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Neuronal oscillations underlie a number of physiological pro-
cesses, such as respiration, diurnal rhythms of the sleep–wake
cycle, and gait. Oscillatory activity can be observed in many dif-
ferent brain regions and can be synchronized across these differ-
ent regions or nuclei. Oscillatory activity has long been recog-
nized in the electroencephalogram (EEG), in which synchrony
between thalamus and cortex can be observed at different fre-
quencies. These oscillations are generally subdivided into types
on the basis of their characteristic frequency and location, such as
theta (2–7 Hz), alpha (7–13 Hz in visual cortex), beta (11–30 Hz),
gamma (30 – 80 Hz), and mu (7–12 Hz, sensorimotor). Recent
studies in animals and humans have revealed the existence of
several types of oscillatory activity in the various nuclei of the
basal ganglia and, although still poorly understood, are believed
to play an important function in both the normal physiology and
pathophysiology of this system. This mini-symposium will de-
scribe the findings of recent studies that have examined various
aspects of oscillatory activity in the basal ganglia.

In the past decade, there has been an increase in basal ganglia
surgery for movement disorders, primarily for Parkinson’s dis-
ease, but also dystonia and Huntington’s disease, which has pro-
vided a unique opportunity for neurophysiologists such as Wil-
liam Hutchison and Jonathan Dostrovsky to probe these
subcortical structures in the clinical setting. Although previous
surgeries involved the stereotactic placement of lesions in the
brain, the era of neuroablative procedures has given way to “neu-
roaugmentive procedures” involving chronic indwelling elec-
trodes implanted for deep brain stimulation. Many centers use
microelectrodes to map the basal ganglia targets in the internal
globus pallidum (GPi) and, more recently, the subthalamic nu-
cleus (STN). During the course of these mapping procedures, it

became evident that oscillatory activity could be detected in the
firing of individual neurons in these structures, particularly in the
patients with tremor (Hutchison et al., 1997, 1998; Levy et al.,
2000, 2002a,b), and this was also reflected in the recordings of
rhythmic activity in local field potentials from the relatively large
contacts of the deep brain stimulation leads (Levy et al., 2002).
Before and concurrent with this clinical work, animal models of
Parkinson’s disease, such as the 6-hydroxydopamine (6-OHDA)
rat model and the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP) monkey model, have made, and continue to make, a
substantial contribution to our knowledge of the underlying neu-
rophysiological changes that give rise to the pathophysiology of
the disease (Raz et al., 1996, 2000; Ruskin et al., 1999b, 2003;
Goldberg et al., 2004). These changes include increases in firing
rate, a tendency to fire in a more irregular pattern, and abnormal
oscillatory synchronization.

The canonical model of basal ganglia dysfunction proposes
that alterations in neuronal firing rates underlie the spectrum of
movement disorders. For the specific example of Parkinson’s dis-
ease, there is decreased activity of the inhibitory direct pathway
connecting the basal ganglia striatal input to its output in the GPi
and increased activity in the so-called indirect pathway via the
external globus pallidum (GPe) and STN (Fig. 1). The net effect
of this imbalance between the pathways is to elevate the firing rate
of inhibitory neurons in GPi that project to important premotor
structures, such as the thalamus. Inhibition of premotor centers
explains the symptoms of akinesia and bradykinesia but does not
as easily explain tremor or rigidity. However, animal and patient
studies report only small increases in GPi firing rates in the order
of 10 –22% in the parkinsonian state (Hutchison et al., 1994;
Wichmann et al., 1994, 1999; Levy et al., 2001). Another predic-
tion of the rate model is that hyperkinetic movements, such as
dystonia and chorea, are related to low firing rates in GPi output
neurons, but recent observations indicate that the GPi activity is
similar to that in Parkinson’s disease (Hutchison et al., 2003).
Other studies also question the predictions by this model of
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changes in firing rates because many basal ganglia neurons have
been shown to have intrinsic pacemaker-like properties that sets
the rate of firing in the absence of synaptic connectivity (for
review, see Bevan et al., 2002).

Effort has now shifted to examining firing patterns and espe-
cially synchronous oscillations in the basal ganglia of movement
disorder patients to further our understanding of the pathophys-
iology of abnormal movements (Fig. 1B). One puzzle in the sur-
gical treatment of movement disorders has been why a lesion and
electrical stimulation should produce the same therapeutic effect
when one obliterates the tissue and the other excites the tissue.
The rate model does not reconcile this contradiction, but a model
based on network oscillations predicts that either a lesion or deep

brain stimulation would disrupt these pathological oscillations,
leading to an improvement in symptoms. Pathological oscillatory
activity in the alpha frequency (3–7 Hz) develops in the basal
ganglia network, especially in the GPi and in the STN, after MPTP
treatment in some monkeys and is also present in the GPi and
STN of Parkinson’s disease patients with tremor at rest. In addi-
tion to tremor-related oscillations, higher-frequency oscillations
in the beta range (15–25 Hz) can be observed in the STN and
pallidum even in patients without tremor. However, the relation-
ship between pathological oscillatory activity and the Parkinson’s
disease symptoms such as bradykinesia and akinesia is unclear.

In addition to the alpha and beta range oscillations, slower
oscillations in basal ganglia activity have been recorded by Judith
Walters in the 6-OHDA rat model. Their relationship to normal
motor control or Parkinson’s disease pathophysiology is less
readily understood. Connectivity modeling based on the STN–
GPe network indicates that slow oscillations may also arise as a
property of neuronal networks (Terman et al., 2002). Two types
of slow oscillation have been studied. Slow oscillations at 0.3–2
Hz are often observed in basal ganglia recordings of both local
field potential and single-unit activity in anesthetized rat prepa-
rations. Ultraslow, multisecond oscillations (2– 60 sec and
longer) are frequently seen in basal ganglia recordings from
awake immobilized and partially restrained rats. Alterations in
dopamine receptor stimulation induce dramatic changes in the
properties of these oscillations and the relationships between
single-unit activity and local field potentials (Hu et al., 2003,
2004). The slow oscillations appear to be more prominent in the
firing pattern of basal ganglia neurons of dopamine-depleted rats
and are correlated with the local field potentials recorded in cor-
tex and basal ganglia. In contrast, the ultraslow oscillations ap-
pear to be enhanced by increases in dopaminergic stimulation,
with a greater degree of correlation both within and between
various basal ganglia nuclei [GP and substantia nigra pars reticu-
lata (SNr)] on these multisecond timescales (Ruskin et al.,
1999a,b, 2003). Lesioning the STN was not found to alter the
genesis or transmission of these ultraslow oscillations but did
affect dopamine agonist-induced modulation of mean firing rate,
oscillatory period, and phase relationship between GP and SNr.
These data further support a role for dopamine in modulating
coherent oscillatory activity in the basal ganglia and for the STN
in shaping the effects of dopamine receptor stimulation on basal
ganglia output.

The general view from the movement disorders literature is
that basal ganglia oscillations are pathological, but Richard Cour-
temanche has studied a possible normal physiological function
for such oscillations in basal ganglia networks in relation to cor-
tical control of movement (Courtemanche et al., 2003). In the
study to be discussed, simultaneous recordings were made with
up to eight microelectrodes placed in different parts of the stria-
tum of normal monkeys at rest. Oscillatory activity of the local
field potentials in the beta band was observed and was synchro-
nized across many or all of these electrodes, indicating a global
synchronization in the striatum. This oscillatory activity was dif-
ferent from simultaneously recorded cortical frontal eye field lo-
cal field potentials. Single-unit recordings from these same elec-
trodes showed that some cells tended to fire at a specific phase
value of the local field potential. Monkeys were also trained to
make saccadic eye movements to visual targets, and, as the mon-
keys performed saccades, the beta-band oscillations decreased
across all electrodes. Local field potential synchronization across
sites also showed a task-related decrease, yet only for sites that
were neuronally engaged in the task, as evidenced by local mul-

Figure 1. A, Schematic figure of the rate model of Parkinson’s disease. The major nuclei of
the basal ganglia, the predominant connections, and the neurotransmitters involved are de-
picted. Information flow is implied by the arrows. In this model, changes in neuronal activity
attributable to loss of striatal dopamine are indicated by thick (increased) and thin (decreased)
arrows. In Parkinson’s disease, activity in the direct pathway from striatum to GPi/SNr is de-
creased and that in the indirect pathway via GPe and STN is increased, leading to increased firing
rates in the output. This inhibits premotor centers, such as thalamus, that facilitate corticospinal
motor output. B, Schematic figure of the oscillation model of Parkinson’s disease. In the absence
of dopamine in the striatum, pathological oscillations arise or are enhanced in the basal ganglia,
which rhythmically drive other regions or nuclei (depicted by arrows). Frequencies under 10 Hz
(i.e., rest tremor frequency at 3–7 Hz) arise in the basal ganglia and spread to the cortex to
produce an antikinetic effect. The STN is driven by oscillations in the cortex in the beta band
(11–30 Hz) that can also be considered antikinetic. Oscillations in the gamma band (�70 Hz)
that facilitate movement (prokinetic) are suppressed or absent in Parkinson’s disease (thin blue
arrow). Thal, Motor thalamus; glu, glutamatergic (excitatory) pathway; GABA, inhibitory
pathway.
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tiunit saccade-related activity. This pattern suggests that, as small
focal zones become activated, they become disengaged from gen-
eral local field potential synchrony during the eye movements. A
role for these oscillations during normal motor behavior is sug-
gested by these findings, but it is notable that, during the oculo-
motor fixation before saccades were made, high levels of syn-
chrony were maintained. Comparisons of spike timing and the
simultaneously recorded local field potential oscillations, made
as the monkeys rested, showed that some striatal neurons fired
in-phase with the oscillations. In pathological conditions, such as
the case of dopamine depletion, such oscillations probably en-
train more neurons to give rise to pathological oscillatory spike
activity. If so, the local field potential oscillations could serve the
function of filtering striatal input– output transmission.

Although pathological basal ganglia activity has been well
characterized in studies of parkinsonian patients or animal mod-
els of the disease, the dynamics of the modifications undergone
by basal ganglia neuronal activity during the evolution period of
the disease are not known yet. The work presented by Thomas
Boraud characterized the evolution of the spontaneous and
movement related activity in the GPi during a slow dopamine
depletion induced by daily injections of small doses of MPTP.
Similar to the findings of Raz et al. (2000), the average firing rate
of GPi neurons did not vary significantly after MPTP treatment.
Oscillatory activity was found in several frequency ranges (4 –9
and 11–14 Hz), with discrepancies between both monkeys. One
monkey displayed a substantial synchronized oscillatory activity
at �14 Hz, whereas the other displayed mainly oscillations in the
4 –9 Hz range. The increase of these correlated oscillatory activi-
ties was progressive and monotonic as the disease severity in-
creased with daily injections of MPTP but occurred later than the
onset of bradykinesia. These two facts taken together [(1) the
inter-individual variability and (2) the lack of correlation be-
tween the occurrence of motor impairment and the significant
increase of synchronized oscillations] argue against a direct rela-
tionship between the pathological oscillatory activity and parkin-
sonian bradykinesia. However, it raises the question of the rela-
tionship between these 4 –9 and 11–14 Hz oscillations and
parkinsonian tremor because tremor onset can occur simulta-
neously or even can precede bradykinesia in parkinsonian pa-
tients (Agid, 1991).

A recent study by Joshua Goldberg set out to examine the
relationship between neuronal synchronization and local field
potentials in the basal ganglia of MPTP primates (Goldberg et al.,
2004). Because cortical local field potentials are a reflection of
synchronous neuronal activity that gives rise to the waveforms of
the EEG, it is likely that the local field potentials recorded in the
basal ganglia reflect synchronous spiking activity in these nuclei.
Enhanced neuronal synchrony is an established correlate of par-
kinsonism (Raz et al., 1996, 2000; Hurtado et al., 1999; Levy et al.,
2000, 2002; Goldberg et al., 2002). Using the correlation-based
method of partial spectra analysis, this study demonstrated that
the abnormal oscillatory (�10 Hz) correlations between pairs of
neurons in the basal ganglia in the MPTP condition could be
statistically accounted for to a large extent by the coupling of each
neuron to the local field potentials. One interpretation of this
finding is that, in the parkinsonian condition, the basal ganglia
and cortex become more closely entrained by global brain dy-
namics, which are reflected in the widespread local field
potentials.

One hypothesis put forth by Peter Brown is that the oscilla-
tions in the beta band are enhanced to such an extent in Parkin-
son’s disease and that voluntary movements are not generated

because the motor command for initiation cannot override the
enhanced oscillatory state (Fig. 1B). The desynchronization in
beta band required to initiate movement cannot “break through”
the elevated threshold, leading to the poverty of movement char-
acteristic of the disorder. In this model, both dopaminergic med-
ication and STN stimulation are hypothesized to decrease the
pathological oscillations and facilitate movement in parkinso-
nian patients by decreasing the beta band and enhancing the
gamma band. Several studies from Dr. Brown’s group have sup-
ported this theory (Brown, 2003). In one recent study, Parkin-
son’s disease patients made voluntary movements on a go/no-go
task while local field potential recordings were made from the
contacts in STN (Kuhn et al., 2004). Beta band activity decreased
just before movement onset on the “go” tasks in which move-
ments were executed, and the onset of the desynchronization
correlated with reaction time latencies on the task. In the no-go
task, there was only a transient decrease in beta power, which
rebounded. These results draw a closer link between the genera-
tion of voluntary movement and the beta-band desynchroniza-
tion in STN.

Following on from this hypothesis, electrical stimulation at 20
Hz should produce an enhancement of beta synchronization in
the basal ganglia, which should exacerbate Parkinson’s disease
symptoms (“antikinetic”), and stimulation in the 60 – 80 Hz
range should enhance movements (“prokinetic”). Indeed, recent
work from Brown’s group indicates that STN stimulation at 20
Hz increases GPi synchrony (Brown et al., 2004). Whether this
increased synchrony is associated with an anti-kinetic effect was
not directly determined, because assessment of motor behavior
in these patients would have resulted in desynchronization at
beta-band frequencies and confounded the measurement of syn-
chrony. Stimulation of the STN at higher frequencies (�70Hz)
had the opposite effect on GPi, that is, it suppressed the sponta-
neous ongoing local field potential oscillations in the 11–30 Hz
range. High-frequency STN stimulation is well known to pro-
duce relief of Parkinson’s disease motor symptoms. Because
much of this evidence is correlative and circumstantial, addi-
tional studies in patients and experimental models of Parkinson’s
disease are warranted (Brown et al., 2004).

In summary, it is becoming increasingly clear that the basal
ganglia sustain certain cortically derived oscillations, as detected
in the recordings from individual neurons and local field poten-
tials. The functional significance of oscillations in this range of
frequencies remains to be elucidated and will shed light on the
pathophysiology of movement disorders and solve some of the
puzzles of therapeutic surgical intervention.
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