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Objectives: Berzosertib (formerly M6620, VX-970) is an intravenous, highly potent and selective, first-in-class 
ataxia telangiectasia and Rad3-related (ATR) protein kinase inhibitor. We assessed the safety, tolerability, pre
liminary efficacy, and pharmacokinetics (PK) of berzosertib plus gemcitabine in an expansion cohort of patients 
with advanced non-small cell lung cancer (NSCLC). The association of efficacy with TP53 status and other tumor 
markers was also explored. 
Materials and methods: Adult patients with advanced histologically confirmed NSCLC received berzosertib 210 
mg/m2 (days 2 and 9) and gemcitabine 1000 mg/m2 (days 1 and 8) at the recommended phase 2 dose established 
in the dose escalation part of the study. 
Results: Thirty-eight patients received at least one dose of study treatment. The most common treatment- 
emergent adverse events were fatigue (55.3%), anemia (52.6%), and nausea (39.5%). Gemcitabine had no 
apparent effect on the PK of berzosertib. The objective response rate (ORR) was 10.5% (4/38, 90% confidence 
interval [CI]: 3.7–22.5%). In the exploratory analysis, the ORR was 30.0% (3/10, 90% CI: 9.0–61.0%) in patients 
with high loss of heterozygosity (LOH) and 11.0% (1/9, 90% CI: 1.0–43.0%) in patients with low LOH. The ORR 
was 33.0% (2/6, 90% CI: 6.0–73.0%) in patients with high tumor mutational burden (TMB), 12.5% (2/16, 90% 
CI: 2.0–34.0%) in patients with intermediate TMB, and 0% (0/3, 90% CI: 0.0–53.6%) in patients with low TMB. 
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Conclusions: Berzosertib plus gemcitabine was well tolerated in patients with advanced, pre-treated NSCLC. Based 
on the observed clinical efficacy, future clinical trials should involve genomically selected patients.   

1. Introduction 

For patients with advanced non-small cell lung cancer (NSCLC) and 
no targetable mutations, cytotoxic chemotherapies, including DNA- 
damaging or anti-mitotic agents, achieve response rates of 7–21%, as 
per Response Evaluation Criteria in Solid Tumors (RECIST), when used 
as single agents in the second- and/or third-line treatment setting [1–7]. 

Ataxia-telangiectasia-mutated (ATM) and Rad3-related protein ki
nases (ATR) play critical roles in the DNA-damage response (DDR) by 
regulating the cell cycle checkpoint control and repairing damaged DNA 
by homologous recombination [8]. In response to DNA replication 
stress, induced or exacerbated by chemotherapies such as gemcitabine, 
ATR is recruited to regions of exposed single-stranded DNA to mediate 
replication fork stabilization, whereas ATM responds to DNA double- 
strand breaks [9]. 

Berzosertib (formerly M6620, VX-970) is an intravenous (IV), highly 
potent, and selective first-in-class inhibitor of ATR [10]. In preclinical 
studies, berzosertib sensitizes lung cancer cells to DNA-damage- 
inducing chemotherapeutics such as gemcitabine [10]. Previous clin
ical studies have shown that berzosertib in combination with chemo
therapy is well tolerated with preliminary efficacy signals in several 
solid tumors [11,12]. Furthermore, a recent proof-of-concept phase 2 
study evaluating the berzosertib–topotecan combination reported an 
objective response rate of 36% (9/25), with a median duration of 
response of 6.4 months, in patients with SCLC, including those with 
platinum-resistant disease [13]. 

Berzosertib efficacy can be enriched in the presence of specific tumor 
genetic alterations. Tumor protein p53 (TP53) mutational status has 
been shown preclinically to correlate with response to DNA-damaging 
agents combined with ATR inhibition [14]. This is explained by the 
dependence of tumor cells on a functional TP53 to maintain genomic 
stability when ATR is inhibited [15], as well as the importance of the 
ATR-CHK1 axis for G2/M checkpoint control in response to DNA dam
age when TP53 is mutated, thus harnessing the synthetic lethal rela
tionship between ATR and TP53 in TP53-mutant tumors. Since 
mutations of the TP53 gene are present in approximately 50% of NSCLC 
[16], ATR inhibition represents a potential therapeutic combination 
strategy for DNA-damaging chemotherapy in pretreated NSCLC. In 
addition, recent studies have suggested that molecular alterations in 
other genes, such as ATM, switch/sucrose non-fermentable related, 
matrix associated, actin dependent regulator of chromatin, subfamily A, 
member 4 (SMARCA4) and AT-rich interaction domain (ARID1A), could 
be potential predictive biomarkers of ATR inhibition by exploiting 
mechanisms of synthetic lethality related to the DDR or to replication 
fork stability [17–19]. However, when leveraging the synthetic lethal 
relationship between ATR and ATM, it may be important to consider the 
emerging role of ATM in promoting tumor cell ferroptosis [20]. 
SMARCA4 is frequently mutated in NSCLC and is involved in the acti
vation of replication stress responses, while ARID1A mutations increase 
tumor cells reliance on ATR-mediated checkpoint activity. Furthermore, 
ARID1A-mutant tumor cells may be more susceptible to oxidative stress 
due to low levels of antioxidant factors such as glutathione [21]. 

This phase 1 study was separated into six parts (A, B, B2, C1, C2, and 
C3). In the dose escalation part of this study with berzosertib and 
gemcitabine (part A), the most common treatment–emergent adverse 
events (TEAE) of any grade included fatigue, nausea, anemia, and in
creases in alanine aminotransferase (ALT), and the most common grade 
≥ 3 TEAEs were neutropenia, increases in ALT and fatigue. These TEAEs 
were consistent with patient populations treated with gemcitabine [22]. 

The main purpose of this expansion cohort study (part C1) was to 

evaluate the safety, tolerability, pharmacokinetics (PK), and preliminary 
efficacy of berzosertib combined with gemcitabine in patients with 
advanced NSCLC, with or without TP53 mutations. An exploratory 
analysis of potential response biomarkers was also conducted (Clin
icalTrials.gov, identifier: NCT02157792). 

2. Materials and methods 

2.1. Study design 

This trial was part of a multicenter, open-label, non-randomized, 
phase 1 study separated into six parts (A, B, B2, C1, C2, and C3). The 
initial dose escalation phase of the study (parts A and B) established the 
recommended phase 2 dose (RP2D) of berzosertib when combined with 
chemotherapeutic agents, including gemcitabine and cisplatin [22,23]. 
These doses were further evaluated in the expansion phase of the study 
in patients with NSCLC (part C1), triple-negative breast cancer (part C2), 
and small-cell lung cancer (part C3). The focus of this manuscript is part 
C1; the other parts have been or will be reported separately. 

Part C1 was a single-arm expansion cohort study of berzosertib 
combined with gemcitabine in patients with advanced NSCLC, with or 
without TP53 mutations. This part of the study was conducted across 
three sites in the UK and eight sites in the USA between December 2015 
and March 2020. The study was conducted in accordance with the 
ethical principles of the International Council for Harmonization 
Guidelines for Good Clinical Practice and the Declaration of Helsinki, as 
well as with applicable local regulations. 

2.2. Patients 

The plan was to enroll approximately 40 patients, including at least 
20 patients with TP53 mutations prospectively determined from 
archival tumor biopsies. 

Eligible patients were adults ≥ 18 years of age with advanced 
(metastatic or locally advanced unresectable tumors and not eligible for 
definitive treatment), histologically confirmed NSCLC, with available 
archival tumor biopsies, who were intolerant to standard approved 
targeted therapies, and measurable disease defined by RECIST v1.1 
[24]. Patients who had received more than two lines of cytotoxic 
chemotherapy in the advanced setting were excluded. Patients who had 
received treatment with gemcitabine within 6 months were also 
excluded. Full inclusion and exclusion criteria are shown in the Sup
plementary Information. 

2.3. Treatments 

Following screening and baseline evaluations, patients received 
berzosertib IV (210 mg/m2; days 2 and 9) approximately 24 h after 
gemcitabine (1000 mg/m2; days 1 and 8) in 21-day cycles, which was 
the RP2D established in part A of this study [22]. The timing of berzo
sertib relative to gemcitabine was based on the synergy demonstrated 
when berzosertib was administered 12–24 h after gemcitabine in pre
clinical models [25]. Patients received treatment until progressive dis
ease (PD) or unacceptable toxicity. 

2.4. Objectives 

The primary objectives of this study were to evaluate the safety, 
tolerability, and the objective response rate (ORR) of berzosertib when 
combined with gemcitabine in patients with advanced NSCLC, with and 
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without TP53 mutations. The secondary objectives were to evaluate the 
preliminary efficacy and PK of berzosertib combined with gemcitabine. 
The evaluation of potential biomarkers associated with the efficacy of 
berzosertib in combination with gemcitabine was an exploratory 
objective. 

2.5. Assessments and endpoints 

The safety profile was continuously monitored clinically and with 
standard laboratory parameters. TEAEs were coded according to the 
Medical Dictionary for Regulatory Activities (MedDRA) v21.0 [26] and 
graded according to the National Cancer Institute (NCI) Common Ter
minology Criteria for Adverse Events (CTCAE) v4.0 [27]. 

To evaluate the efficacy of berzosertib in combination with gemci
tabine, tumor assessments were performed every two cycles for the first 
12 cycles, then every two to three cycles, and 5 (±1) weeks after 
completion of therapy. Tumor response assessments were classified ac
cording to RECIST v.1.1 [24]. The ORR (primary efficacy endpoint) was 
defined as the proportion of participants who achieved a best overall 
response (BOR) of partial response (PR) or complete response (CR) 
(summarized as objective response [OR]), where both CR and PR were 
confirmed by repeat assessments performed no < 4 weeks after the 
criteria for response were first met. The ORR was calculated with the 
two-sided 90% confidence interval (CI) using the Clopper–Pearson 
method [28]. 

The efficacy of berzosertib in combination with gemcitabine was 
further explored through the assessment of progression-free survival 
(PFS), duration of response (DOR), overall survival (OS), and disease 
control. 

Blood samples for PK analysis of berzosertib in plasma were collected 
pre-dose, mid-infusion, and 0, 0.5, 1, 2, 3, and optionally 7 h after the 
end of the 1-hour berzosertib infusion on cycle 1 day 2. Bioanalysis in 
plasma was performed using validated liquid chromatography-tandem 
mass spectrometry (LC-MS/MS) methods [29]. 

Archival tumor biopsies were collected to assess TP53 status and 
other genetic alterations by DNA next–generation sequencing (NGS) 
with FoundationOne® CDx NGS assay (Foundation Medicine, Cam
bridge, Massachusetts, US) [30]. A post-hoc exploratory analysis was 
conducted to investigate the potential association between specific ge
netic tumor alterations and treatment outcomes. The loss of heterozy
gosity (LOH), tumor mutational burden (TMB) and microsatellite 
instability (MSI) results were discretized according to the criteria 
established by Foundation Medicine [31]. LOH levels were reported as a 
percentage of the affected genome and were discretized to either high 
LOH (LOH score ≥ 16) or low LOH (LOH score < 16). TMB levels were 
classified as high, if somatic mutations per megabase (MB) were ≥ 20; 
intermediate, if somatic mutations per MB were ≥ 6 and < 20; and low, 
if somatic mutations per MB were < 6. 

2.6. Statistical analysis 

Based on historical response rates of 10% for single-agent gemcita
bine in second-line NSCLC [5], and an enrollment of 30 patients, six 
responders would result in an exact one-sided 90% CI for ORR of 
9.1–35.7%. The probability to observe at least six responders was 
calculated under the assumption of different response rates. In case of a 
true response rate of 30%, the likelihood of at least six responders was 
84%. 

The modified full analysis set included all patients who had a base
line tumor assessment with a measurable target lesion and at least one 
dose of the study drug. The safety analysis set included all patients who 
received at least one dose of study drug. The PK analysis set included all 
patients who received at least one dose of study drug and who provided 
at least one measurable post-dose concentration. 

Summary statistics were provided for berzosertib concentrations by 
group and time and for berzosertib PK parameters. PK parameters were 

calculated using standard non-compartmental methods and the actual 
administered dose. Computation of PK parameters was performed using 
Phoenix® WinNonlin® Version 8.0 (Certara, L.P., Princeton, New Jer
sey, USA). 

3. Results 

3.1. Patient demographics and disposition 

Baseline and disease history characteristics of all 38 patients enrolled 
are presented in Table 1. For those patients whose baseline genotype 
was determined, TP53 mutations were found in 60.5% of tumors. All 
patients except for one (37, 97.4%) received at least one dose of ber
zosertib and 38 (100.0%) patients received at least one dose of 
gemcitabine. 

3.2. Safety 

All 38 patients experienced TEAEs, 36 (94.7%) of whom experienced 
berzosertib or gemcitabine-related TEAEs (Table 2). The most common 
TEAEs (of any grade) were fatigue (55.3%), anemia (52.6%), and nausea 
(39.5%). The most common berzosertib-related TEAEs were fatigue 
(44.7%), anemia (39.5%), and thrombocytopenia (28.9%). Further
more, 22 (57.9%) patients experienced berzosertib-related grade ≥ 3 
TEAEs and 14 (36.8%) patients experienced berzosertib-related serious 
TEAEs. 

Five patients experienced berzosertib-related TEAEs (neutropenia, 
thrombocytopenia, fatigue, aspartate aminotransferase, and ALT in
creases) leading to a dose reduction in berzosertib. Eleven (28.9%) pa
tients discontinued treatment with berzosertib, including seven (18.4%) 
patients who discontinued primarily due to TEAEs; three (7.9%) of 
whom due to berzosertib-related TEAEs (anemia, thrombocytopenia, 

Table 1 
Patient demographics and baseline characteristics.  

Characteristic Total 
N = 38 

Sex, n (%)  
Male 20 (52.6) 
Female 18 (47.4) 

Race, n (%)  
White 34 (89.5) 
Asian 1 (2.6) 
Other 1 (2.6) 
Unknown 2 (5.3) 

Median (range) age, years 62.5 (36–76) 
Baseline ECOG PS,a n (%)  

0 11 (28.9) 
1 27 (71.1) 

Prior anticancer therapy, n (%)  
Chemotherapyb 38 (100.0) 
Investigational therapy 8 (21.1) 
Immunotherapy 6 (15.8) 
Other 5 (13.2) 

Number of previous anticancer chemotherapy regimens, n (%)  
Neoadjuvant 3 (7.9) 
Adjuvant 7 (18.4) 
1st line, metastatic disease 36 (94.7) 
2nd line, metastatic disease 22 (57.9) 
>2nd line, metastatic disease 16 (42.1) 

TP53,c n (%)  
Wild-type 6 (15.8) 
Mutant 23 (60.5) 
Unknown 9 (23.7) 

aData reported for modified Full Analysis Set. 
bSeven patients received prior treatment with gemcitabine. 
cOnly patients with biomarker status determined by FoundationOne® CDx next- 
generation sequencing were reported. 
Abbreviations: ECOG PS, Eastern Cooperative Oncology Group performance 
status; TP53, tumor protein p53. 
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and fatigue). Four (10.5%) patients experienced a TEAE leading to 
death. One of the four deaths was related to study treatment (hemop
tysis, hypovolemic shock, and cardiac arrest); the death occurred after 
the patient had experienced a grade 3 lower respiratory tract infection 
and shortness of breath (both unrelated to treatment) for > 1 month. 

3.3. Efficacy 

The median treatment duration for berzosertib in combination with 
gemcitabine was 14.0 weeks (2.0–63.0 weeks). There were four 
confirmed partial responders (10.5%), two of which had a particularly 
notable response (Table 3, Fig. 1). 

Amongst the responders, it is worth noting that a 67-year-old female 
with epidermal growth factor receptor (EGFR) wild-type NSCLC 
(adenocarcinoma), with evidence of lymph node and lung metastases, 
achieved a confirmed PR lasting 13.2 months (57.6% maximum tumor 
shrinkage). This patient was heavily pretreated with several different 
anticancer regimens (carboplatin + pemetrexed + bevacizumab, fol
lowed by pemetrexed + bevacizumab as maintenance, nivolumab, and 

erlotinib). 
A 75-year-old male patient with anaplastic large-cell lymphoma ki

nase wildtype, EGFR wild-type, programmed death-ligand 1 negative 
NSCLC (adenocarcinoma), with evidence of lymph node metastases, 
with progression through two aggressive regimens (carboplatin +
pemetrexed, docetaxel + nintedanib followed by nintedanib mainte
nance), achieved a confirmed, durable PR lasting 6.0 months. 

3.4. Exploratory biomarker analyses 

Archival tumor biopsies from the 38 patients were analyzed by DNA 
NGS, of which nine samples did not pass the laboratory quality check 
process. Overall, 29 samples were included in the data analysis. The 
subgroup analysis did not demonstrate a clear association between 
clinical outcome (ORR and PFS) and any alterations in 324 genes 
explored, including TP53, and other potential predictive biomarkers of 
sensitivity to ATR inhibition including ATM, ARID1A (Supplementary 
Table 1) and SMARCA4 (Table 4). 

Regarding genomic signatures, LOH was measurable in 19 patients. 
The ORR was 30.0% (3/10, 90% CI: 9.0–61.0%) in patients with high 
LOH, and 11.0% (1/9, 90% CI: 1.0–43.0%) in patients with low LOH. 
TMB was measurable in 25 patients. The ORR was 33.0% (2/6, 90% CI: 
6.0–73.0%) in patients with high TMB, 12.5% (2/16, 90% CI: 
2.0–34.0%) in patients with intermediate TMB, and 0% (0/3, 90% CI: 
0.0–53.6%) in patients with low TMB. 

3.5. Pharmacokinetics 

The berzosertib 210 mg/m2 (IV) dose administered in this study was 
within the dose range previously shown to exhibit dose-dependent 
berzosertib PK as monotherapy, or in combination with either carbo
platin or gemcitabine [11,22]. The observed berzosertib concentration 
data in this expansion cohort were consistent with those reported pre
viously at the same dose level [22]. Gemcitabine demonstrated no 
apparent effect on berzosertib pharmacokinetics (Fig. 2). 

The geometric mean (percentage coefficient of variation [%CV]) 
maximum observed concentration (Cmax) of berzosertib was 882 ng/mL 
(55.2%), which was similar to the previously reported Cmax of 899 ng/ 
mL in part A of this study [22]. A population PK model was developed 
based on pooled data from two phase 1 studies, including this expansion 
cohort [32]. The model confirmed that gemcitabine had no apparent 
effect on berzosertib PK, and that berzosertib PK in patients with NSCLC 
was comparable to patients with other advanced solid tumors. 

Table 2 
Overview of TEAEs for berzosertib + gemcitabine occurring in > 20% of patients 
by preferred term (N = 38; safety analysis set).  

Patients, n (%) Berzosertib +
gemcitabine 
N = 38 

Any 
grade 

Grade ≥
3 

All TEAEs 38 
(100.0) 

33 
(86.8) 

Berzosertib-related TEAE 34 (89.5) 22 
(57.9) 

Berzosertib- or gemcitabine-related TEAE 36 (94.7) 24 
(63.2) 

TEAEs occurring in ≥ 20% of patients Any 
grade 

Grade 
3–4 

Fatigue 21 (55.3) 9 (23.7) 
Anemia 20 (52.6) 8 (21.1) 
Nausea 15 (39.5) 0 
Dyspnea 14 (36.8) 5 (13.2) 
Pyrexia 13 (34.2) 1 (2.6) 
Thrombocytopenia 13 (34.2) 7 (18.4) 
Vomiting 12 (31.6) 2 (5.3) 
AST increased 11 (28.9) 2 (5.3) 
Decreased appetite 11 (28.9) 1 (2.6) 
Neutropenia 11 (28.9) 5 (13.2) 
ALT increased 10 (26.3) 2 (5.3) 
Lower RTI 9 (23.7) 5 (13.2) 
Headache 8 (21.1) 0 
WBC count decreased 8 (21.1) 1 (2.6) 

Serious TEAEs 24 (63.2) 22 
(57.9) 

Berzosertib-related serious TEAE 14 (36.8) 1 (2.6) 
Berzosertib- or gemcitabine-related serious TEAE 14 (36.8) 10 

(26.3) 
Serious TEAE leading to dose interruption 9 (23.7) NR 

Serious TEAE leading to dose interruption in berzosertib 8 (21.1) NR 
Serious TEAE leading to dose interruption in gemcitabine 8 (21.1) NR 

TEAE leading to dose reduction in ≥ 1 study drug 8 (21.1) NR 
TEAE leading to dose reduction in berzosertib 6 (15.8) NR 
TEAE leading to dose reduction in gemcitabine 7 (18.4) NR 

TEAE leading to permanent discontinuation of ≥ 1 study 
drug 

8 (21.1) NR 

Berzosertib-related TEAE leading to permanent 
discontinuation of berzosertib 

3 (7.9) NR 

Gemcitabine-related TEAE leading to permanent 
discontinuation of gemcitabine 

4 (10.5) NR 

TEAE leading to death  4 (10.5) 
Berzosertib-related TEAE leading to death  1 (2.6) 

ALT, alanine aminotransferase; AST, aspartate aminotransferase; NR, not re
ported; RTI, respiratory tract infection; TEAE, treatment-emergent adverse 
event; WBC, white blood cell. 

Table 3 
Best overall response (modified full analysis set; N = 38).  

Efficacy outcome Patients, n (%) 

Best overall response  
CR 0 
PR 4 (10.5) 
SD 22 (57.9) 
PD 7 (18.4) 
Not evaluable 5 (13.2) 

ORR, n (%), [90% CI] 4 (10.5) [3.7–22.5] 
DCR,a n (%), [90% CI] 26 (68.4) [53.9–80.7] 
Median PFS (months), [90% CI] 4.0 [3.2–5.0] 
Median OS (months), [90% CI] 7.4 [5.4–8.5] 
Median DOR (months), [90% CI] 6.0 [3.6–nd] 

aDisease control was defined as a BOR of CR, PR, or SD and the DCR was 
calculated with a two-sided 90% CI using the Clopper–Pearson method. 
Abbreviations: BOR, best overall response; CI, confidence interval; CR, complete 
response; DCR, disease control rate; DOR, duration of response; nd, not defined; 
ORR, objective response rate; OS, overall survival; PD, progressive disease; PFS, 
progression-free survival; PR, partial response; SD, stable disease. 
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4. Discussion 

In this phase 1b expansion cohort study, the combination of the ATR 
inhibitor berzosertib with gemcitabine, according to the dosing regimen 
previously determined in the dose escalation portion of the trial (ber
zosertib 210 mg/m2 [days 2 and 9] and gemcitabine 1000 mg/m2 [days 
1 and 8] every 3 weeks) [22], was well tolerated in patients with pre- 
treated advanced NSCLC. The safety profile was consistent with that 
of the individual agents [11,23]. However, the observed clinical efficacy 
(ORR of 10.5% and median treatment duration of 14.0 weeks) suggests 
limited benefit of combining an ATR inhibitor with gemcitabine in this 
unselected population of patients with advanced NSCLC, with and 
without TP53 mutations, when compared with historical controls of 
gemcitabine monotherapy [5]. The ORR was only marginally higher in 
the subgroup of patients with TP53 mutations, because there was no 

responder among the few cases who did not have TP53 alterations (the 
study was designed to enrich for tumors with TP53 mutations). This 
clinical finding suggests that TP53 mutations alone are insufficient to 
enhance the efficacy of the berzosertib–gemcitabine combination in 
patients with advanced NSCLC, despite the fact that preclinical experi
ments have highlighted TP53 mutations as an efficacy surrogate for 
treatment with ATR inhibitors [14]. 

The exploratory biomarker subgroup analysis also demonstrated no 
clear association between treatment outcome (ORR and PFS) and gene 
alterations, including ATM, ARID1A and SMARCA4, which have previ
ously been associated with sensitivity to ATR inhibition [17–19]. There 
was also no association observed between treatment response and al
terations in other cell cycle genes such as CCNE1, MYC, or RB, whose 
dysregulation is associated with DNA replication stress [33,34]. 

However, since only single digit cases carrying genetic alterations in 
each of these genes were identified, the relationship between treatment 
response and these individual genomic alterations could not be deter
mined. Additionally, there were limitations to our analyses, including 
the lack of genomic data that would have enabled the evaluation of 
biomarker zygosity status of tumor suppressor genes on treatment out
comes. Another limitation was the lack of confirmation of the observed 
ATM, SMARCA4, ARID1A or other tumor suppressor loss at the protein 
level. Although ATM immunohistochemistry was planned, the available 
tumor samples were largely exhausted after DNA NGS. As the clinical 
development of berzosertib continues, further investigations are 
required to identify genomic alterations that confer susceptibility to ATR 
inhibition. Identifying such alterations, with confirmation at the protein 
level, may ultimately help define patient populations most likely to 
benefit from the addition of berzosertib to DNA damage-inducing che
motherapies or other anticancer therapies. 

We observed a trend towards increased response rate in patients with 
high TMB (33.0%) and LOH scores (30.0%), versus those patients with 
low TMB and LOH scores, respectively. TMB and LOH are markers of 
genetic instability and homologous recombination deficiency [35,36]. 
High TMB is also indicative of DNA DSB repair deficiency [37]. In fact, 
both TMB and LOH are emerging as predictive biomarkers to poly (ADP- 
ribose) polymerase and immune checkpoint inhibitors [36,38–40], 
which could well synergize with increased DNA damage resulting from 
the combination of berzosertib and gemcitabine. However, the associ
ations were not statistically significant, likely due to the small sample 
size. Nevertheless, given the biologic rationale for an association 

Fig. 1. Best percentage change in tumor size from baseline (modified full analysis set) with genetic profiles. Only patients with a baseline scan, at least one post- 
baseline assessment, and at least one response assessment are included in Fig. 1 (n = 34). Only patients with biomarker status determined by FoundationOne® CDx 
next-generation sequencing were reported. The dashed line at 20% represents PD whereas the dashed line at –30% represents PR. ARID1A, AT-rich interaction 
domain 1A; ATM, ataxia telangiectasia mutated; LOH, loss of heterozygosity; NE, not evaluable; PD, progressive disease; PR, partial response; SMARCA4, switch/ 
sucrose non-fermentable related, matrix associated, actin dependent regulator of chromatin, subfamily A, member 4; SD, stable disease; TMB, tumor mutational 
burden; TP53, tumor protein p53. 

Table 4 
Objective response rate for selected biomarker subgroups (modified full analysis 
set).  

Subgroups Mutation statusa Responders ORR [90% CI] 

Overall Overall 4/38 10.5 [3.7–22.5] 
TP53 Wild-type 0/6 0.0 [0.0–39.3] 

Mutant 4/23 17.4 [6.2–35.5] 
ARID1A Wild-type 4/27 14.8 [5.2–30.8] 

Mutant 0/2 0.0 [0.0–77.6] 
ATM Wild-type 4/23 17.4 [6.2–35.5] 

Mutant 0/6 0.0 [0.0–39.3] 
SMARCA4 Wild-type 4/24 16.7 [5.9–34.2] 

Mutant 0/5 0.0 [0.0–45.1] 
LOH High 3/10 30.0 [8.7–60.7] 

Low 1/9 11.1 [0.6–42.9] 
TMB High 2/6 33.3 [6.3–72.9] 

Intermediate 2/16 12.5 [2.3–34.4] 
Low 0/3 0 [0.0–63.2] 

aOnly patients with high impact or predicted high impact mutations reported. 
Only patients with biomarker status determined by FoundationOne® CDx next- 
generation sequencing were reported. The ORR was calculated with the two- 
sided 90% CI using the Clopper–Pearson method. 
Abbreviations: ATM, ataxia telangiectasia mutated; ARID1A, AT-rich interaction 
domain 1A; CI, confidence interval; LOH, loss of heterozygosity; ORR, objective 
response rate; TMB, tumor mutational burden; TP53, tumor protein p53; 
SMARCA4, switch/sucrose non-fermentable related, matrix associated, actin 
dependent regulator of chromatin, subfamily A, member 4 
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between TMB and LOH and a higher sensitivity to DDR inhibitors, 
further investigations in this direction are warranted. 

5. Conclusions 

The combination of berzosertib and gemcitabine in patients with 
advanced, pre-treated NSCLC was well tolerated, but given the observed 
clinical efficacy, future clinical trials may best be undertaken in a 
genomically selected patient population. In other malignancies, such as 
platinum-resistant ovarian cancer, the combination of berzosertib and 
gemcitabine has shown an encouraging efficacy signal, serving as a 
reminder of the molecular heterogeneity and notable clinical differences 
between disease entities [12]. 
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