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a b s t r a c t 

Beamforming is a popular method for functional source reconstruction using magnetoencephalography (MEG) 

and electroencephalography (EEG) data. Beamformers, which were first proposed for MEG more than two decades 

ago, have since been applied in hundreds of studies, demonstrating that they are a versatile and robust tool for 

neuroscience. However, certain characteristics of beamformers remain somewhat elusive and there currently does 

not exist a unified documentation of the mathematical underpinnings and computational subtleties of beamform- 

ers as implemented in the most widely used academic open source software packages for MEG analysis (Brain- 

storm, FieldTrip, MNE, and SPM). Here, we provide such documentation that aims at providing the mathematical 

background of beamforming and unifying the terminology. Beamformer implementations are compared across 

toolboxes and pitfalls of beamforming analyses are discussed. Specifically, we provide details on handling rank 

deficient covariance matrices, prewhitening, the rank reduction of forward fields, and on the combination of het- 

erogeneous sensor types, such as magnetometers and gradiometers. The overall aim of this paper is to contribute 

to contemporary efforts towards higher levels of computational transparency in functional neuroimaging. 
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. Introduction 

Initially created for sonar and radar applications, the beamform-

ng technique has been introduced into neuroscience as a method for

nterpreting the neural basis of MEG and EEG data ( van Drongelen

t al., 1996; Van Veen and Buckley, 1988; Van Veen et al., 1997 ).

ince its first implementation in neuroscientific open source toolboxes

namely, Nutmeg [ Dalal et al., 2004; Dalal et al., 2011 ] and FieldTrip

 Oostenveld et al., 2011 ]), beamforming has become a widely applied

ource reconstruction technique in the field and is now implemented

n various M/EEG signal processing software packages. Features such

s the ability to resolve deeper sources ( Backus et al., 2016; Quraan

t al., 2011; Wilson et al., 2010 ) or to suppress external noise ( Litvak

t al., 2010; Sekihara et al., 2004 ) make them widely used for the source

nalysis of M/EEG data. However, due to the rather independent devel-

pment of open source beamformer implementations, there are consid-

rable discrepancies in both the nomenclature and implementational

etails across toolboxes. While detailed resources on the mathemati-

al foundations of beamformers for neuroscience exist ( e.g., Hillebrand

nd Barnes, 2005; Sekihara and Nagarajan, 2008; 2015 ), it is not al-
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ays straightforward to link these to the beamformer implementations

vailable in M/EEG toolboxes that are frequently used in practice. In ad-

ition, in practical applications, recording device dependent data prop-

rties require specific processing of the data to optimize the analysis. 

This paper thus gives a mathematical and conceptual overview of

he most frequently used beamformer types and aims at unifying the ter-

inology of beamforming in neuroscience. Furthermore, we detail the

ommonalities and differences regarding the user interfaces and com-

utation of different beamforming algorithms with respect to four ma-

or open source toolboxes: Brainstorm ( Mosher et al., 2005; Tadel et al.,

011 ), FieldTrip ( Oostenveld et al., 2011 ), MNE-Python ( Gramfort et al.,

013, 2014 ), and SPM ( Litvak et al., 2011 ). Lastly, we describe some

ractical considerations with respect to optimal data handling in beam-

orming analyses, and describe best practices for source reconstructing

/EEG data with beamformers. 

. Overview of beamformer types 

As with other source reconstruction techniques such as minimum

orm estimation ( Hämäläinen and Ilmoniemi, 1994 ), beamformers pro-
ion and Behaviour, Nijmegen, the Netherlands. 
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T  
ide a link between two spatial domains. On the one hand there is

he “channel ” space in which the measurements are done, on the

ther hand there is the “source ” space where we want to interpret the

ata. To describe this transformation from channel to source space,

he terms “source modelling ”, “estimation ”, “reconstruction ”, “localiza-

ion ”, “M/EEG brain imaging ”, and “unmixing ” are often used inter-

hangeably. These concepts all relate to each other, but each term puts

 slightly different emphasis on the intended goal of the beamforming

rocedure. For instance, “localization ” focuses more on the identifica-

ion of the location of the underlying neuronal sources, and thus implies

n interpretation of a spatial image, for instance with respect to local

axima. In contrast, “unmixing ” puts more emphasis on the temporal

haracteristics of the sources, implying an interpretation in terms of the

ynamics of the underlying processes. 

Beamforming is typically done by scanning through a set of prede-

ned putative source locations, computing separately for each location

 set of weights, a so-called spatial filter, and applying these weights

o the measured sensor data to obtain the beamformer output for each

ocation. Thus, the spatial filter reflects the individual sensor’s contribu-

ion to each location’s source estimate ( Baillet et al., 2001; Hillebrand

nd Barnes, 2005; Van Veen et al., 1997 ). Assuming a focal source mod-

led as an equivalent current dipole with a freely defined orientation

 i.e., a regional source), the beamformer output 𝐒̂ is an estimate of the

ipole moment at location 𝑟 and time point 𝑡 , and is a 3-dimensional

ector that can thus be expressed as 

̂
 ( 𝑟, 𝑡 ) = 𝐖 

⊤( 𝑟 ) 𝐛 ( 𝑡 ) , (1)

here the 𝑀 × 3 matrix 𝐖 is the spatial filter, with 𝑀 being the number

f sensors and the three columns referring to the 𝑥 , 𝑦 , and 𝑧 components

f the dipole moment. 𝐛 ( 𝑡 ) is the 𝑀 × 1 vector of measured channel data

t time point 𝑡 . Such a beamformer is called a vector beamformer. Al-

ernatively, when assuming a fixed orientation dipole at location 𝑟 , the

patial filter 𝐰 will be a 𝑀 × 1 vector for each source location. Because

ach sensor signal is weighted with a single weight to generate a scalar

alue for the beamformer output at each time point, such a beamformer

s called a scalar beamformer. While Eq. (1) describes the mapping from

ensor to source space for a vector beamformer, the scalar equivalent can

e expressed as: 

̂
 ( 𝑟, 𝑡 ) = 𝐰 

⊤( 𝑟 ) 𝐛 ( 𝑡 ) . (2)

The measured channel data will play a crucial role in the computa-

ion of the spatial filter 𝐖 or 𝐰 (see Section 2.1 ), in the form of the data

ovariance matrix 𝐑 : 

 = ( 𝐁𝐁 

⊤)∕ 𝑇 , (3)

here 𝐁 refers to the 𝑀 × 𝑇 time series of the sensor space data over 𝑇 

ime samples of interest. The covariance matrix 𝐑 represents the pair-

ise co-variation of sensor signals. 

Considering the beamformer output over time, it is custom to also

onsider its covariance, which is expressed as: 

ov ( ̂𝐒 ( 𝑟 )) = ( ̂𝐒 ( 𝑟 ) ̂𝐒 ( 𝑟 ) ⊤)∕ 𝑇 = 𝐖 

⊤[( 𝐁𝐁 

⊤)∕ 𝑇 ] 𝐖 = 𝐖 

⊤𝐑𝐖 . (4)

or a vector beamformer, this quantity reflects the covariance of the

ocal dipole with unconstrained orientation, and can for example be used

o compute the optimal source orientation, as we will see in Section 2.1 .

Any beamformer output can be used to generate scalar spatial maps

or subsequent analysis, for instance to generate experimental contrasts.

or vector beamformer output time series, the three values per source

ocalization need to be combined, e.g., by taking the root mean square,

r the sum of the diagonal elements (the trace) for the source covariance,

r by retaining the first principal component. 

Beamformer types differ in the way in which the spatial filter matrix

 (or vector 𝐰 ) is computed. In the following, we will address com-

only used and implemented beamformer variants. We will first intro-

uce the basic equations for the unit-gain beamformer introduced by

an Veen and colleagues ( 1988; 1997 ). In Section 2.2 , we will look at
2 
ifferent spatial normalization strategies, which result in slightly differ-

nt formulations for the spatial filter. This is followed by a brief dis-

ussion of the dynamic imaging of coherent sources (DICS) beamformer

 Gross et al., 2001 ), which operates on data that is defined in the fre-

uency domain. 

.1. Basic beamformer formulations 

The original linearly-constrained minimum variance (LCMV) beam-

ormer for M/EEG data ( van Drongelen et al., 1996; Van Veen et al.,

997 ) computes the spatial filter weights for a vector beamformer as fol-

ows ( cf. Sekihara and Nagarajan, 2008; 2015; Van Veen et al., 1997 ):

 

⊤( 𝑟 ) = [ 𝐋 

⊤( 𝑟 ) 𝐑 

−1 𝐋 ( 𝑟 )] −1 𝐋 

⊤( 𝑟 ) 𝐑 

−1 . (5)

Here, 𝐑 denotes the 𝑀 ×𝑀 covariance matrix of the sensor space

ata, and 𝐋 ( 𝑟 ) denotes the 𝑀 × 3 forward field matrix at location 𝑟 for

irections 𝑥 , 𝑦 , and 𝑧 . The forward field matrix represents the solution

o the forward problem, describing the magnetic fields or electrical po-

entials outside the head, arising from dipolar sources in the different

ocations inside the head. More specifically, the first column of 𝐋 ( 𝑟 ) con-

ains the sensor activity that would be produced by a source at location

 with unitary strength in the 𝑥 orientation; similarly, the second and

hird columns are for 𝑦 and 𝑧 orientations, respectively. The forward

eld is determined by the location of the source, the sensor or electrode

onfiguration, and the volume conductor model. The forward field is

lso commonly referred to as the gain matrix or lead field, although

he latter in the strict sense only refers to the relationship among many

ources and one electrode or sensor. It is evident from Eq. (5) , that

he spatial filter 𝐖 depends solely on the forward field matrix and the

nverse of the data covariance matrix. 

The above formula represents a vector beamformer; the scalar case

s given by: 

 

⊤( 𝑟 ) = [ 𝐥 ⊤( 𝑟 ) 𝐑 

−1 𝐥 ( 𝑟 )] −1 𝐥 ⊤( 𝑟 ) 𝐑 

−1 . (6)

Now, the 𝑀 × 1 vector 𝐥 ( 𝑟 ) = 𝐋 ( 𝑟 ) 𝛈( 𝑟 ) describes the forward field for

 specific orientation 𝛈 at location 𝑟 . Consequently, the beamformer out-

ut per location is now a scalar, representing only the orientation speci-

ed by the forward field. The orientation can be determined by different

pproaches, e.g., using a fixed orientation orthogonal to the local cortical

urface ( Dale and Sereno, 1993 ). A frequently used version of the scalar

eamformer considers a data derived optimal orientation 𝛈𝑜𝑝𝑡 which is

he one that maximizes the output power of the source estimate. This can

e done by an eigenvalue decomposition of the output source covariance

ov ( 𝐒 ) = ( 𝐋 

⊤𝐑 

−1 𝐋 ) −1 , which is obtained by inserting the definition of 𝐖
rom Eq. (5) into Eq. (4) . The orientation that maximizes the output

s the eigenvector corresponding to the largest eigenvalue. Mathemati-

ally equivalently, the orientation 𝛈𝐨𝐩𝐭 can be efficiently computed as:

𝐨𝐩𝐭 ( 𝑟 ) = 𝛝 𝑚𝑖𝑛 { 𝐋 

⊤( 𝑟 ) 𝐑 

−1 𝐋 ( 𝑟 )} , (7)

here 𝛝 min { ⋅} denotes the eigenvector corresponding to the smallest

igenvalue. 

The obtained orientation can then be used in the computation of

he scalar beamformer. Another, yet slightly different, heuristic to es-

imate an optimal orientation was implemented in the original version

f the synthetic aperture magnetometry (SAM) beamformer ( Robinson

nd Vrba, 1999; Vrba and Robinson, 2000 ). This beamformer originally

etermined the optimal orientation by evaluating the scalar spatial fil-

er output power for a large number of dipole orientations, and then

elected the orientation that corresponds to the largest power. Although

ifferent in its algorithmic approach, the SAM beamformer will yield

imilar results to the orientation selection described in Eq. (7) . 

The beamformers described in Eq. (5) (vector case) and

q. (6) (scalar case) are both referred to as unit-gain beamformers.

hey impose a unit-gain constraint 𝐰 

⊤( 𝑟 ) 𝐥 ( 𝑟 ) = 1 , or 𝐖 

⊤( 𝑟 ) 𝐋 ( 𝑟 ) = 𝐈 for
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he vector case, with 𝐈 denoting the identity matrix. This can be veri-

ed by plugging the expressions for the spatial filters from Eqs. (5) and

6) into the equations for these constraints. A unit gain means that the

ignal from the source at 𝑟 is passed without attenuation. At the same

ime, assuming that the underlying sources are temporally uncorrelated,

ontributions to the estimated signal at location 𝑟 from sources at any

ocation other than 𝑟 are minimized. This latter feature reflects the min-

mum variance constraint that is referred to in the LCMV acronym men-

ioned above. 

The formulas for all beamformer variants that will be introduced in

his paper have a similar structure. The formula consists of two terms,

ne of which is a matrix inverse. The term 𝐋 

⊤( 𝑟 ) 𝐑 

−1 (vector case) or

 

⊤( 𝑟 ) 𝐑 

−1 (scalar case) is identical in all the variants we discuss here.

ote, however, that the heuristic that may be used for the computa-

ion of the optimal orientation might be different across beamformer

ypes, which has a non-trivial impact on the beamformer output ( e.g., in

omparing the unit-gain beamformer with the unit-noise-gain beam-

ormer; see Section 2.2 ). Furthermore, the inverted matrix term that

iffers among the beamformer variants eventually determines the phys-

cal units in which the beamformer output is expressed. For instance, the

nit-gain beamformer ( Eq. (5) and (6) ) results in output that has phys-

cal units of the dipole moment (nAm), while the unit-noise-gain beam-

ormer discussed in 2.2 yields outputs often referred to as “z-scores ”,

caled to the standard deviation of noise. 

.2. Spatial normalization strategies 

The magnitude of forward field coefficients decreases with the dis-

ance of the dipole (its depth) to the sensors. As can be seen from

qs. (5) and (6) , the magnitude of the unit-gain beamformer weights,

nd hence the magnitude of the corresponding beamformer output, de-

ends on the inverse of the forward field matrix at a given dipole loca-

ion. This so-called center of head bias causes the reconstructed power of

ources that are far away from the sensors to be a few orders of mag-

itude larger than the reconstructed power of more superficial sources.

his places restrictions on a direct magnitude-based comparison of the

eamformer output across space. 

Therefore, in order to be able to interpret the spatial patterns of the

eamformer reconstruction, it is necessary to apply a location-specific

ormalization. This can be achieved in various ways. On the one hand,

t is possible to apply a normalization as a post-processing step in the

nalysis procedure, i.e., after the computation of the beamformer out-

ut. Examples of these post-hoc normalization strategies include the

omputation of a neural activity index (NAI; Van Veen et al., 1997 ),

 pseudo-Z statistic ( Robinson and Vrba, 1999; Vrba and Robinson,

000 ) or the evaluation of an experimental contrast. Alternatively, it

s possible to use a beamformer formulation in which a normaliza-

ion is achieved at the spatial filter computation step. In the follow-

ng, we describe two beamformer types which achieve this spatial filter

ormalization: the array-gain beamformer (using forward field normal-

zation) and the unit-noise-gain beamformer (using weight normaliza-

ion). 

Array-gain beamformers The scalar array-gain beamformer imple-

ents the constraint 𝐰 

⊤( 𝑟 ) 𝐥 ( 𝑟 ) = ‖𝐥 ( 𝑟 ) ‖, where ‖𝐥 ( 𝑟 ) ‖ is defined as

he forward field vector’s norm. This constraint is equivalent to

 

⊤( 𝑟 ) 𝐥 ( 𝑟 )∕ ‖𝐥 ( 𝑟 ) ‖ = 1 , which implies that if the forward field is normal-

zed such that 𝐥 n = 𝐥 ( 𝑟 )∕ ‖𝐥 ( 𝑟 ) ‖, we can use the formula for a standard

nit-gain beamformer ( cf. Eq. (6) ) to derive the spatial filter: 

 

⊤( 𝑟 ) = [ 𝐥 ⊤n ( 𝑟 ) 𝐑 

−1 𝐥 n ( 𝑟 )] −1 𝐥 ⊤n ( 𝑟 ) 𝐑 

−1 , (8)

ith 𝐥 n denoting the normalized forward field. Due to the normaliza-

ion of the forward field vector, the spatial filter does not have physical

nits, and thus the beamformer output is expressed in the units of the

easurement ( e.g., T or μV). 
3 
In the vector case, the array-gain constraint has been defined as

 Sekihara and Nagarajan, 2008 ): 

 

⊤( 𝑟 ) 𝐋 ( 𝑟 ) = 

⎡ ⎢ ⎢ ⎣ 
‖𝐥 𝑥 ( 𝑟 ) ‖ 0 0 

0 ‖𝐥 𝑦 ( 𝑟 ) ‖ 0 
0 0 ‖𝐥 𝑧 ( 𝑟 ) ‖

⎤ ⎥ ⎥ ⎦ . (9)

This implies the forward field matrix to be normalised for each car-

inal orientation separately: 

 n ( 𝑟 ) = 

[ 𝐥 𝑥 ( 𝑟 ) ‖𝐥 𝑥 ( 𝑟 ) ‖ , 
𝐥 𝑦 ( 𝑟 ) ‖𝐥 𝑦 ( 𝑟 ) ‖ , 

𝐥 𝑧 ( 𝑟 ) ‖𝐥 𝑧 ( 𝑟 ) ‖
] 

. (10)

The weights are again computed using the normalized forward field

 n : 

 

⊤( 𝑟 ) = [ 𝐋 

⊤
n ( 𝑟 ) 𝐑 

−1 𝐋 n ( 𝑟 )] −1 𝐋 

⊤
n ( 𝑟 ) 𝐑 

−1 . (11)

It has been noted, however, that with this formulation the beam-

ormer output is not rotationally invariant ( Lalancette, 2014 ), which

eans that the output depends on the (arbitrarily defined) coordinate

ystem in which spatial coordinates are expressed. This might not be de-

irable and we propose to use an alternative definition of the array-gain

onstraint: 

 

⊤( 𝑟 ) 𝐋 ( 𝑟 ) = ‖𝐋 ( 𝑟 ) ‖𝐹 , (12)

hich equivalently means a normalization of the forward field matrix

y its Frobenius norm. By using this scalar normalisation, the resulting

eamformer is rotationally invariant, but at the same time ensures an

rray gain independent of source depth. This latter version of the vector

rray-gain beamformer is implemented in FieldTrip and MNE-Python. 

Unit-noise-gain beamformers Another spatial normalization strategy

s implemented in the unit-noise-gain beamformer, which is also re-

erred to as the weight-normalized beamformer or the Borgiotti-Kaplan

eamformer, as it was originally proposed by Borgiotti and Kaplan

1979) . This variant uses two constraints for the spatial filter calcula-

ion, 𝐰 

⊤( 𝑟 ) 𝐥 ( 𝑟 ) = 𝜏 and 𝐰 

⊤( 𝑟 ) 𝐰 ( 𝑟 ) = 1 . It is the first constraint that is used

o solve the minimization problem ( cf. Borgiotti and Kaplan, 1979 ), with

being determined by the second constraint. The second constraint in-

ends to achieve the noise gain to be unity, under the assumption that

he sensor noise is spatially uncorrelated and equally distributed across

hannels. 

Adopting the above-mentioned constraints, the spatial filter weights

or the scalar unit-noise-gain beamformer are defined as ( cf. Sekihara

nd Nagarajan, 2008; 2015 ): 

 

⊤( 𝑟 ) = [ 𝐥 ⊤( 𝑟 ) 𝐑 

−2 𝐥 ( 𝑟 ) ] − 
1 
2 𝐥 ⊤( 𝑟 ) 𝐑 

−1 . (13)

Another, perhaps more intuitive, way to look at this beamformer

ype is to examine its relation to the unit-gain beamformer described

n Eq. (6) . With the unit-gain beamformer weights as described in

q. (6) and here denoted as 𝐰 ug , the unit-noise-gain beamformer

eights 𝐰 ung can be derived as 

 

⊤
ung = 

𝐰 ug ‖𝐰 ug ‖ , (14)

hich illustrates why this beamformer type is also referred to as a

eight-normalized beamformer. 

The optimal orientation for this spatial filter is computed as follows

 cf. Sekihara and Nagarajan, 2008 ): 

𝐨𝐩𝐭 ( 𝑟 ) = 𝛝 𝑚𝑖𝑛 { 𝐋 

⊤( 𝑟 ) 𝐑 

−2 𝐋 ( 𝑟 ) , 𝐋 

⊤( 𝑟 ) 𝐑 

−1 𝐋 ( 𝑟 )} , (15)

ith 𝛝 min { ⋅, ⋅} representing the eigenvector that is corresponding to the

inimum generalized eigenvalue of the two matrices. 

Although a vector version of this beamformer type has been defined

y Sekihara and Nagarajan (2008 , Eq. 4.83 and 4.85), it has been noted

hat this definition is not rotationally invariant ( Lalancette, 2014 ) and

herefore we do not recommend its usage. 
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.3. Frequency-domain beamformers 

Neural activity often manifests itself as (modulations of) rhythmic

omponents in the signal, as opposed to evoked responses; such modula-

ions often correlate well with underlying multiunit activity or mediate

onnectivity among brain regions ( e.g., Buzsaki, 2006; Singh, 2012 ).

o facilitate analysis of frequency-resolved oscillatory activity in source

pace as well as coherence among sources, Gross et al. (2001) introduced

 variant of the LCMV beamformer, the dynamic imaging of coherent

ources (DICS) method. 

For the vector version of this beamformer, the weights 𝐖 (or 𝐰 ) at

 specific frequency of interest 𝑓 and source location 𝑟 are computed as

ollows: 

 

⊤( 𝑟, 𝑓 ) = [ 𝐋 

⊤( 𝑟 ) 𝐐 ( 𝑓 ) −1 𝐋 ( 𝑟 )] −1 𝐋 

⊤( 𝑟 ) 𝐐 ( 𝑓 ) −1 , (16)

here the 𝑀 ×𝑀 matrix 𝐐 ( 𝑓 ) describes the cross-spectral density

CSD) matrix for frequency 𝑓 or a frequency band centered around 𝑓

 Gross et al., 2001 ). Note how Eq. (16) can be obtained by simply re-

lacing the covariance matrix 𝐑 with the CSD matrix 𝐐 ( 𝑓 ) in Eq. (5) . 

The CSD matrix describes the shared power and phase shift between

wo signals at a given frequency, here between the signals of the differ-

nt sensors, and is a complex-valued matrix: 

 ( 𝑓 ) = 𝐗 ( 𝑓 ) 𝐗 

𝖧 ( 𝑓 ) , (17)

here 𝐗 ( 𝑓 ) denotes the frequency domain sensor space signals at a given

requency 𝑓 (or a frequency band centered around 𝑓 ) and 𝐗 

𝖧 refers to

he Hermitian transpose (the complex conjugate transpose) of matrix 𝐗 .

Application of the complex-valued CSD matrix in Eq. (16) yields a

omplex-valued spatial filter, which does not have a valid biophysical

nterpretation. The consequence of complex numbers in the spatial fil-

er is that the contributions of individual channels are shifted in phase

elative to one another and in relation to the assumed source, which

iolates the linear instantaneous mapping from sources to the channels

 i.e., without phase shifts). For this reason it is customary to only con-

ider the real-valued part of the CSD matrix in the computation of the

patial filter. 

The DICS beamformer output provides the spectral power estimates

or frequency 𝑓 for every predefined source location. Moreover, the

ICS beamformer allows for an efficient computation of the spectral

oherence between pairs of dipolar sources, or between dipolar sources

nd an external reference channel ( e.g., the electromyogram (EMG) as in

choffelen et al., 2005 ). For example, the cross-spectral density between

wo source locations 𝑟 𝑖 and 𝑟 𝑗 , 𝐂̂ ( 𝑟 𝑖 , 𝑟 𝑗 , 𝑓 ) , can be computed by using the

patial filters from two different locations, in combination with the sen-

or level cross-spectral density, as follows: 

̂
 ( 𝑟 𝑖 , 𝑟 𝑗 , 𝑓 ) = 𝐖 

𝖧 ( 𝑟 𝑖 , 𝑓 ) 𝐐 ( 𝑓 ) 𝐖 ( 𝑟 𝑗 , 𝑓 ) , (18)

ith 𝐖 ( 𝑟 𝑖 , 𝑓 ) and 𝐖 ( 𝑟 𝑗 , 𝑓 ) being the 𝑀 × 3 weight matrices for fre-

uency 𝑓 at source location 𝑟 𝑖 and 𝑟 𝑗 and 𝐐 ( 𝑓 ) denoting the (complex-

alued) CSD matrix of frequency 𝑓 . 𝐂̂ ( 𝑟 𝑖 , 𝑟 𝑗 , 𝑓 ) is the cross-spectral den-

ity between the two source locations, which can subsequently be used

o compute a spectral interaction measure between the two sources,

.g., the magnitude squared coherence, or the imaginary part of co-

erency. 

Eq. (16) illustrates the close similarity between the LCMV and

ICS weight calculation. While this section only presents the unit-

ain vector case of the DICS beamformer, as per its original formu-

ation by Gross et al. (2001) , the principles and variations shown in

ection 2.2 with respect to the LCMV beamformer can be applied to the

ICS beamformer as well. 
4 
. Practical considerations and best practices in beamformer 

ource reconstruction 

.1. Estimation and inversion of covariance matrices 

Estimation and inspection of covariance matrices As pointed out in

ection 2.1 , the spatial filter depends on the forward field and the math-

matical inverse of the data covariance matrix ( e.g., Eq. (5) ). Conse-

uently, a high quality of both ingredients is crucial for beamformer

erformance. The covariance is obtained from the signals and needs to

e estimated from the limited data that is available. Given 𝑀 sensors this

eans one needs to estimate 𝑀( 𝑀 + 1)∕2 unique entries in an 𝑀 ×𝑀

atrix. 

Computing an estimate of 𝐑 can be done by simply estimating the

airwise channel covariance on a given window of interest. This is the

o-called maximum likelihood estimator. Due to hardware limitations,

arly implementations may have estimated the covariance from aver-

ged data, but otherwise it is best practice to estimate the covariance

rom concatenated data. This increases the number of samples from

hich the numerous coefficients in 𝐑 can be computed, hence improv-

ng the quality of the estimation. It also decreases the chance of highly

orrelated sources by preserving trial-to-trial differences in signal and

oise, consequently decreasing the chance of distorted beamformer out-

ut (see for example Van Veen et al., 1997 ). 

To deal with the statistical challenge of estimating 𝐑 ro-

ustly from limited numbers of samples, several enhanced estima-

ion methods exist, e.g., probabilistic principal component analysis

 Tipping and Bishop, 1999 ), minimum covariance determinant esti-

ation ( Rousseeuw and Driessen, 1999 ) or the Ledoit-Wolf shrinkage

odel ( Ledoit and Wolf, 2004a ). Cross-validation can help in select-

ng the best model for covariance estimation ( Engemann and Gram-

ort, 2015 ). 

Depending on the experimental context, and details of the pre-

rocessing applied to the channel data, the quality of the covariance

atrix may however be limited. Two summary statistics that quantify

he overall quality of the covariance matrix are the condition number

nd the effective rank. The rank is a matrix property that describes the

aximum number of linearly independent columns that is needed to

ully describe the matrix, and a matrix is rank-deficient if the number

f independent dimensions is less than the number of rows/columns. In

ractice this means that a matrix is rank deficient if the rank is less than

he number of channels. The condition number, defined as the ratio of

he largest to smallest singular value of a matrix, quantifies the range

f the magnitudes with which the independent linear dimensions are

epresented in the matrix. If this range is large ( i.e., if it spans the mag-

itude range of the computer’s numerical precision), small components,

hich often reflect noise in the estimation, will negatively impact the

atrix inversion. 

Ill-conditioned covariance matrices can arise when estimated over

articularly small amounts of data. This adheres to too few and too

hort data segments (especially if the number of sensors is larger than

he number of time samples), but the signal bandwidth plays a role as

ell or if the data has an overly narrow bandwidth ( cf. Brookes et al.,

008; Dalal et al., 2008 ). While this can be mitigated through proper ex-

erimental design by maximizing the amount of collected data ( Brookes

t al., 2008; Gross et al., 2013 ), ill-conditioned covariance matrices can

lso occur if the data is preprocessed in a manner that makes the data

inearly dependent across channels. This is for example the case for EEG

ata, as the signals at each electrode are recorded relative to another

lectrode. Since the reference electrode is present in all other channels,

he data is rank-deficient by this one channel. Another example is the

se of Independent Component Analysis (ICA) on the data for artifact

uppression: after the removal of components, the data is rank-deficient

y the number of rejected components. Signal Space Separation (SSS,

.g., MEGIN’s MaxFilter) is another spatial cleaning algorithm that re-

oves components from the data that originate from outside of the head
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Fig. 1. The figure panels all show the singular value spectrum (dark blue trace) of the data covariance matrix of one data set after different data pre-processing 

procedures. The rank estimate (red dashed line) is obtained through singular value decomposition. The SVD spectra all show a cliff at their effective rank. A 

Singular value spectrum of a full-rank data covariance matrix with 204 sensors. B Singular value spectrum of the covariance matrix in A after removing 3 ICA 

components. C Singular value spectrum of a full-rank covariance matrix with two sensor types (102 magnetometers and 204 gradiometers), note the additional, 

smaller cliff due to the two sensor types. D The same data as in C but after applying Signal Space Separation. The data used for all figures is the “sample data set ”

from MNE-Python, which is a dataset with auditory and visual stimulation ( Gramfort, Luessi, Larson, Engemann, Strohmeier, Brodbeck, Parkkonen, Hämäläinen, 

2014 ). The figures shown here all rely on the subset of the data with stimulation in the right visual field. The code to reproduce the figures can be retrieved from 

https://github.com/britta-wstnr/beamformer _ examples . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 

of this article.) 

(  

c

 

i  

s  

p  

v  

m  

t  

c  

t  

s  

t  

i  

r  

t  

t  

t

 

t  

c  

p  

u  

s  

o  

a  

o  

s  

s  

(

𝐑  
 Taulu et al., 2003 ), which can result in the loss of several tens of linear

omponents (see below for more detailed discussion). 

It is advisable to check the quality of the data covariance matrix by

nspecting the rank and condition number, and also the singular value

pectrum of the matrix, which is obtained by a Singular Value Decom-

osition (SVD). Plotting the singular values on a logarithmic axis pro-

ides an indication of the effective numerical rank of the covariance

atrix. Typically, the singular value spectrum of an ill-conditioned ma-

rix shows a “cliff” at its effective rank, with the numerically irrelevant

omponents having singular values several orders of magnitude smaller

han the rest ( Fig. 1 ). Sometimes, the spectrum can show two or more

uch cliffs, e.g., in the case of combined channel types ( Fig. 1 C) or when

he data has been processed with SSS ( Fig. 1 D). In such cases, a close

nspection of the singular value spectrum is advisable, as conventional

ank estimation via SVD can fail. In the following paragraph, we will fur-

her explain why ill-conditioned covariance matrices pose a problem for
5 
he computation of the spatial filter, and what can be done to mitigate

his problem. 

Mathematical inversion of ill-conditioned covariance matrices If the es-

imate of the data covariance is unreliable, and thus proves to be ill-

onditioned, a simple mathematical inverse of this matrix is either im-

ossible, causing the beamformer computation to fail completely, or the

sed ill-conditioned covariance matrix will lead to poor beamformer re-

ults. To ensure a numerically stable inversion of the covariance matrix,

ne can use a truncated pseudo-inverse, or use “diagonal loading ” as

 regularization technique ( Hillebrand and Barnes, 2003; 2005 ). Diag-

nal loading makes the data covariance matrix full-rank by adding a

mall constant to the diagonal elements of the matrix ( Vrba and Robin-

on, 2000 ). This technique is also known as Tikhonov regularization

 Tikhonov and Arsenin, 1977 ): 

 reg = 𝐑 + 𝜆𝐈 , (19)

https://github.com/britta-wstnr/beamformer_examples
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here 𝐈 is an 𝑀 ×𝑀 identity matrix, and 𝜆 represents the regulariza-

ion parameter. Here, 𝜆 needs to be defined by the researcher, and is

ften chosen to be a percentage of the average sensor power Tr ( 𝐑 )∕ 𝑀
 cf. FieldTrip, MNE-Python, Brainstorm or SPM) or can be set to the low-

st singular value of the covariance matrix ( Robinson and Vrba, 1999;

oolrich et al., 2011 ). 

The regularization of the covariance matrix results in a broader pass-

and of the spatial filter, which increases the output SNR of the filter,

ut also spatially blurs the source estimates ( Brookes et al., 2008 ). Thus,

 trade-off between increasing output SNR and decreasing spatial res-

lution exists and makes the choice of the regularization parameter 𝜆

rucial for beamformer performance. 

There is no easy analytic way to determine the regularization pa-

ameter in Tikhonov regularization for MEG data in order to obtain the

est result with the least spatial blurring. For other regularization tech-

iques such as Bayesian PCA regularization ( Woolrich et al., 2011 ), the

xplicit choice of a regularization parameter is not needed. The Ledoit-

olf shrinkage model ( Ledoit and Wolf, 2004a ) provides another way

f obtaining a well conditioned covariance matrix via shrinkage without

he need to choose the shrinkage parameter ( Engemann and Gramfort,

015; Ledoit and Wolf, 2004b ). Yet both of these techniques have under-

ying assumptions on the data: temporal independence for Ledoit-Wolf,

nd low-rank plus sensor independent noise for PCA. The aforemen-

ioned truncated pseudo-inverse is another way to potentially bypass the

hoice of a regularization parameter. Since this strategy is not applied

t the data covariance matrix estimation step but during the inversion

rocess, this needs to be implemented in the beamformer algorithm (cf.

ection 4 ). 

Spatial whitening of covariance matrices In some situations it might be

seful to spatially whiten the covariance matrix. Whitening, also called

re-whitening, is a linear operation that intends to decorrelate and scale

he noise components in the data. The term whitening refers to the color

f the noise being white, i.e., having a covariance matrix that equals the

dentity matrix. To achieve this, the procedure uses a so-called noise co-

ariance matrix, a channel-level covariance matrix ( cf. Eq. (3) ) which

an be computed on an empty room recording or a pre-stimulus qui-

scent baseline. There are different approaches to whitening such as

rincipal component analysis (PCA) or zero-phase component analy-

is (ZCA). Using an eigendecomposition on the noise covariance ma-

rix yields 𝐑 noise = 𝐔𝚲𝐔 

⊤ with eigenvectors 𝐔 and eigenvalues 𝚲. The

hitening matrix, that is subsequently applied to the data and the

orward field, is then computed as 𝐕 = 𝚲− 1 2 𝐔 

⊤ in the PCA case and

 = 𝐔𝚲− 1 2 𝐔 

⊤ in the ZCA case ( cf. Engemann and Gramfort, 2015 ). Pre-

hitening has been explicitly described in the context of beamforming

s well ( Sekihara et al., 2008 ), but has not been widely adopted as a stan-

ard pre-processing step. Note that theoretically, for many the beam-

ormer equations to hold, e.g., as per Sekihara and Nagarajan (2008) ,

he noise is assumed to be spatially white. In practice, spatial whiten-

ng is useful when combining different sensor types ( cf. Section 3.6 ),

ecause it scales the magnitude of the different sensor types relative to

ne another, or when dealing with severely rank-deficient data as de-

cribed in the next paragraph. 

Signal space separation leads to severely rank deficient covari-

nce matrices The application of SSS to MEG data for clean-

ng ( e.g., through the MEGIN software, using MNE-Python’s

ne.preprocessing.maxwell_filter function or the TSSS

oolbox in SPM) often results in a severe rank-deficiency. In a 306-

hannel data set, it is not unusual for several tens, sometimes above

00 spatial components to be removed from the data ( cf. Fig 1 ). In this

ase, regularization by means of diagonal loading is not sufficient for

ood beamformer performance. Using a truncated pseudo-inverse in

ombination with pre-whitening of the covariance matrix (and forward

eld) has worked well on all examples we tested and can be a good

rst choice. Details on if and how this can be implemented in the
6 
ifferent toolboxes are given in Section 4.2 (truncated pseudo-inverse)

nd 4.4 (whitening). 

.2. The role of forward field accuracy 

The second ingredient to the beamformer is the forward field matrix

 cf. Eq. (5) ). Consequently, the quality of the forward field (also called

orward model) is crucial for good beamformer performance ( Brookes

t al., 2008; Hillebrand and Barnes, 2003, 2011; Steinsträter et al.,

010 ). The intricacies of forward modelling are beyond the scope of

his paper; nevertheless, some details regarding forward field accuracy

ill be discussed in the following. 

The forward field solution is determined by the source model, the

ensor or electrode configuration, and the volume conductor model. In-

ccuracies in the forward field arise mainly from sources of error con-

erning the latter two. Especially with EEG, the accuracy of the volume

onductor model is important, as the complicated volume conduction

f electrical currents requires realistic head models ( Hamalainen and

arvas, 1987; Hillebrand and Barnes, 2005; Steinsträter et al., 2010;

olters et al., 2006 ). To what extent realistic head models may improve

he performance of MEG source modelling is debated ( Huang et al.,

999; Neugebauer et al., 2017 ), but beamformers are generally more

ensitive to errors in the volume conductor model than other source

econstruction methods ( Brookes et al., 2008; Hillebrand and Barnes,

003; Sekihara et al., 2002; Steinsträter et al., 2010 ). 

The coregistration of the sensor space (MEG head space or EEG elec-

rode space) with the head model space (usually MRI space) is another

ossible source of error in the forward model. Coregistration errors have

een shown to range in the order of several millimeters ( Adjamian et al.,

004; Dalal et al., 2014; Singh et al., 1997 ). In the case of EEG, they

ere demonstrated to not only impact the localization accuracy of the

econstructed source, but also the output SNR of the reconstruction, thus

aising the potential of missing weak or deep sources ( Dalal et al., 2014 ).

A more fundamental problem arises from the constitution of the

ource model. Since the sources are modelled as dipole sources, true

xtended sources can be misrepresented in the reconstruction, as the

ctivity from neighbouring source points will be suppressed in the beam-

ormer filter ( Vrba, 2002 ). 

Generally and perhaps counterintuitively, the impact of errors in the

orward model increases with increasing SNR of the data. For high SNR

ata, the spatial filter becomes sharper, and the resolution therefore be-

omes high enough for a discrimination between the real and the mod-

lled forward field ( Cox, 1973; Godara, 1986; Hillebrand and Barnes,

003 ). 

.3. Rank reduction of forward fields 

For a dipole with unconstrained orientation, the forward field has

hree columns, corresponding to three orthogonal directions. With re-

pect to EEG data, the intrinsic rank of a forward field is three, since

ipoles with any orientation ( i.e., radial and tangential to the head sur-

ace) can be measured. MEG measurements, however, are only weakly

ensitive to sources radial to the head surface. With a spherical head

odel, the rank of the forward field is thus naturally reduced to 2, even

hough any dipole has a genuine radial component. In realistic head

odels ( e.g., single shell or boundary element head models), the orien-

ation sensitivity of the MEG is more variable. However, one orientation

omponent is still close to zero at most locations, and thus can poten-

ially carry a lot of noise. Therefore, the option to reduce the rank of

he forward field is generally advised for MEG data. This is done by

ecomposing the forward field per location with an SVD and then back-

rojecting the forward field by zeroing the smallest singular value. 
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.4. The choice of spatial distribution of source models: volumetric versus 

ortically constrained meshes 

Beamforming estimates neural activity independently for each posi-

ion, typically representing an individual dipolar source; this is repeated

or positions distributed over the whole brain or a smaller volume of in-

erest. It is important to note that the beamformer solution for any given

ocation is not influenced by which other locations are included in the

olume of interest. This procedure is different to dipole fitting and dis-

ributed source models (such as minimum norm estimation). In dipole

tting, only one or very few sources are obtained ( i.e., those that ex-

lain the sensor-level data best), and in distributed source models, the

istributed source strength is estimated jointly across the source space,

ost typically a cortical sheet. This means that the solution at a given lo-

ation is heavily dependent on which other locations are included in the

ource space. In beamforming, however, the sequential scanning does

ot impose constraints to use a specific arrangement of the individual

ources: whether they are positioned along a cortical sheet or in a vol-

metric grid does not have consequences for the estimated beamformer

utput at a given source point. There is no agreement on the best prac-

ice to use either a cortical sheet or an arrangement in a regular volu-

etric 3-D grid, so the choice depends on the research question and the

lanned follow-up analyses. While cortical sheets can be reflective of

EG and EEG data properties, a volumetric mesh allows for recovering

he activity from subcortical sources. A volumetric model also makes

t easier to identify anatomical mis-alignment or other incorrect beam-

ormer results, e.g., a center of head bias ( cf. Section 2.1 ). 

.5. Beamforming of EEG data 

Beamforming of EEG data is possible but requires being aware of

ome additional considerations. Firstly, the forward field is to be calcu-

ated with the same reference as the sensor space data. An average ref-

rence is a good choice, as it mitigates the modelling error introduced

y localization inaccuracies of the electrodes’ positions. With a single

eference electrode the model error of this electrode will be passed to

ll other electrodes, and this error decreases through averaging across

ll electrodes. Secondly, as briefly mentioned above, the accuracy of

he forward field is of high importance, as EEG is very sensitive to the

ead conduction profile ( Hamalainen and Sarvas, 1987; Hillebrand and

arnes, 2005; Steinsträter et al., 2010; Wolters et al., 2006 ). This ne-

essitates the use of a realistic head model, e.g., a boundary element

r finite element model. This model should ideally be created from the

ndividual MRI scan of the participant to maximize accuracy of the for-

ard model. 

.6. Beamforming with combined sensor types 

Some neuroscientific data sets contain signals from different sensor

ypes, for example when EEG and MEG have been recorded simultane-

usly, or when an MEG system has been used that has both magnetome-

er and gradiometer channels. In order to take full advantage of the

lightly different type of information that is provided by these differ-

nt types of sensors ( e.g., magnetometers being more sensitive to deeper

ources than gradiometers, and MEG not being sensitive to dipoles with

 radial orientation), the joint use of different sensor types for beam-

ormer source reconstruction might be of interest. This, however, re-

uires either the re-scaling of the data or sensor type specific values

or regularization, since different sensor types are measured at differ-

nt scales ( e.g., MEG data from gradiometers are usually in the range

f 10 −11 Tm 

−1 and data from magnetometers in the range of 10 −13 T ).
f the data is not scaled, the beamformer solution will be biased to-

ards the sensor type with the larger values. One convenient way to

chieve a proper integration of both sensor types is by spatially whiten-

ng the forward field and the covariance matrix using an appropriately
7 
stimated noise covariance matrix ( cf. Section 3.1 ). However, this ap-

roach requires either an empty room recording or a pre-stimulus quies-

ent baseline, which are not always available. Alternatively, the sensor

ypes can also simply be scaled relative to each other using a constant.

dditionally, in creating the spatial filters, the cross terms of the covari-

nce matrix, i.e., all the covariance values between two different types

f sensors, are typically set to zero. Both of these approaches, however,

o not take into account that different sensor or electrode types can have

ifferent spatial sensitivity profiles. 

.7. Common choices for beamformer analysis pipelines 

The successful estimation of source activity using beamformers re-

ies on several experimental and data processing choices. Regarding a

horough and comprehensive review of good experimental design, we

efer the reader to Brookes et al., 2008 and Gross et al. (2013) . In the fol-

owing, we will have a closer look at some of the most relevant points,

specially with respect to the topics discussed in Section 3 . For quick

eference, Fig. 2 contains an overview of the beamforming process and

ts most critical parts. 

Experimental setup Source reconstruction of M/EEG should already

e anticipated in the experimental design. For a good estimate of the

ata covariance matrix, the amount of data (in terms of number of

hannels, signal bandwidth, and number of samples) plays an impor-

ant role ( Brookes et al., 2008 ). If it is anticipated that the data will

e pre-whitened, e.g., because different sensor types will be combined

r SSS will be applied, an empty-room recording or quiescent base-

ine should be included. A pre-stimulus baseline is also important if a

ontrast against baseline will be computed, in which case the integra-

ion window for the covariance should be equally long for the baseline

nd “active ” period (also see the paragraph about common spatial fil-

ers below). Especially if beamforming is planned for an EEG study, it

s important to acquire individual MRIs to obtain an accurate forward

odel. Good care with the coregistration procedure is generally advised

 Adjamian et al., 2004; Dalal et al., 2014; Gross et al., 2013 ). 

Beamformer parameters LCMV beamformers can be used to estimate

vent-related time courses of source activity. DICS beamformers can

e used to estimate source power of band-limited activity and to per-

orm frequency domain connectivity analysis. Which beamformer type

o choose (unit-gain, array-gain, or unit-noise-gain) depends on the ex-

erimental question. If no experimental contrast is computed, a spatial

ormalization is a sensible choice to mitigate the center of head bias

 cf. Section 2.2 ). If, on the other hand, the beamformer output is used to

orm a contrast between e.g., two conditions, the choice of beamformer

ype is less critical. It is important to note, however, that differences in

he estimation of the optimal orientation ( e.g., Eqs. (7) and (15) ) still

lay a role with the computation of contrasts. Whether or not to com-

ute the optimal source orientation is partially an empirical question as

t depends on implicit assumptions with respect to the underlying gener-

tive model as well as on pragmatic considerations. If one assumes that

ach source can be well described as a single current dipole, then this

ustifies a fixed orientation from the modelling point of view. Pragmat-

cally, depending on how the beamformer output will be subsequently

rocessed, a scalar beamformer output may be more practical ( e.g., it

reserves polarity information of event-related responses). Note, that a

ingle orientation solution can also be obtained by SVD (or PCA) from

 vector beamformer output. 

Common spatial filters If a contrast between two conditions is formed,

t is good practice to compute the data covariance matrix based on an

qual amount of data from both conditions ( Gross et al., 2013 ). This com-

on spatial filter is subsequently applied to each condition separately.

his procedure prevents the spatial filter from being skewed and intro-

ucing spurious differences among the two conditions. 

Post-hoc processing The beamformer output can be post-processed in

 variety of ways, for which there are generally applicable recommen-

ations to be given. Possible scenarios are to inspect the beamformer
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Fig. 2. Overview of the beamforming process 

with – where possible – recommendations for 

analysis choices. The numbers refer to the sec- 

tions of this paper where more information 

about a topic can be found. 
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aps or resulting statistical contrasts for local extrema, and to use the

dentified locations as “virtual channels ”. The spatial filters for those

ocations can then be used to construct time series data which can be

rocessed in a variety of ways ( e.g., single trial classification analysis,

ime-frequency decomposition, connectivity analysis). Another common

se case is to employ the spatial filter of all locations to obtain a whole

rain estimate of source time courses, which can subsequently be used

or brain network analysis, possibly after dimensionality reduction using

 parcellation scheme. 

Group studies For group studies and contrasts between groups, it

s advisable to keep the beamformer parameters and processing steps

 e.g., type of normalization, amount of regularization, etc. ) identical

cross participants. Parameters can be determined based on a small

mount of data sets, e.g., pilot participants. Depending on the exper-

mental design, a suited localizer task could also be used to establish

ppropriate parameters. 
8 
. Beamformer implementations in open source software 

In this section, we compare the support for beamformer implemen-

ations in four frequently used open source M/EEG data analysis tool-

oxes: Brainstorm, FieldTrip, MNE-Python, and SPM (DAiSS toolbox).

e present how those toolboxes implement the different beamformer

ariants and examine how they handle issues with beamforming source

econstruction. 

The rather independent development of beamformer implementa-

ions across the toolboxes resulted in considerable differences in the

ser interfaces and nomenclature of different options. However, it is

mportant to note that the actual implementations in the toolboxes all

epend on the formulas discussed in this paper. Thus, the different im-

lementations converge well in their output and all yield reliable source

ocalization for typical signal-to-noise ratios, as has lately been shown

y Jaiswal et al. (2020) . 
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Apart from differences regarding the beamformer implementations,

he toolboxes differ also on a bigger scale: while FieldTrip and MNE-

ython are script-based analysis toolboxes, Brainstorm and SPM are pri-

arily used via a graphical user interface (GUI), although they can be

sed with scripted analyses as well. While FieldTrip, Brainstorm and

PM rely on MATLAB, MNE-Python is written in Python. Part of these

ifferences can be attributed to the historic development of the tool-

oxes, influenced in part by the available hardware and software as

ell as the specific research questions of the authors and maintainers of

hese toolboxes. 

.1. Implemented beamformer variants 

The following section gives an overview of the different function

alls across the toolboxes to compute spatial filters. In addition, we re-

er the reader to Tables S1–S4 in the Supplementary Material, which

how how to produce a unit-gain (Table S1), array-gain (Table S2) or

nit-noise-gain LCMV beamformer (Table S3) or a DICS beamformer

Table S4). The Supplementary Material also contains a list with links

o tutorials and documentation of best practices in beamforming for all

our toolboxes. 

In Brainstorm , process_source_2018 (as used in

aiswal et al., 2020 ) implements the LCMV beamformer. The for-

ard model is computed on either a cortical surface sheet, with

onstrained (scalar) or unconstrained (vector) source models, or it is

omputed on an unconstrained (vector) volume source grid. The data

ovariance is used to “data-whiten ” the forward model, with automatic

daption for averaged vs. continuous data sets, note that this differs

rom the procedure described in Section 3.6 , where a specific noise

ovariance is used. A form analogous to the array-gain method of the

eamformer is computed in this data-whitened space, so that the image

s unitless and can be viewed as a “z-scored ” image. The function

rocess_extract_scouts extracts either scalar and vector time

eries; as discussed in 2.2 , only the norm of the vector time series is rec-

mmended. A post-processing step, process_dipole_scanning ,
xtracts from these time-series the optimal dipole location and ori-

ntation at each time step, in proper units of A m. Brainstorm does

ot include a DICS implementation, but an extension exists which

alls FieldTrip functions from within Brainstorm (by V. Youssofzadeh,

ttps://github.com/vyoussofzadeh/DICS- beamformer- for- Brainstorm ). 

In FieldTrip , a beamformer is calculated and applied to

he sensor data covariance in a single step, using the function

t_sourceanalysis . This function takes a precomputed sensor

ata covariance matrix or CSD matrix and a configuration structure as

nput. The configuration structure cfg contains the settings, but also

he forward model. Specifying cfg.method = ’lcmv’ computes

n LCMV beamformer, while cfg.method = ’dics’ computes

 DICS beamformer. All other options and beamformer specifications

re also specified in this configuration structure ( cf. Tables S1-S4). If

ata whitening is required, this can be done prior to the computation

f the sensor covariance and the forward model using the function

t_denoise_prewhiten . 
In MNE-Python , the computation and application of the spatial filter

re separated. The LCMV beamformer weights are computed using the

unction make_lcmv() , which relies on the measurement informa-

ion, the data covariance, and a precomputed forward model. All other

arameters are specified in the function call ( cf. Tables S1-S4). The ob-

ained filter can then be applied to different data: to averaged data using

pply_lcmv() , to a data covariance using apply_lcmv_cov() ,
o epochs using apply_lcmv_epochs() , and to raw data using

pply_lcmv_raw() . The DICS beamformer uses a similar user

nterface to the LCMV beamformer, and can be estimated through

ake_dics() and applied via a range of apply_dics() functions.

In DAiSS (SPM) , it is possible to build pipelines by selecting dif-

erent options for a fixed sequence of modules. The forward model

omputation is done in the Define sources module and the co-
9 
ariance (for LCMV) or CSD (for DICS) matrix is computed in the

ovariance features module where also different options for

egularization can be specified. The choice between LCMV and DICS

s made in the Inverse solution module. 

.2. Regularization and inversion of covariance matrices 

Brainstorm estimates the empirical noise and data covariance ma-

rices from the user’s selection of baseline and data segments. Five vari-

tions of regularization are offered: regularize , which is similar

o the methods described in Section 3.1 , where a fraction of the av-

rage eigenvalue, e.g., 0.1, is added to the eigenvalues; median , where

he median eigenvalue is repeated for all of the smaller eigenvalues;

iagonal where only the diagonal covariances are retained; none
here no regularization is performed; and shrinkage which applies

he Ledoit-Wolf method of regularization. Prior to applying any of these,

he covariance matrix is first tested for rank deficiency at the single float-

ng point precision and smaller eigenvalues are removed. 

FieldTrip estimates the empirical covariance matrix. The data co-

ariance matrix can be regularized with a defined amount of the sensor

ower by setting cfg.lambda in ft_sourceanalysis , or using

 percentage value, e.g., ’5%’ . This will add 5% of the average sen-

or power to the covariance matrix diagonal for regularization. Per de-

ault, no regularization is applied. Alternatively, for a truncated pseudo-

nverse, the option cfg.kappa needs to be specified, as the number

t which the singular value spectrum of the covariance matrix will be

runcated. 

MNE-Python offers various ways to estimate the covariance matrix.

xamples include the empirical covariance matrix or a Ledoit-Wolf esti-

ator. Furthermore, the possibility to find the best estimator based on

ross-validation is implemented ( Engemann and Gramfort, 2015 ). Reg-

larization is applied by setting the parameter reg in make_lcmv()
r make_dics() . The default for both functions is 0.05, correspond-

ng to a regularization with 5% of the average sensor power. If the

ata is rank-deficient, MNE-Python automatically computes a truncated

seudo-inverse with the possibility to manually set the rank for the trun-

ation. 

DAiSS (SPM) has several options for regularization with the

ost commonly used being User-specified regularisation
specified as a percentage, the same as in FieldTrip) and Manual
runcation which reduces the dimensionality of the data prior to

eamforming. For rank-deficient data, it is recommended to use the lat-

er option and set it to be below the first “cliff” in the eigenvalue spec-

rum (see Fig. 1 ). 

.3. Forward field rank reduction 

Brainstorm ’s default for forward model rank reduction is automat-

cally applied as part of the source modeling procedure, testing each

orward field for its rank at “single ” floating-point precision and remov-

ng any smaller components. 

FieldTrip ’s default for rank reduction depends on the input data:

hile for EEG data the rank of the leadfield is not reduced, for MEG data

he rank is reduced from 3 to 2. The default behaviour can be changed

y setting cfg.reducerank to either ’yes’ (rank will be reduced

y 1) or ’no’ when calling ft_sourceanalysis . A rank-reduced

orward field will by default be back-projected into the original space

hile omitting one direction, meaning it will still have 3 columns. This

an be changed by setting cfg.backproject to ’no’ . 
MNE-Python does not reduce the rank of the forward

eld by default. This behaviour can be changed by supplying

educe_rank = True to the function call, which will reduce

he rank by 1. The forward field will always be back-projected. 

In DAiSS (SPM) , the rank reduction is specified in the Define
ources module as Reduce rank . By default the rank is set to 2

or MEG and to 3 for EEG. 

https://github.com/vyoussofzadeh/DICS-beamformer-for-Brainstorm
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.4. Combining sensor types and pre-whitening 

Brainstorm allows multiple sensor types, but cautions the user about

ixing EEG and MEG. For all sensor types, the cross-covariances be-

ween sensor types are defaulted to be forced to zero; however, the user

an override CROSS_COVARIANCE_CHANNELTYPES = false in the

ode to be true if they want to test using the full cross covariances. The

oise covariance matrix is then used to pre-whiten the forward model

nd data to balance the disparity in units, similar to MNE-Python, for a

ombined model. 

FieldTrip has a dedicated function for whitening ( ft_denoise_
rewhiten ), which can be used when sensor types are to be combined.

he whitening matrix is applied to both the numeric data, and added

s a balancing scheme to the sensor array. Optionally, the cross-terms

etween different sensor types can be set to zero, prior to the computa-

ion of the whitening matrix with the option cfg.split . When using

hitened data for the covariance computation and subsequent analy-

is, the forward model needs to be computed from the balanced sensor

rray. 

MNE-Python combines different sensor or channel types through

re-whitening of the covariance matrix, leadfield, and data. Further-

ore, the cross-terms between EEG and MEG channels in the covariance

atrix are set to zero. 

In DAiSS (SPM) , there is an option to fuse sensor types in the

ovariance features module. It is assumed that the sensor sig-

als are already properly scaled prior to running DAiSS. One way this

an be done is by using the Whitening option in the Reduce func-

ion ( spm_eeg_reduce ). As in FieldTrip, the whitening matrix in this

ase is applied to both the data and the sensors. There are options to set

he cross-terms to zero both when whitening and when computing co-

ariance matrices for beamforming. 

. Conclusion and outlook 

In this technical note we provided a concise overview of the beam-

ormers that are most commonly used for source reconstruction of EEG

nd MEG data. In addition, we detailed some practical considerations

nd best practices that need to be taken into account when employ-

ng beamformers. Finally, we compared the settings that are needed to

erform the described beamformer analyses for four commonly used

pen source software toolboxes. This work complements earlier work

 Jaiswal et al., 2020 ), which compared and discussed the behavior of

he beamformers as applied with the respective toolboxes’ default op-

ions. Here, we show that all toolboxes have sufficient functional flexi-

ility in order to accommodate the different beamformers we described.

n addition, most toolboxes provide flexibility with respect to estima-

ion and regularization of covariance matrices, and with respect to data

hitening. The implementational differences between the toolboxes re-

ult from the fact that they have developed organically over the years,

ll with a slightly different focus and audience. Yet, as can be also wit-

essed from this paper, the main developers all strive to advance the

eld as a whole, and regularly interact with each other to share ideas,

mplementational details, and code. These interactions have greatly con-

ributed to the overall quality and functionality of the toolboxes and in

he future will continue to provide the neuroscience community with

he necessary means to get the most out of their data. 

ata availability 

The data that were used to generate the illustrative figure are openly

vailable through MNE-Python. The openly available code (see below)
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ode availability 

The code used to generate the figure of this study is available under
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