstruction of one snapshot image are acquired in one heartbeat. To 

achieve optimal SNR as well as minimal disruption of the longitudinal magnetization recovery 

curve, balanced Steady State Free Precession (bSSFP) readouts are the method of choice. Spoiled 

gradient echo readouts have also been explored to minimize sensitivity to off-resonance and field 

heterogeneities, albeit at the cost of reduced precision (95). More recently, continuous imaging 

throughout the heartbeat have been proposed to allow cardiac phase-resolved T1 mapping 

(81,82,96). 

ECG triggering is almost universally used as the means for cardiac motion compensation in T1
 

mapping, with few notable exceptions (96,97). Various schemes have been explored for respiratory 

motion compensation. Clinically available T1 mapping methods usually acquire a single-slice T1 

map in a single breath-hold (26). However, free-breathing methods have also been explored with 

diaphragmatic navigator gating, tracking or self-gating (97-99). Importantly, free-breathing 

sequences allow for the acquisition of multiple slices or 3D volumes and can be used to enable T1 

mapping with increased spatial resolution (83,100,101). 

Model selection 

Many qMR methods rely on parametric mapping using a signal model that relates the acquired 

data to the underlying measurand. Selection of a signal model is typically an iterative process and 

seeks to balance bias and precision. Often the process begins with identifying the relevant degrees 
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of freedom in the underlying tissue (69), such that these tissue properties can be related to, and 

estimated from, acquired MR signals. For example, this step may involve the identification of the 

major pools of nuclei with shared properties that will reasonably contribute to the signal. These 

pools can describe physical compartments, such as "intracellular" compartments, or local 

molecular environments such as lipid protons. The Bloch equations, describing the response to RF 

energy and relaxation properties, are defined for each pool. Next, a model may consider whether 

nuclei can travel between pools by chemical exchange or diffusion, or interact magnetically with 

other pools due to proximity and thus define the exchange kinetics. Models commonly describe 

the signal within a voxel independently of its spatial neighborhood, but one may also need to 

consider the influence of the neighboring voxels (e.g., in quantitative susceptibility mapping (102), 

or electrical properties tomography (103,104)). 

The next step is often to evaluate the signal model under modifications of the acquisition pulse 

sequence. It is often helpful to develop a working model for simple excitation-readout with 

Cartesian acquisition and long TR before considering advanced k-space trajectories or pulse trains. 

The requirements for each measurand are different, but major considerations in the presence of 

increasingly advanced pulse sequences may include relaxation effects, B0 and B1 heterogeneities, 

etc. It may also be necessary to consider the need for steady-state or non-steady state modeling. 

Finally, any signal manipulations that occur before analysis, such as magnitude operation or spatial 

filtering, need to be included. 

In subsequent iterations, confounding factors are often identified and addressed through 

acquisition- and/or modeling-based refinements. Importantly, qMR methods necessarily use 

simplified models of the actual underlying physics. For this reason, it is always possible to 

“enhance” the models by including additional unknown parameters. However, these signal model 

enhancements generally lead to increased challenges in the parameter estimation (particularly 

noise amplification, sensitivity to artifacts, and computation time). Practical signal models, 

therefore, seek a balance between accurately capturing the underlying physics and enabling stable 

quantification within acceptable computation times. Once a satisfactory model is achieved, this 

model often needs to be re-evaluated upon subsequent refinements of the qMR method, including 

accelerated acquisitions. 
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Liver PDFF Quantification 

A widely used signal model for PDFF quantification in the liver includes (8,15,105): 

 𝑠(𝑇𝐸𝑛) = (𝜌𝑤 + 𝜌𝐹 ∑ 𝛼𝑚𝑒𝑖2𝜋𝑓𝐹,𝑚𝑇𝐸𝑛𝑀
𝑚=1 )𝑒𝑖(𝜙0+2𝜋𝑓𝐵𝑇𝐸𝑛)𝑒−𝑇𝐸𝑛/𝑇2

∗
 (6) 

 

where 𝜌𝑤 and 𝜌𝐹 are the proton density-weighted signal amplitudes of water and fat, respectively; 

fat signals are modeled as a pre-calibrated spectrum including M peaks with known relative 

amplitudes 𝛼𝑚  and frequency offsets 𝑓𝐹,𝑚  (77); initial phase 𝜙0 ; B0 related off-resonance 

frequency 𝑓𝐵; and transverse relaxation time T2*. Upon data fitting (see below), this signal model 

allows estimation of 𝜌𝑤 and 𝜌𝐹, which lead to the calculation of PDFF as: 

 𝑃𝐷𝐹𝐹 =
𝜌𝐹

𝜌𝑤+𝜌𝐹

 (7) 

 

Importantly, the widely used signal model in Equation 6 constitutes a balance between bias 

and precision (noise performance) (106). For example, this model addresses the spectral 

complexity of the fat signal by using a multi-peak signal model and also accounts for T2* decay. 

If unaccounted for, both of these effects have been shown to lead to substantial bias and poor 

reproducibility in PDFF quantification (17). However, the model in Equation 6 typically relies on 

a pre-calibrated multi-peak fat spectrum, where the relative frequencies and amplitudes of the fat 

peaks are assumed known a priori (107), and also assumes a common T2* decay time for water 

and all fat peaks (106). Each of these approximations help maintain acceptable noise performance 

and precision for PDFF quantification by limiting the number of unknown parameters, even though 

they may introduce a small bias in the estimation of liver PDFF when the model assumptions do 

not hold exactly. 

Cardiac T1 

T1 recovery is thoroughly studied and can be accurately described by the well-known 

phenomenological Bloch relaxation equations. However, the signal model needs to be adapted to 

the specific imaging sequence, as summarized next. 

In the widely used Modified Look-Locker Inversion Recovery (MOLLI), an adaptation of the 

standard inversion recovery model is commonly employed to describe the signal S(t) at different 

inversion times t: 

 𝑆(𝑡) = 𝐴 − 𝐵𝑒−𝑡/𝑇1
∗
. (8) 
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Here A and B describe fit parameters and T1
* is the apparent relaxation time. The T1 estimate 

is then extracted as 𝑇1 = (
𝐵

𝐴
− 1) 𝑇1

∗. This adaptation is inspired by Deichmann et al. (108) and 

aims to reduce the effect of the RF pulses used for the k-space acquisition on the quantification. 

However, the acquisition commonly deviates from the assumptions underlying this correction, 

inducing residual susceptibility to various effects related to the RF pulses during the k-space 

acquisition. Numerical models have also been proposed to approximate the magnetization 

evolution during the k-space acquisition, using for example Bloch equation simulations or 

additional parameters (109,110). While these methods commonly achieve lower bias, their 

applicability might be limited, and precision may be compromised. 

A second class of myocardial T1 mapping methods is based on saturation recovery, which 

commonly relies on the following three-parameter model: 

 𝑆(𝑡) = 𝐴(1 − 𝑒−𝑡/𝑇1) + 𝐵 (9) 

This saturation recovery-based approach has been shown to compensate for the effects of the RF 

pulses used for the k-space acquisition (57), which in turn enables cardiac T1 mapping with reduced 

bias. It has also been suggested to omit the B parameter to obtain a two-parameter model, in order 

to improve precision at the cost of bias in saturation recovery T1 mapping (55). 

Model Fitting 

Fitting a signal model to acquired data can typically be described in terms of a formulation and an 

algorithm, as described next. 

The formulation is often an optimization problem, which describes in what sense the model 

should fit the acquired data. For example, least-squares fitting is often used for various linear or 

nonlinear models in quantitative MR. For nonlinear models based on exponential functions, a 

logarithm of the data is sometimes calculated to linearize the problem. This linearization simplifies 

the optimization, although it affects the noise propagation and may require additional 

manipulations to avoid excessive noise influence from low-SNR data points (111). Further, some 

formulations rely on the acquired complex data, whereas others use magnitude data (79). Finally, 

the formulation may be constrained (where the set of allowable parameters is restricted based on 

physical or noise propagation considerations) or unconstrained. In addition to least-squares fitting, 
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other formulations can be used, including those required for maximum-likelihood estimation in 

the presence of non-Gaussian noise. 

Once a formulation is selected, an algorithm needs to be selected to solve the corresponding 

optimization problem. Depending on the formulation, various closed-form or iterative algorithms 

are typically available. Variations of Newton’s method, including Levenberg-Marquardt and 

Gauss-Newton algorithms, constitute common choices for iterative optimization (112). An ideal 

algorithm would be efficient (i.e., fast and requiring low resources) and would lead to the global 

solution of the optimization problem described in the formulation. 

Liver PDFF quantification 

Model fitting for PDFF mapping is typically performed using nonlinear least-squares fitting of the 

signal model (Eq. 6) to the acquired multi-echo data, followed by calculation of PDFF at each 

pixel (Eq. 7). Multi-echo data are often corrupted by phase errors that are inconsistent across 

echoes (78,79). For this reason, some or all of the phase information is often discarded to avoid 

PDFF bias, and algorithms often rely partly on fitting the signal magnitude, instead of the original 

complex-valued signals. Magnitude fitting leads to reduced bias by avoiding phase related PDFF 

errors at the cost of reduced noise performance and precision (by discarding half of the acquired 

information, i.e., the phase). 

Cardiac T1 

Basic model fitting in cardiac T1 mapping is also most commonly performed using magnitude-

based nonlinear least-squares fitting. When unsigned magnitude images are used in an inversion-

recovery model, the signal polarity information is lost. To resolve this issue the images are 

commonly ordered by the inversion time and the polarity can be restored heuristically, by 

successively flipping the sign in the ordered sequence and accepting the solution with the lowest 

fit residual (20). 

However, this process might introduce additional noise variability. It has been proposed to 

incorporate phase information to perform hybrid fitting on a signed magnitude. Here the 

background phase is extracted from a fully relaxed image, and the phase difference to other T1 

weighted images can be used to restore the signal polarity (113). 
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CLINICAL QUALIFICATION 

For qMR methods, in addition to technical validation, which measures the bias and precision of 

the quantitative measurements, it is essential to perform clinical qualification (Figure 6) (114). 

Clinical qualification seeks to establish the relationship between the qMR measurement and 

biological processes or clinical endpoints, as needed to determine the clinical utility of the method, 

e.g., whether it enables screening, diagnosis, staging, prognosis, or treatment monitoring for a 

particular condition and target population (115-119). For example, rather than focusing on 

technical performance metrics of bias and precision, clinical qualification may focus on metrics 

such as sensitivity, specificity, negative / positive predictive value, prediction accuracy, or odds 

ratio (114,120). Upon successful clinical evaluation for a specific application, qMR methods may 

lead to qualified quantitative biomarkers (see Glossary in Supporting Information Table S1) (6). 

This marks an important distinction: while a qMR measurand usually relates to a physical 

property, this measurand, when being used as a clinical biomarker, indicates pathophysiological 

alterations or other changes in the physiological state. Often numerous biological and 

physiological processes affect the underlying physical property. Thus, a single qMR measurand 

can be qualified as a biomarker for multiple disease entities. In this case, while being sensitive to 

multiple diseases, the measurand may not be specific to any one physiological alteration. 

There are strong connections between technical validation and clinical qualification. For 

example, a qMR method with poor precision (e.g., poor test-retest repeatability) will likely also 

have poor sensitivity and specificity for detection of a specific condition. However, these are also 

important distinctions between both types of evaluation. For example, it is possible to develop a 

qMR method with excellent technical performance (low bias and high precision) for quantifying a 

measurand; however, this method may have poor clinical performance for a specific application, 

e.g., due to underlying biological variability that complicates the relationship between the 

measurand and the clinical endpoint of interest, such as survival, disease-free survival, or various 

surrogate endpoints (121-123). Further, a biased method may reduce the desired effect size, as the 

bias itself may be different for various patient populations. Alternatively, it is possible that a biased 

(confounded) qMR method provides larger effect sizes for a specific disease entity than an 

unbiased measurement, e.g., if the confounders themselves are sensitive to the physiological 

alteration (see Figure 7). However, it is important to note that this enhancement usually comes at 

the cost of strongly reduced reproducibility as the variability in the bias is difficult to control.  
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For these reasons, it is essential to conduct both technical validation and clinical qualification 

of qMR methods. This need further highlights the importance of multi-disciplinary collaboration 

between technical imaging researchers, translation-focused radiologists, and other clinicians. 

 

Examples 

Liver PDFF Quantification 

Liver PDFF has been shown to be correlated with histologic steatosis grade. For example, PDFF 

can classify histologic steatosis (grade 0 vs. 1-3) with sensitivity 0.93 and specificity 0.94 (124). 

Also, MRI-based liver PDFF quantification is emerging as a useful biomarker to assess 

longitudinal changes in liver fat within clinical trials (125). Further, a reduction of MRI-PDFF by 

30% is associated (odds ratio 6.98) with histologic improvement in NAFLD Activity Score 

(126).  

Liver PDFF values may be predictive of pediatric metabolic syndrome (127). In addition, 

liver steatosis is associated with cardiovascular diseases (128,129); for instance, liver fat is an 

independent risk factor (odds ratio 2.1) for high-risk plaque (128) and other cardiovascular risk 

factors (129). Importantly, now that the required MRI technical development is mature and PDFF 

mapping methods are widely available, determination of the association between liver PDFF and 

various clinical outcomes constitutes an active area of research. 

 

Cardiac T1 

Native myocardial T1 times, in the absence of a contrast agent, have been evaluated against 

histologically determined fibrosis from myocardial biopsies in vivo and total collagen volume in 

animal studies (130) and heart transplant patients (131). Variable degrees of correlation ranging 

from moderate to high have been reported depending on the disease model (131), indicating that 

T1 times are not reflective of fibrosis alone but of a number of factors. Extracellular Volume (ECV) 

calculated from native T1, post-contrast T1, and hematocrit, generally showed better correlation to 

the amount of fibrosis but variability among disease models and studies remains. Accordingly, the 

clinical context needs to be considered in the interpretation of both native T1 and ECV, and 

alteration in either measurand cannot be directly linked to a single specific physiological process 

(20,132-134). 



 

24 

Nonetheless, cardiac T1 mapping-related markers have demonstrated high clinical 

diagnostic and prognostic value in an unexpectedly wide range of disease entities (25,135). For 

example, in cardiac amyloidosis ECV showed excellent sensitivity and specificity (0.93 and 0.87, 

respectively) and an odds-ratio of 84.6 (136). In patients with an acute infarct quantitative 

assessment of normal appearing myocardium in patients with an acute infarct using native T1 or 

ECV has proven to be a better predictor for all-cause mortality or major cardiac events than any 

other cardiac MRI marker (131), and accurate differentiator between reversible and irreversible 

myocardial damage (96.7% prediction accuracy). 

Interestingly, MOLLI T1 mapping, which is most common in clinical use, is known to 

exhibit a large bias. However, it has been suggested that certain confounders to MOLLI T1 

measurements may enhance clinical sensitivity (137). As illustrated in Figure 7, this somewhat 

counter-intuitive phenomenon arises because some confounders (e.g., magnetization transfer 

(84,137,138)) are sensitive to pathological alterations, leading to inflated effect size in certain 

disease entities compared to unbiased measurements. However, as a result of these confounders, 

the measurand in MOLLI is highly dependent on the sequence parameters (e.g., TR, flip-angle, 

slice-profile), the scanner specifications and tissue properties that are not related to the tissue T1 

time. Hence, this inflated effect size is obtained at the cost of reduced reproducibility. 

 

DISSEMINATION IN RESEARCH AND IN THE CLINIC 

Although qMR methods have shown great potential to guide clinical decision-making and patient 

management for improved patient care and outcomes, very few qMR methods are used in routine 

clinical practice. Many promising qMR methods are only described in the scientific literature, 

without translation in clinical research studies or clinical use. 

As recently stated in the Imaging Biomarker Roadmap for Cancer Studies (139), all imaging 

biomarkers, including quantitative MRI biomarkers, need to cross two “translational gaps” before 

they are ready to guide clinical decision making. These gaps are crossed through increasing 

technical validation and clinical qualification, as well as assessment of cost effectiveness and other 

considerations. Once technical and clinical performance evaluation demonstrate the reliability of 

a qMR biomarker to test medical research hypotheses, this biomarker can cross the first gap and 

become a useful “medical research tool”. At this stage, substantial additional validation and 
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qualification are still needed in order to achieve clinical impact as a screening, diagnostic, or 

predictive biomarker. This may include validation of multi-center reproducibility  (140), and large 

prospective clinical trials to demonstrate improved clinical diagnosis or outcomes.  In combination 

with cost effectiveness and other considerations, these activities enable a biomarker to cross the 

second translational gap and become a “clinical decision-making tool” that influences patient care. 

Importantly, application of qMR methods in research or in the clinic requires rigorous quality 

assurance and quality control procedures (141-143). 

During the three processes of i) technical development and validation, ii) clinical qualification, 

and iii) dissemination, additional substantial challenges (including regulatory issues and market-

related factors) often arise before clinical dissemination is achieved (Figure 6). For example, the 

ability of healthcare providers to obtain reimbursement or take charge of the costs associated with 

quantitative imaging biomarkers may drive the clinical use of these tools. Oftentimes, a lack of 

CE/FDA (or equivalent) labelling limits the ability to apply a biomarker in clinical practice.  

Examples 

Liver PDFF Quantification 

CSE-based liver PDFF quantification has emerged as a major clinical and research tool to 

determine liver fat content. Importantly, this qMR method is commercially available on systems 

from various MRI vendors, including regulatory approvals such as FDA clearance and CE mark. 

A liver PDFF quantification profile is currently being developed by the Radiological Society of 

North America’s Quantitative Imaging Biomarkers Alliance (RSNA QIBA) (144). Now that liver 

PDFF quantification methods have shown excellent technical performance (low bias, high 

precision), clinically relevant results are emerging, including population studies measuring 

prevalence in various populations (145) and clinical studies showing the prognostic value of PDFF 

(146). 

Cardiac T1 

In recent years, cardiac T1 mapping has become widely available on most clinical MRI systems. 

Some vendors have released dedicated product packages comprising one or more T1 mapping 

methods, while others have provided prototype methods. Several cardiac T1 mapping methods 

have regulatory approval such as FDA clearance and CE mark.  



 

26 

T1 mapping is widely used in cardiac MRI in academic centers and beyond. It has been 

successfully applied to an unexpectedly large spectrum of ischemic and non-ischemic 

cardiomyopathies (20,131) and is established as part of routine scanning in numerous clinical 

cardiac MR protocols. The effect of most heart diseases on myocardial T1 has been investigated, 

mostly in single center studies. Select pathologies have been studied in large cohorts or multi-

center studies, including studies on amyloidosis (147) and Anderson-Fabry disease (148). 

Additionally, cardiac T1 mapping has been adopted in multiple national cohorts, including the UK 

biobank protocol and the German national cohort  (149,150). These studies are some of the largest 

ongoing MRI projects to date. Following the clinical success demonstrated in the literature, cardiac 

T1 mapping was adopted in disease specific clinical guidelines (151). Further increases in clinical 

integration and use in a growing number of cardiac MRI protocols are likely. 

 

RELATED INITIATIVES, CHALLENGES AND OPPORTUNITIES 

As described above, substantial efforts are needed for the development, validation and 

dissemination of quantitative MR techniques. These efforts require collaboration between 

technical researchers, translational researchers and clinicians, industry, and initiatives and 

institutions dedicated to the regulation and guidance of quantitative imaging measurements. Such 

initiatives and institutions include authorities for standardization of measurements such as Italy’s 

Istituto Nazionale di Ricerca Metrologica (INRIM), the Korea Research Institute of Science and 

Standards (KRISS), the U.S.’ National Institute of Standards and Technology (NIST), the UK’s 

National Physical Laboratory (NPL), Germany’s Physikalisch-Technische Bundesanstalt (PTB), 

and for the advancement of the development and use of imaging biomarkers, as performed by 

QIBA, the US National Cancer Institute through the Quantitative Imaging Network (QIN), the 

European Imaging Biomarkers Alliance (EIBALL), Japan-QIBA, the European Society of 

Radiology (ESR), and the ISMRM. Specifically, the major goal of the ISMRM Quantitative MR 

Study Group is to promulgate documentary and measurement standards for qMR methods in 

collaboration with national metrology institutes, academic and clinical MR sites, and through 

collaboration with existing study groups. Further, ongoing qMR improvements occur in the 

context of broad efforts to evaluate and optimize the value of MRI in medicine (152). Ultimately, 
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efforts to develop qMR methods should have broad value in medicine across countries and 

populations, beyond specialized research centers. 

In addition, the development and validation of qMR methods is closely connected to the 

improvement of the reproducibility of MR research itself. There are multiple existing and 

emerging initiatives in this area, including the ISMRM Reproducible Research Study Group, and 

reproducibility has recently been emphasized by major journals such as Magnetic Resonance in 

Medicine, or the Journal of Magnetic Resonance Imaging. A related set of benchmarks for 

validation of quantitative imaging tools has been described by the Quantitative Imaging Network 

of the US’ National Cancer Institute (153). Importantly, multiple consensus efforts and community 

challenges have emerged in recent years for specific qMR methods or applications, as well as for 

general optimization of qMR (6,20,37,142,154-163). Data standards are also essential for 

reproducibility and interoperability, making it easier to create transparent qMR workflows. Two 

standards that are relevant for qMR are the ISMRM-Raw Data format 

(https://ismrmrd.github.io/apidocs/1.5.0/), and the Brain Imaging Data Structure (BIDS) extension 

proposal for quantitative MRI (https://github.com/bids-standard/bids-specification/pull/508). 

Further, various software packages developed, maintained and used by the community enable 

improved reproducibility by standardizing data processing pipelines. Supporting Information 

Figure S6 gives an overview of the user base of publicly available software with applications in 

qMR. Examples include various toolboxes hosted on the Matlab Central File exchange 

(https://www.mathworks.com/matlabcentral/fileexchange/), FSLTools 

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FslTools), OsiriX or Horos plugins, ImageJ 

(https://imagej.nih.gov/ij/), Bay Area Reconstruction Toolbox (BART, 

https://mrirecon.github.io/bart/), qMRlab (https://qmrlab.org) (164), Gadgetron 

(http://gadgetron.github.io/), Quantitative Imaging Tools (https://github.com/spinicist/QUIT), 

Michigan Image Reconstruction Toolbox (MIRT, http://github.com/JeffFessler/MIRT.jl),   hMRI 

(https://hmri-group.github.io/hMRI-toolbox/),    , QMRI tools 

(https://community.wolfram.com/groups/-/m/t/1661539), LCModel (http://s-

provencher.com/lcmodel.shtml), Total Mapping Toolbox (TOMATO) 

(https://mrkonrad.github.io/TOMATO/html), QMRI Tools 

(https://mfroeling.github.io/QMRITools/), and others (e.g., vendor proprietary software and in-

house or personal code). RSNA QIBA and NIBIB have also sponsored the development of digital 

https://www.mathworks.com/matlabcentral/fileexchange/
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FslTools
https://imagej.nih.gov/ij/
https://mrirecon.github.io/bart/
https://qmrlab.org/
http://gadgetron.github.io/
http://github.com/JeffFessler/MIRT.jl
https://hmri-group.github.io/hMRI-toolbox/
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reference objects (DROs), which enable the testing of analysis tools to assess their bias and 

precision when working with quantitative data obtained with different acquisition parameters and 

varying levels of SNR. Example DROs for DCE-MRI and DWI are available from QIBA 

(https://qidw.rsna.org). 

The transformation of MR into a truly quantitative diagnostic modality has enormous 

potential to impact research and clinical care. However, the development, validation, and 

dissemination of quantitative MR methods is faced with multiple challenges, particularly the 

complexity and cost of the required validation studies, as highlighted by the above networks and 

initiatives. These challenges reinforce the need for collaboration between technical MR 

researchers, academic radiologists, and other clinicians, as well as industry, such as Original 

Equipment Manufacturers (OEMs) - vendors of MR systems and other MR equipment and 

software, pharmaceutical companies, contract research organizations, and others.  

Finally, substantial recent efforts from the qMR community have focused on rapid multi-

parametric mapping and machine learning (ML). Emerging multi-parametric mapping methods 

such as MR fingerprinting (165) and multi-tasking (81) enable quantitative mapping of several 

parameters with short scan times. These methods are highly promising for a variety of applications, 

and require careful development and validation to address a large number of potential confounding 

factors. ML methods, including radiomics and deep learning, have recently gained enormous 

interest in the field. Indeed, ML may contribute to different stages of the qMR pipeline, including 

image prescription, acquisition, reconstruction, post-processing, measurement, and analysis. 

Despite the potential impact of these methods, rigorous development and validation of ML-enabled 

qMR is needed. This development and validation pose new challenges and opportunities for ML-

enabled qMR, including how to quantify and address confounding factors to achieve low bias and 

high reproducibility across patients, sites, and vendors, in much the same way as the more 

‘traditional’ qMR methods highlighted in the present manuscript.  

 

SUMMARY AND CONCLUSION  

On behalf of the International Society for Magnetic Resonance in Medicine (ISMRM) Quantitative 

MR Study Group, this manuscript describes a framework for the development and validation of 

quantitative MR methods. With a focus on technical performance metrics (bias and precision), this 
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framework highlights the challenges as well as the research opportunities associated with 

quantitative MR methods. Overall, rigorous development and validation are critical components 

of the transformation of MR into a truly quantitative diagnostic modality. A summary of 

concluding recommendations to achieve this aim is provided in Table 3. Upon successful 

implementation of qMR methods, as well as clinical qualification of qMR-based biomarkers, qMR 

has the potential to substantially advance imaging in clinical applications and clinical research, 

and build a cornerstone of precision radiology. 

 

Table 3: Recommendation for qMR development, validation and application. 

Definitions The measurand of interest needs to be clearly defined. How 

does the targeted measurand relate to other physical properties? 

For example, if a coefficient is determined, what is the 

reference quantity (e.g., MR-visible protons)? 

Choice of pulse sequence Select pulse sequences and parameters such that the measurand 

can be determined with low bias and high precision, subject to 

a set of timing, hardware, and other constraints. Acquisition 

design will often begin by selecting a pulse sequence where the 

measurand of interest can be directly probed, while minimizing 

the effect of confounding factors. 

Choice of models Proper biophysical modeling is difficult, but may avoid the 

pitfalls of various signal representations. Indeed, various 

models can often fit the data, but models that are not grounded 

on specific tissue assumptions are often more difficult to 

validate, and are also likely to suffer from poor reproducibility. 

Rigorous validation It is critical to perform systematic validation of the technical 

performance of emerging qMR methods. Importantly, even 

though early-stage validation is often focused on bias, 

evaluation of precision (repeatability and reproducibility) is 

essential to enable further clinical qualification and 

dissemination. 

Structured evaluation Well-structured reporting of the validation is an essential 

component of establishing a qMR method. The standard 

metrics being evaluated should be described clearly as 

discussed in the section “Technical Performance of qMR 

Methods” above. Future work from the community may 

establish a standardized structure for the Methods and Results 

sections of qMR manuscripts. 
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Real-world validation Even at the stage of technical validation, it is important to 

evaluate the performance of qMR methods under conditions 

that are relevant to the real-world clinical environment. For 

example, performance may depend on the hardware available at 

different sites (e.g., academic vs non-academic). In addition, 

technical validation in a relevant patient population helps pave 

the way for subsequent clinical qualification and application. 

Focus on reproducibility Optimization and characterization of reproducibility across 

acquisition protocols, field strength, vendor, platform, etc, is 

critical in qMR. Indeed, in qualitative MR methods 

development, one is often interested in finding the optimal set 

of acquisition and processing parameters to maximize imaging 

performance (e.g., resolution, SNR). Although this optimal set 

of parameters is also relevant in qMR, the development of qMR 

methods that are reproducible across variations in the 

acquisition parameters is arguably even more important than 

the identification of the optimal parameters. This way, qMR 

methods are best suited for widespread dissemination across 

sites that may not be able to implement exactly optimized 

acquisitions. 

Reproducibility vs. 

standardization 

Certain qMR methods are highly reproducible across variations 

in acquisition parameters (within a certain range). For example, 

this is the case for PDFF measurement in the liver: when 

correcting for all relevant confounders, PDFF measurement is 

highly reproducible across field strength, echo time 

combinations, spatial resolution, and various other acquisition 

parameters. However, other qMR methods have poorer 

reproducibility, and their widespread dissemination would 

benefit highly from standardization of acquisitions (as well as 

processing) across sites and systems, as well as harmonization 

(see below). 

Harmonization Quantitative MR can benefit from harmonized acquisitions and 

tools. For example, standardized reference objects and tool 

validation methods, such as the use of DROs, provide common 

ground for comparison of imaging protocols across sites, 

vendors, and software analysis packages. 

Realistic time-horizon Development, validation, qualification, and dissemination of a 

qMR method is a slow, iterative process that may take more 

than a decade. 

Consider the end goal In qMR, the end goal is often to enable improved diagnosis, 

staging, and/or treatment monitoring of disease and generate 
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increased value in the clinical work up. This goal is generally 

relevant even for technically focused researchers. 

Mind the translational gap Establishing new quantitative imaging biomarkers in actual 

clinical use is a lengthy process and requires many steps that 

may not be amenable to funding by traditional science-oriented 

grants or tenders. This may require creativity about the path to 

clinical integration and real-world use. 

Clinical qualification is key Clinical qualification is critical to achieve translation of a 

quantitative MR method to the clinic. This may be the most 

time-consuming step in the entire pipeline of qMR method 

development and evaluation. 

Collaboration Working together with stakeholders (technical, clinical, 

industrial) and across imaging modalities or scientific 

disciplines is critical. For example, accurate biophysical 

modelling will benefit from collaboration between clinical and 

preclinical MR scientists, but also between MR researchers and 

scientists studying tissues at smaller scales (e.g., cell cultures) 

or using different imaging technology (e.g., X-ray phase 

contrast imaging for tissue structure, near infrared spectroscopy 

for blood oxygenation properties, or microscopy). 

Collaboration with clinicians is of enormous value in qMR 

technique development, and helps create a virtuous loop of 

refinement of existing methods and conception of new methods 

that address existing clinical needs. Further, early-stage 

discussion and cooperation with industry is especially relevant, 

since CE/FDA-labelling is mandatory for clinical translation. A 

technique without labelling will not be widely adopted in 

clinical practice due to ethical concerns and regulatory issues. 
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Figure Captions: 

 

Figure 1: Example quantitative MR methods illustrated in this manuscript. (Top) Liver proton-

density fat fraction (PDFF) mapping, with applications in the evaluation of non-alcoholic fatty 

liver disease (where liver PDFF is an emerging biomarker for the early diagnosis of NAFLD) 

and non-alcoholic steatohepatitis (where liver PDFF is emerging as a medical research tool in 

combination with other noninvasive imaging biomarkers).  (Bottom) Cardiac T1 mapping, with 

applications in various ischemic and non-ischemic cardiomyopathies.  

 

Figure 2: The major performance metrics for quantitative MR methods are the bias and 

precision profiles. Bias measures the systematic differences between the measurements and the 

ground truth. Evaluation of bias requires a highly reliable reference method. Precision measures 

the tendency of the qMR method to produce different values, when applied repeatedly on the 

same subject. Evaluation of precision does not require reference values. The term ‘profile’ refers 

to the potential variability of performance (bias or precision) across different true values. (SD: 

standard deviation; CV: coefficient of variation).  

 

Figure 3. Effect of imprecision on the minimum detectable change for a quantitative method. As 

the within-subject standard deviation (wSD) increases, the minimum detectable change also 

increases. In this plot, both are given in the units of the measurand. For PDFF, if subjects were 

always imaged with the same imaging system, we might expect wSD~1%, resulting in a 

minimum detectable change (95% confidence) of less than 3% absolute PDFF.  If subjects were 

allowed to be imaged with a variety of imaging systems, we might expect wSD closer to 2%, 

resulting in a minimum detectable change of more than 5% absolute PDFF.  

 

Figure 4: R2
* decay, if uncorrected, can confound PDFF quantification, leading to bias, as well 

as poor precision (eg: poor reproducibility across acquisitions with different number of echoes), 

particularly in patients with elevated liver R2
*=1/T2

* (R2
*=160 s-1 at 1.5T, corresponding to mild 

iron overload). As shown though simulation and in vivo, R2
*-uncorrected signal fitting results are 

highly dependent on the choice of echo times. In contrast, R2
*-corrected PDFF quantification has 

low bias and high reproducibility across choices of echo times. For this illustration, a 12-echo 

liver CSE acquisition in a patient with high liver fat and iron overload was reprocessed 
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retrospectively multiple times, using the first n echoes (for n=5,…,12). In each case, both R2
*-

uncorrected and R2
*-corrected PDFF mapping methods were used.  

 

Figure 5: Technical development and validation is typically an iterative process including 

technical implementation and refinements, as well as evaluation of bias and/or precision. The 

later stages of the process are typically more costly, often focused on a specific organ, patient 

population, and application (context of use), and often include multi-center validation. Once 

development and validation are completed for one application, extension to other applications is 

often of interest (e.g., PDFF measurements in skeletal muscle or bone marrow). This extension 

typically requires additional refinement/validation iterations. Beyond the technical development 

and validation described in this figure, subsequent clinical qualification (not shown) is needed to 

establish the relationship between the qMR measurement and specific biological processes or 

clinical endpoints of interest. 

 

Figure 6: Steps and challenges for the validation, qualification, and dissemination of quantitative 

MR methods. Technical development and validation as well as clinical qualification are needed 

in order to establish the performance and clinical utility of qMR methods. Even with successful 

validation and qualification, substantial challenges (including regulatory and market-based 

factors) need to be overcome in order to achieve widespread dissemination. Importantly, these 

three processes can be advanced in parallel as suggested by the horizontal overlap. For example, 

technical development and validation can be performed at the same time as clinical qualification. 

 

Figure 7: Schematic representation to illustrate that biased measurements can lead to 

artificially inflated effect size and discrimination between healthy and diseased states, if the 

confounders of the measurement happen to be sensitive to the pathological alteration. In the 

example of myocardial T1 mapping, the most widely used mapping technique MOLLI is known 

to be confounded by several factors including T2 time and magnetization transfer (MT) of the 

tissue. For a specific disease, however, this bias may accentuate the difference between healthy 

and disease and lead to larger effect sizes compared with unbiased T1 quantification. However, 

this gain in effect size comes at the cost of reduced reproducibility as the factors contributing to 

the bias may vary across acquisitions, systems, and patients. 
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Supporting Information Table and Figure Captions: 

 

Supporting Information Table S1: Glossary. 

 

Supporting Information Table S2: Individuals and organizations endorsing this manuscript. 

 

Supporting Information Figure S1. Question 1: In what area are the qMR metrics that you 

study? 

 

Supporting Information Figure S2. Question 2: Please select the confounders you encounter 

and the frequency with which they appear. 

 

Supporting Information Figure S3. Question 3: What steps do you take to correct confounders, 

and how often are they implemented in your qMR protocols? 

 

Supporting Information Figure S4. Question 4: Many qMR metrics are promising during the 

development stage but fail to cross translational gaps. What are the most common hurdles that 

you face between successful technical development and clinical application? Please evaluate the 

following in terms of resources required to overcome these hurdles. 

 

Supporting Information Figure S5. Question 5: What tests or metrics do you use to validate a 

qMR method? 

 

Supporting Information Figure S6. Question 6: What software / packages do you use (or 

contribute to) for quantitative analysis?  

 


