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A model is presented for the prediction of the fluid dynamic behaviour of binary
suspensions of solid particles fluidized by Newtonian fluids. The equations of motion
for the fluid and solid phases are derived by extending the averaged two-fluid equa-
tions of change for identical spheres in Newtonian fluids developed by Anderson
and Jackson and Jackson. A new closure relationship for the fluid–particle interaction
force is employed and a new numerical algorithm is developed to control the solid
compaction in each particle phase. The article also presents a comparison between
three different equations of closure for the particle–particle drag implemented within
the model. Predictions of the fluidization behavior obtained by the proposed model are
validated against experimental results in terms of solid mixing and segregation, bed
expansion and bubble dynamics. Two-dimensional CFD simulations are performed in a
bed of rectangular geometry using ballotini with particle sizes of 200 and 350 lm.
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Introduction

The availability of advanced commercial computational
fluid dynamics (CFD) software and of faster computer pro-
cessors have revolutionized scientific research in the field of
multiphase flow. CFD has become an indispensable tool, for
researchers and engineers alike, in solving many complex
problems of academic and industrial interest in areas such as
fluidization, combustion, oil flow assurance as well as aero-
space science. In the field of fluidization, in particular, the

use of CFD has pushed the frontier of fundamental under-
standing of fluid–solid interactions and has enabled the cor-
rect theoretical prediction of various macroscopic phenomena
encountered in fluidized beds. Indeed many CFD simulations
of monocomponent fluidized systems have been carried out
by researchers covering the whole range of Geldart classified
powders with great success.1–5 More recently, the simulation
of industrial monosize powders has also been successfully
tackled by Owoyemi et al.6 using a Eulerian–Eulerian
approach. The various two-fluid models employed by the
above-named authors have common origins in the spatially
averaged Eulerian–Eulerian equations of motion first put for-
ward by Anderson and Jackson7 and successively rigorously
derived by several other researchers.8–14 Such equations, as it
is well known, are not mathematically closed and necessitate
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empirical closures for contributions mainly related to the in-
ternal stress associated to each phase and to the fluid–particle
interaction force. The need for suitable closures, indispensa-
ble for predicting the dynamics of multiphase systems with a
satisfactory degree of accuracy, has stimulated a vast amount
of original research that has led to the pervasiveness of many
empirical closures in literature today.

A monosize system of particles seldom occurs in a fluid-
ized bed of practical importance. Industrially operated fluid-
ized beds typically consist of particles, which have a wide
size distribution as well as different densities. The phenom-
enon of mixing and segregation becomes of major importance
in these nonideal systems. A vast amount of experimental
work has already been carried out by many authors looking
at the behavior of binary mixtures in gas-fluidized beds and
in particular at the segregation rate, which they display.15–18

The rate of segregation is often measured using the bed
freeze test, where particles are taken from the fluidized bed
layer by layer and sieved separately to measure the concen-
trations of different species.19 The computational modeling
of binary systems, conversely, has not met with the same
resounding success. The continuum modeling of binary mix-
tures is typically carried out using two approaches. The first
is characterized by the use of separate momentum equations
to cater for each particle species, whilst the second makes
use of averaged mixture properties for the formulation of a
mixture momentum equation coupled with the use of aver-
aged constitutive relations.

Each of the two modeling approaches described above
has been applied separately to simulate particulate flow
patterns within gas-fluidized beds. The first approach based
on separate momentum equations has been employed by a
few authors.20–23 Their investigations, carried out using
Geldart Group D particles, report good model predictions
with a limited set of experimental measurements. The sec-
ond approach based on the mixture momentum balance has
been employed by van Wachem et al.24 to predict the flow
of a binary-fluidized suspension of Geldart Group B
particles. Results from the work showed good predictions
with regard to bed expansion and minimum fluidization
velocity.

The relatively little research conducted in the field of CFD
involving binary mixtures and more generally mixtures with
a particle size distribution (PSD) does not yet allow accurate
theoretical predictions of the flow behavior of such systems.
The work presented in this article is primarily concerned
with the modeling of noncohesive binary-fluidized suspen-
sions of solid particles; the approach adopted is that based
on separate equations of motion as opposed to the mixture
approach previously described. The authors propose to
address some conceptual questions that naturally arise when
modeling binary mixtures and which relate, for instance, to
the nature of the particle–particle drag and of the internal
stress associated to each phase.

The use of separate momentum equations for each particu-
late phase in the modeling of binary mixtures requires an
extra term to account for the collisions between particles that
belong to different size classes. This extra contribution
should be termed particle–particle interaction force, but is
often referred to as particle–particle drag force. Indeed,
strictly speaking, the two forces are not equivalent, since the

former might encompass several contributions, of which the
drag is just one. The earliest attempt to quantify the nature
of this force was made by Soo25 where a derivation was
given for the force acting on a single particle of species F1
in a cloud of colliding particles of species F2. This was fol-
lowed by a similar development by Nakamura and Capes.26

An experimentally related theoretical development was carried
out by Arastoopour et al.,27 where a semiempirical expression
was derived for dilute gas–solid systems. Several expressions
have since been put forward by many authors20–22,28,29 with
most correlations being variations of earlier pioneering devel-
opments.

In the first section of this article, a derivation of the
Eulerian–Eulerian averaged equations of motion for binary
mixtures of particles in Newtonian fluids is presented. These
equations are an extension of those originally put forward by
Anderson and Jackson7 and Jackson8,9 for systems of mono-
size particles in Newtonian fluids, where the averaged equa-
tions of conservation for mass, linear and angular momentum
were derived and phase interactions modeled phenomenologi-
cally. In our derivation, however, only the mass and linear
momentum equations of conservation shall be considered.
These suffice to provide a rich description of the fluid–solid
interaction forces at play in binary mixtures and a logical
justification for the emergence of terms such as the particle–
particle interaction force or the stress tensors associated with
each phase.

A brief description of a new fluid dynamic model devel-
oped by the authors for binary-fluidized mixtures and imple-
mented in the commercial CFD code CFX 4.4 follows there-
after. In this model, the fluid dynamic interaction between
fluid and solid is based on the ‘‘elastic force’’ concept origi-
nally proposed by Wallis.30 The solid stress tensors are
neglected, and a new numerical scheme is proposed to con-
trol the solid compaction in each particle phase.

A substantiation of the effect of the particle–particle drag
force on the mixing and bubble dynamics of a binary gas–
solid fluidized bed concludes the work. Here, three different
closures available in literature and catering for this contribu-
tion are considered. The simulations are compared with a ref-
erence simulation where interphase particle–particle interac-
tions are entirely neglected, and with dedicated experimental
results. The particles used for experiments and computational
studies belong to the Geldart Group B classification and are
200 and 350 lm in diameter respectively and have a density
of 2500 kg/m3.

Equations of Change for Binary Mixtures
in Newtonian Fluids

In this section, we seek to derive the averaged equations
of motion for binary mixtures to elucidate the origin of the
internal stress, fluid–particle, and particle–particle interaction
forces at play in such systems and provide a mathematical
basis for these contributions. The formal process of local
space averaging is used to obtain the macroscopic equations
of conservation for binary systems from microscopic balance
equations. This form of local averaging was first advanced
by Anderson and Jackson7 and has since been used by many
authors, though in slightly different form. In this method, a
weighting function is introduced to obtain the averaged val-
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ues of point properties, which could be scalar, vectorial, or
tensorial. The weighting function, in this instance, is used as
a device to give ‘‘weight’’ to elements closer to the spatial
position wherein the average is computed. The point varia-
bles are averaged over regions, which are large with respect
to the particle diameter but small with respect to the macro-
scopic length scale of interest.

In what follows, we extend the original work by Jackson8,9

by deriving new spatially averaged Eulerian–Eulerian
equations of motion suitable for binary systems of solid
particles fluidized by Newtonian fluids. We also propose a
new contact force in the particle phase momentum equa-
tions that accounts for the force exerted by particles that
belong to different solid phases at their mutual point of
contact. In the mathematical derivation, the convention is
adopted that repeated lower indices are summed over the
values one to three; upper indices are not to be regarded
as dummy indices implying summation. Two arbitrary size
classes, F1 and F2, shall be considered, which are represen-
tative of the two different types of particles present in the
mixture.

Averaged equations of motion for the fluid phase

By applying the averaging scheme described by Jack-
son8,9 to a binary system, we now derive the locally aver-
aged equations of conservation for mass and linear momen-
tum for the fluid phase. To this end, the original averaging
procedure must be slightly modified to suit the physical sys-
tem at hand. Most of the modifications, however, are quite
straightforward and shall be omitted for the sake of brevity;
the mathematical passages shall be described in detail only
when the derivation substantially differs from the original
formulation.

In the assumption of incompressibility, the averaged conti-
nuity equation for the fluid phase takes the form:

@e
@t

þ @

@xk

�
ehukif

�
¼ 0 (1)

where e(x,t) is the fluid volume fraction and hukif (x,t) is the
kth component of the averaged fluid velocity. It is worth
stressing that, as indicated, both variables are functions of
spatial position and time; to simplify the mathematical nota-
tion, however, the dependence on either or both independent
variables will be often left out.

The averaged dynamical equation for the continuous phase
is obtained by averaging the fluid microscopic linear momen-
tum equation of conservation; the resulting equation is:

qf
@
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@xk

�
ehuiif hukif

�� �

¼ @hSifik
@xk

� n1hf fi iF1 � n2hf fi iF2 þ eqfgi (2)

where qf is the fluid density, n1(x,t) and n2(x,t) are the parti-
cle number densities (number of particles per unit volume)
of phases F1 and F2, respectively, and gi is the ith component

of the gravitational acceleration. The terms n1hfifiF1 (x,t) and
n2hfifiF2 (x,t), related to the fluid–particle interaction force,
are given by the expression:

njhf fi iFjðx; tÞ ¼
X
Fj

�
g
���x� xcj

��� Z
Sj

nirðyÞnrðyÞdSy
	
;

j ¼ 1; 2 (3)

Here and in what follows, g(|x 2 y|) denotes the weighting
function used in the averaging procedure; the norm |x 2 y|
represents the separation of two points in space: x being the
spatial point in which the average is worked out and y being
a mute variable of integration. Sj(t) and xcj(t) indicate
respectively the surface and the position of the center of the
particles belonging to the generic phase Fj. nr(y,t) denotes
the rth component of the outward unit normal n(y,t) to the
particle surface; finally, nir(y,t) is the irth component of
the point fluid stress tensor. The last term appearing on
the RHS of Eq. 2, hSifik(x,t), represents the ikth component
of the effective fluid stress tensor. Its expression is the
following:

hSifik ¼ ehnikif þ n1hsfikiF1 þ n2hsfikiF2

� 1

2

@

@xm
n1hsfikmiF1 þ n2hsfikmiF2

� �
� eqfhu0iu0kif (4)

Here u0i(x,t) and u0k(x,t) are the ith and kth components of the
fluid velocity fluctuation u0(x,t) about the average value
huif(x,t). The term eqfhu0iu0kif(x,t) is analogous to the ‘‘Reyn-
olds stress contribution’’ in turbulent flow and is representa-
tive of the momentum transfer due to the fluctuations of the
fluid velocity about its local mean value. The terms
n1hSfikiF1(x,t), n2hSfikiF2(x,t), n1hSfikmiF1(x,t), and n2hSfikmiF2 (x,t)
are defined as:

njhsfikiFjðx; tÞ ¼ aj
X
Fj

�
g
���x� xcj

��� Z
Sj

nirðyÞnrðyÞnkðyÞdSy
	
;

j ¼ 1; 2 (5)

njhsfikmiFjðx; tÞ

¼ a2j
X
Fj

�
g
���x� xcj

��� Z
Sj

nirðyÞnrðyÞnkðyÞnmðyÞdSy
	
;

j ¼ 1; 2 (6)

where aj is the radius of the particles belonging to phase Fj.
It is evident that finding an analytical closure for the effec-

tive fluid stress tensor appears to be a problem of extraordi-
nary complexity; however, a closure has been derived by
Jackson8,9 on theoretical grounds in the limiting case of
diluted, Stokesian monocomponent mixtures fluidized by
Newtonian fluids. Appropriate closures for the terms on the
RHS of Eq. 2 are described later on in the next section (Clo-
sure Relationships section). We shall now apply the same

1926 DOI 10.1002/aic Published on behalf of the AIChE August 2007 Vol. 53, No. 8 AIChE Journal



principles used in deriving the averaged fluid phase equations
of motion to the case of the solid phases.

Averaged equations of motion for the particle phase

We now go on to derive the mass and linear momentum
averaged equations of conservation for each particle species
present in the system. The equations shall be developed by
making reference only to phase F1 as the mathematical
manipulations involved are the same for both phases. Since
the derivation of the averaged continuity equation is quite
straightforward, we shall omit the mathematical details and
provide, as already done in the previous section, directly the
final result. The equation, expressed in terms of particle
phase averages (for more detail about this kind of averaging
procedure we refer to Jackson8,9) takes the form:

@n1
@t

þ @

@xk

�
n1hukiF1

�
¼ 0 (7)

The linear momentum averaged equation of conservation for
the particle phase is, conversely, less easy to obtain and
presents novel features, which are not found in the original
formulation developed by Jackson.8,9 Accordingly, in the in-
terest of clarity, we shall report in this instance the mathe-
matical derivation in sufficient detail.

In writing the linear momentum equation for the particles
present in the binary mixture, Newton’s second law of
motion is applied. The forces to be taken into consideration
include the traction forces exerted by the fluid on the par-
ticles, the forces arising as a result of collisions between par-
ticles of the same species at their mutual points of contact,
those arising as a result of collisions between particles of dif-
ferent species at their mutual points of contact and the effect
of gravity. Thus, the linear momentum equation for the
generic particle p of phase F1 takes the form:

q1V1

dupi
dt

¼
Z
S1

nirðyÞnrðyÞdSy

þ
X
q6¼p

q2F1

f pqi þ
X
z6¼p

z2F2

f pzi þ q1V1gi (8)

where q1 and V1 are respectively the density and the volume
of the particles of phase F1, and upi(t) denotes the ith compo-
nent of the velocity of the center of the generic particle p.
The first term on the RHS of Eq. 8 is the overall traction
force exerted on the surface of the generic particle p of phase
F1 by the surrounding fluid. The second term is the sum of
the direct contact forces fi

pq(t) exerted on the particle p by
the particles q belonging to phase F1. Finally, the third term
is the sum of the direct contact forces fi

pz(t) exerted on the
particle p by the particles z belonging to phase F2. Indeed
the terms fi

pq(t) and fi
pz(t) do not vanish only for a limited

number of particles, namely those which happen to be in
direct contact with the particle p at the time t of interest.
The third contribution on the RHS of Eq. 8 represents the
additional force that has to be taken into account when con-
sidering binary mixtures. This term, as we shall see, gives
rise to the interphase particle–particle interaction force acting

between the two solid phases (which are, in a Eulerian
framework, continuous and no longer dispersed).

Equation 8 is averaged by multiplying both sides by g(|x 2
xc1|) and by summing over all the particles p belonging to the
phase under consideration (in the present instance F1). Making
use of the particle phase averages advanced by Jackson8,9 and
the relevant theorems presented by the same author, necessary
in the mathematical manipulation of the equation, we obtain:
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(9)

The term n1hfifiF1 (x,t) on the RHS of Eq. 9 is the fluid–particle
interaction force relevant to phase F1, which has its exact ana-
log in Eq. 2. The last two terms of the equation, instead, refer
respectively to the resultant forces arising from the particle–par-
ticle contacts between (a) particles belonging to the same phase
and (b) particles belonging to different phases. In consideration
of this, such contributions are conceptually different; the former
is representative of the stress internal to the phase under exam,
whereas the second can be interpreted as a contact force acting
between the two Eulerian solid phases. In order for the solid
stress tensor associated to phase F1 to appear explicitly in Eq. 9,
further mathematical manipulations are required; these, again,
are a quite simple extension of the mathematical formulation
originally advanced by Jackson8,9 for monocomponent systems
and therefore shall be omitted. The result is
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where

n1
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(12)

Here nk
pq(t) and nm

pq(t) are respectively the kth and mth com-
ponents of the unit vector:
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npqðtÞ ¼ 1

a1
xpqðtÞ � xc1ðtÞ½ � (13)

where xpq(t) is the position of the point of mutual contact
between the particles p and q.

We finally have to tackle the last term on the RHS of Eq.
9. This contribution is representative of the contact force act-
ing between phases F1 and F2. Accordingly, the force must
fulfil the principle of action and reaction; that is, the follow-
ing relationship should hold:

n1hf pi iF1ðx; tÞ ¼
X
F1

�
g
���x� xc1

��� X
z 6¼p

z2F2

f pzi ðtÞ
	

¼ �
X
F2

�
g
���x� xc2

��� X
p6¼z

p2F1

f zpi ðtÞ
	

¼ �n2hf pi iF2ðx; tÞ (14)

It is not difficult to see that such condition cannot be met.
Even if Newton’s third law of motion guarantees that fi

pz(t)
is equal and opposite to fi

zp(t), Eq. 14 is not fulfilled, since
g(|x 2 xc1|) differs from g(|x 2 xc2|). In other words, since
in the particle averages of Eq. 14 the forces fi

pz(t) and fi
zp(t)

are not given the same weight (in so much as xc1 = xc2),
their being equal and opposite does not suffice to render the
summations equal to one another in magnitude. This con-
ceptual paradox is very similar to the one encountered by
Jackson8,9 in connection with the interaction force between
fluid and particles in monocomponent systems. It is intrinsi-
cally related to the way in which the averages are mathe-
matically performed, and directly stems form the use of
particle averages rather than solid averages in the deriva-
tion of the macroscopic dynamical equations for the dis-
persed phases of the system. For more details concerning
these alternative averaging procedures, their advantages and
drawbacks, and the implications that their employment
entails, we refer to Jackson8,9. In our specific instance, to
overcome the paradox, we operate as follows; we first
expand the function g(|x 2 xpz|) as a Taylor series in the
variable xpz(t), representative of the position of mutual con-
tact between the generic particle p of phase F1 and the
generic particle z of phase F2, about the point xc1(t):

g
���x� xpz

��� ¼ g
���x� xc1

���� a1
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þ 1
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where nk
pz(t) and nm

pz(t) are respectively the kth and mth com-
ponents of the unit vector npz(t) defined as per Eq. 13. We
then introduce Eq. 15 into the LHS of Eq. 14, retaining only
the first three terms of the series; this leads to
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(19)

Upon substitution of Eq. 16 into Eq. 10, we have:
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¼ @hSiF1ik
@xk

þ n1hf fi iF1 þ n1hf pi iF12 þ n1q1V1gi (20)

where the termhSiF1
ik (x,t) is defined by:

hSiF1ik ¼ n1hspikiF1 þ n1hrpikiF1

� 1
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@

@xm
n1hspikmiF1 þ n1hrpikmiF1

� �
� n1q1V1hu0iu0kiF1 (21)

and denotes the ikth component of the effective stress tensor
for the solid phase F1. The term n1h f pi iF12 (x,t) fulfills the
principle of action and reaction and therefore can be
regarded as the effective interphase interaction force between
the solid phases. The remaining terms of the Taylor series,
which constitute the LHS of Eq. 16 are instead lumped
within the effective solid stress tensor of the phase under
exam. For completeness, we also report the corresponding
averaged equation of conservation for the linear momentum
pertaining to phase F2:

q2V2

@
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�
n2huiiF2

�
þ @

@xk

�
n2huiiF2hukiF2

�� �

¼ @hSiF2ik
@xk

þ n2hf fi iF2 þ n2hf pi iF21 þ n2q2V2gi (22)

where attention should be drawn to the fact that for the prin-
ciple of action and reaction the following relation holds:

n2hf pi iF21ðx; tÞ ¼ �n1hf pi iF12ðx; tÞ (23)

Using the following approximate relationship:

/jðx; tÞ ¼ njðx; tÞVj (24)

where /j (x,t) represents the volume fraction of phase Fj, the
Eulerian–Eulerian averaged equations of motion for binary-
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fluidized mixtures of solid particles in Newtonian fluids can
be summarized, in absolute notation, as shown in Table 1. At
first inspection, the analytical form of the final equations
does not differ significantly from other formulations already
present in literature (this is somewhat encouraging since for-
mally the general expressions of such equations is indeed
well established); the method of averaging, however, consid-
erably does. To our knowledge, no other group has applied
the averaging scheme put forward by Jackson8,9 to derive
averaged equations of motion for binary systems. In our
opinion, the application of such a scheme, along with the
various considerations previously presented, adds consider-
able insight into the meaning of each of the terms featuring
in the equations. Moreover, the particle phase method of
averaging, which we advocate, seems to us particularly suita-
ble for solid-fluidized suspensions, since, being based on the
Lagrangian equations of motion for material bodies, it cap-
tures most effectively the physics underlying the dynamics of
particulate systems. Appropriate closures, which will be
applied to the case studies, will now be discussed in the next
section.

Closure Relationships

Effective stress tensor closures

Equations 4 and 21 reveal quite clearly the complex nature
of the internal stress associated with each Eulerian phase;

this complexity arises from the several different contribu-
tions, which ultimately make up the effective stress tensors
yielded by the averaging process. This renders the problem
of finding appropriate closure relationships, especially based
on theoretical grounds, extremely difficult. A vast amount of
theoretical research shall probably have to be conducted
before the attainment of satisfactory closures. A first approxi-
mation commonly employed in the interim is to assume a
Newtonian behavior for each continuum, albeit there are
clear indications that such a view is over-simplistic. In this
approach, the effective stress tensors take the form:

hSif ¼ �hpif þ lf rhuif þ rhuif
� �T

� �

þ jf � 2

3
lf

� �
r � huifI (25)

hSiFk ¼ �hpiFk þ lk rhuiFk þ rhuiFk
� �T

� �

þ jk � 2

3
lk

� �
r � huiFkI (26)

and the closure problem reduces to finding appropriate con-
stitutive expressions for the pressure hpi, the shear viscosity
l, and the dilatational viscosity j pertaining to each phase.
The fluid is usually considered incompressible, accordingly
its pressure need not be specified constitutively; moreover, lf
is often assumed to be constant and jf entirely neglected.
For the solid phase, conversely, more elaborate constitutive
expressions have been developed; some of them, for instance,
have been derived from the application of the nonequilibrium
kinetic theory for granular gases.31 Most of these closures,
however, cater for monocomponent systems and their exten-
sion to binary solid suspensions is not straightforward. In the
present work, as customary, the fluid has been assumed
incompressible, the shear viscosity constant and equal to that
of the pure fluid, and the dilatational viscosity negligible.
The internal stress associated with the solid, on the other
hand, has not been accounted for due to the lack of fully-
validated equations of closures in literature.

Fluid–particle interaction force closures

The fluid–particle interaction force accounts for the result-
ant force, which is exerted by the fluid on the particles of
phase Fk. In this work, this force is assumed to be made up
of three contributions, namely buoyant force, drag force, and
elastic force:

nkhf fiFk ¼ nkhf siFk þ nkhf diFk þ nkhf eiFk (27)

It is worth pointing out that other contributions to the fluid–
particle interaction force should, at least in principle, be con-
sidered; we mention, for instance, the virtual mass force, the
lift force, the Faxen force, and a history-dependent term anal-
ogous to the Basset force for the motion of isolated particles.
In the present analysis, however, these additional contribu-
tions have all been neglected. With regard to the latter, it
seems reasonable to believe that for dense fluidized suspensions,

Table 1. Equations of Motion for a Binary System

Continuity Equation - Fluid Phase

@e
@t

þr � ðehuifÞ ¼ 0

Continuity Equation - Solid Phase k

@/k

@t
þr � ð/khuiFk Þ ¼ 0

Momentum Equation - Fluid Phase

qf
@

@t
ðehuifÞ þ r � ðehuifhuifÞ

� �
¼ r � hSif � n1hf fiF1 � n2hf fiF2 þ eqfg

Momentum Equation - Solid Phase 1

q1
@

@t
ð/1huiF1 Þ þ r � ð/1huiF1 huiF1 Þ

� �
¼ r � hSiF1 þ n1hf fiF1 þ n1hf piF12 þ /1q1g

Momentum Equation - Solid Phase 2

q2
@

@t
ð/2huiF2 Þ þ r � ð/2huiF2 huiF2 Þ

� �
¼ r � hSiF2 þ n2hf fiF2 � n1hf piF12 þ /2q2g
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the space-averaging of history-dependent forces would result
into a vanishing contribution; indeed, the averaging proce-
dure would most probably erase any historical effect of the
motion of the particles on the fluid in their immediate neigh-
bourhood.7,32 For all the remaining contributions, exact
expressions have been derived analytically by some authors
for the case of single particles (usually of spherical or nearly
spherical shape) in nonuniform flows. These closures, how-
ever, apply to very specific fluid dynamic conditions; for
instance, vanishing or very low Reynolds numbers.33,34 These
results have been used more recently by some researchers to
develop analytically space-averaged closures catering for
solid monocomponent-fluidized suspensions; we mention, for
instance, the work of Zhang and Prosperetti35,36 and Jack-
son.8,9 These expressions, however, are applicable under very
restricting assumptions such as vanishing viscosity,35 small
Stokes and Reynolds numbers8,9,36 or low particle concentra-
tions.8,9,35,36 Generalizing these expressions to other fluid
dynamic conditions is by no means straightforward and often
raises conceptual issues (related, for example, to frame indif-
ference and objectivity). It is interesting to report, for exam-
ple, that the lift force on an isolated spherical particle takes
quite different functional forms in the inviscid and low Reyn-
olds number cases32,37,38; thus, finding an expression of gen-
eral validity for a space-averaged closure of such term still
appears, for the time being, to be a daunting task. The virtual
mass force, conversely, has a quite well established func-
tional form, even if empirical expressions for a concentra-
tion-dependent virtual mass coefficient are still to be found.
In light of these considerations, as already said, forces other
than those retained in Eq. 27 have been neglected; this
approximation is indeed anything but uncommon and is
found in the work of several research groups.22,24,31,39–42

We now describe the closures used in the present work to
express the three contributions to the fluid–particle interac-
tion force reported in Eq. 27. The buoyant force associated
to the phase Fk is related to the isotropic part of the effective
fluid stress tensor and the solid volume fraction /k as fol-
lows:

nkhf siFk ¼ �/krhpif (28)

Equation 28 is a generalization of one of the closures com-
monly used for such a force. The drag force is expressed, as
usual, as the product of a drag coefficient bk and the relative
slip velocity between the fluid and the particle phase of interest.

nkhf diFk ¼ bk huif � huiFk
� �

(29)

Here the closure used for the interphase momentum transfer
coefficient is that derived by Owoyemi,43 and Owoyemi and
Lettieri44 from an expression originally advanced by Di
Felice45 for the unrecoverable pressure drop per unit length in a
suspension. The expression is applicable for both fixed and flu-
idized beds and has the form

bk ¼
17:3

Rek

� �a

þð0:336Þa
� �1

a qf
���huif � huiFk

���/k

dk
e�1:8 (30)

where dk is the diameter of the particles of phase Fk. The Reyn-
olds number and the exponent a are given by

Rek ¼
qfe

���
u�f � 

u
�Fk ���dk

lf
; (31)

a ¼ 2:55� 2:1 tan hð20e� 8Þ0:33
h i3

(32)

The elastic force is a specific feature of the present model. The
concept of elasticity associated to multiphase flow, and in par-
ticular to solid fluidized suspensions, was initially introduced
by Wallis30 and thereafter further developed by Foscolo and
Gibilaro,46 and Gibilaro.47 It originally stems from a theoretical
investigation into the hydrodynamic stability of homogeneous
fluidized beds. The first formulation of the averaged linear mo-
mentum equations of conservation, and more specifically of the
fluid–particle interaction force featuring in them and compris-
ing solely the drag and the buoyant forces, leads to an intrinsic
instability of the homogeneous state of fluidization. The inclu-
sion of additional contributions to the interaction force such as
those previously discussed (virtual mass force, lift force and the
like) does not bring about any significant qualitative change.
This appears to be inconsistent with experimental evidence;
there are, in fact, many systems (fluidized by either gas or liq-
uid) that are found to expand in an unambiguously homogene-
ous fashion (at least, from what can be experimentally
observed) up to a critical, often well-defined value of the fluid
volume fraction. The physical arguments put forward by
Foscolo and Gibilaro46 led to the introduction of an additional
force, the elastic force, related to the gradients in the suspension
void fraction, which are generated when the homogeneity of
the system is lost at the macroscopic length scale. The inclusion
of this contribution into the fluid–particle interaction force
results into a simple criterion for discriminating between stable
and unstable fluidization. The original formulation of the elastic
force closure, developed for monodimensional systems of
monosized particles near equilibrium conditions, is not
adequate, however, for the study of the dynamics of fluidized
suspensions far from equilibrium. A revised, multidimensional,
and somewhat generalized formulation of the force has been
subsequently advanced by Mazzei et al.48 for monocomponent
systems. The force is therein regarded as a component of the
drag force; more specifically, the contribution related to voi-
dage gradients within the suspension, which arise under none-
quilibrium conditions. The approach of Mazzei et al.48 has then
been adopted and extended by Owoyemi,43 and Owoyemi and
Lettieri44 for binary mixtures; the closure takes the following
expression:

nkhf eiFk ¼ Ek re � hndiFk
� �

hndiFk (33)

where hndiFk is the unit drag force vector pertaining to the solid
phase Fk, the elastic modulus Ek is given by

Ek ¼ � 2

3
dk � 3:8

e
þ v

� ����nkhf diFk
���� /kðqk � qfÞg

� �
(34)

and the functional form of v is
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v ¼ 1

a
� 1

a
ln

17:3

Rek

� �a

þð0:336Þa
� �

þ
17:3
Rek

� �a
ln 17:3

Rek

� �
þ ð0:336Þa ln ð0:336Þ

17:3
Rek

� �a
þð0:336Þa

8><
>:

9>=
>;

3 6:3 tan h ð20e� 8Þ0:33
h i2� 	

fsec h2ð20e� 8Þ0:33gf6:6ð20e� 8Þ�0:67g ð35Þ

Particle–particle interaction force closures

In the present model, the only constituent of the particle–
particle interaction force, which has been taken into consider-
ation, is the interphase drag. The force is expressed as the
product of a drag coefficient f and the relative slip velocity
between the two solid phases:

n1hf piF12 ¼ f huiF2 � huiF1
� �

¼ �n2hf piF21 (36)

Several investigators have put forward empirical correlations to
account for the momentum transfer coefficient f. In this article,
three drag constitutive equations proposed by Gidaspow
et al.,20 Bell,21 and Syamlal29 have been compared. A summary
of the closure relationships proposed by these researchers is
given in Table 2. In the correlation advanced by Syamlal,29 the
radial distribution function go derived by Lebowitz

49 was used.

Solid phase compaction control

As previously pointed out, in the present work, the internal
stress associated with the solid phases has been neglected.
This might give rise to local over-compaction in some
regions of the simulated fluidized bed. To counter this effect,
a new numerical algorithm has been developed. The new nu-
merical scheme is based on the algorithm for the excess solid
volume correction originally developed by Lettieri et al.50 for
monocomponent systems. In the original algorithm, the redis-
tribution of the solid volume in excess within each cell of
the computational grid is carried out after each time step for
cells where the solid volume fraction / is greater than the
maximum compaction value /max set by the user. The cor-
rection is expressed in terms of volume and not mass, since
the system is assumed incompressible. The redistribution of
the excess volume, defined as /ex 5 / 2 /max, is in the
form of an overall volume balance for the particle phase and
is active within each cell where the overpacking condition is
detected. In a 2D computational domain with cells of equal
size, the cell in question gives away its overall particle phase
volume excess to the neighboring cells in equal parts, i.e. the
excess divided by the number of neighbouring cells, and in
turn receives the relevant part of the excess coming from
the neighbouring cells. The corrected value of the solid volume
fraction in the cell is then computed on the basis of the value
provided by the code and the net excess solid volume
exchanged between the cell under exam and the neighboring
ones (Figure 1). The balance may be expressed in terms of
solid volume fraction, since all the cells have the same volume.

/new
i;j ¼ /old

i;j � /ex
i;j þ

/ex
iþ1;j

4
þ /ex

i;jþ1

4
þ /ex

i�1;j

4
þ /ex

i;j�1

4
(37)

In the present work, the original algorithm has been extended
for the case of binary systems. The new algorithm allows
dynamic calculation of the total maximum solid-packing
/max
12 in each cell within the computational grid after each time

step. The parameter /max
12 is equal to

/max
12 ¼ /max

1 þ /max
2 (38)

where /max
1 and /max

2 denote the local (i.e., relative to the cell
under exam) maximum value of the solid volume fractions /1

and /2 of phases F1 and F2, respectively. These two parameters
are not known a priori but are computed by the algorithm. The
computation of the instantaneous total maximum solid-packing
is also necessary because each cell of the computational do-
main contains a unique distribution of particles, which varies
in time and from cell to cell. The dynamic control for /12

max is
achieved by implementing the equation proposed by Fedors
and Landel51 for the maximum solid-packing in a binary mix-
ture of spheres reported in Table 2. The numerical solid com-
paction algorithm is described as follows and shown diagram-
matically in Figure 2.

1. The maximum allowable solid compaction F1 and F2

are set manually, e.g. to the value of 0.60, for both phases F1
and F2 present in the mixture.

2. The algorithm collects, as an input, the values of
the local solid volume fractions /old

1 and /old
2 at the current

time step. The values are then used to compute the local
maximum solid volume fraction /max

12 for the mixture, in
each computational cell, using the Fedors and Landel51 equa-
tion.

3. The calculated maximum packing volume fraction for
the mixture is then shared between phases F1 and F2 using a
simple redistribution based on proportionality. The above
enables the calculation of the excess volume fractions /1

ex

and /2
ex.

4. The new corrected solid volume fractions /1
new and

/2
new for each phase is then calculated using Eq. 37.
It is worth noting that the algorithm does not necessarily

drop the excess solid volume out of the cell, but it rather
rearranges the solid volume field so that the solid volume
excess is transported toward regions of the computational
domain where no excess is present.

The strength of this procedure lies in the implementation
of a local numerical correction of the solid volume fraction
only in the computational cells where this is required, with-
out the introduction of additional terms in the equations of
motion (such as additional pressure gradients for the solid
phases) whose closures are still for the time being not
entirely reliable and which would affect the numerical solu-
tion globally.50
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Simulations

In the present study, all the simulations were carried out
using a commercial CFD package, CFX 4.4. The governing

equations described in Table 1 as well as all the closure rela-
tions reported in Closure Relationships section were imple-
mented in the code. A 2D computational grid, in which front
and back wall effects are neglected, was used. The left and
right walls of the domain were modeled using no-slip veloc-
ity boundary conditions for all phases. Dirichlet boundary
conditions were employed at the bottom of the bed to specify
a uniform gas inlet velocity. A pressure boundary condition
was specified at the top of the bed and set to a reference
value of 1.015 3 105 Pa. The distributor was made impene-
trable to the solid phase. A second-order discretization
scheme, SUPERBEE, was used for all equations to improve
the computational prediction of bubble shape and behavior.52

A total of four different simulations was carried out. The flu-
idized bed was initially filled in two layers in which the flot-
sam particles (smaller particles) occupied the bottom half of
the bed, whilst the jetsam particles (bigger particles) occu-
pied the top half of the bed. The particle–particle drag con-
stitutive equations shown in Table 2 were implemented for
three of the cases. A fourth reference simulation was carried
out in which no particle–particle drag was accounted for. All
simulations were performed for a total of 10 s of real time
(this is roughly twice the time required by the simulated sys-
tem to achieve steady-state conditions). The simulations were
carried out using three Dual Processor Dell Xeon P4 3.2
GHz machines. Computational parameters and fluidization
conditions used for the simulations are summarized in Table
3. The grid resolution and time step adopted were based on a
previous work by Lettieri et al.53 The values used are in con-
currence with figures recommended by several other
researchers. We mention, in this regard, the work by
Samuelsberg and Hjertager,54 Enwald and Almstedt,55 van
Wachem,56 Mathiesen et al.,57 and McKeen and Pugsley58 to
name just a few. In the works referred to, the cells size

Figure 1. Computational domain representation of
excess volume correction. Figure 2. Solid compaction correction algorithm.

Table 2. Particle–Particle Drag Models Used in This Work

Gidaspow et al.20

f ¼ Fð1þ eÞ/1q1/2q2ðd1 þ d2Þ2
q1d

3
1 þ q2d

3
2

���huiF1 � huiF2
���

F ¼ 3ð/max
12 Þ1=3 þ ð/1 þ /2Þ1=3

4 ð/max
12 Þ1=3 � ð/1 þ /2Þ1=3

h i

Syamlal29

f ¼
3h1þ eÞ p

2
þ Cf

p2
8

� �
/1q1/2q2ðd1 þ d2Þ2go

2pðq1d31 þ q2d
3
2Þ

���huiF1 � huiF2
���

go ¼ 1

e
þ 3

e2
d1d2

ðd1 þ d2Þ
/1

d1
þ /2

d2

� �

Bell21

f ¼
2ð1þ eÞ/1q1/2q2ðd1 þ d2Þ2 1þ 3

4

/max
12

/1þ/2

� �1=3
� �

ðq1d31 þ q2d
3
2Þ /max

12

/1þ/2

� �1=3

���huiF1 � huiF2
���

The parameter /12
max is assessed using the Fedors and Landel51

equation:

a ¼
ffiffiffiffiffi
d2
d1

r
; X12 ¼ /1

/1 þ /2

/max
12 ¼½ðU1�U2Þþð1�aÞð1�U1ÞU2�½U1þð1�U1ÞU2�X12

U1

þU2

for X12 � U1

U1 þ ð1� U1ÞU2

/max
12 ¼ ð1� aÞ½U1 þ ð1� U1ÞU2�ð1� X12Þ þ U1

for X12 � U1

U1 þ ð1� U1ÞU2

The indices 1 and 2 must be chosen so that the following condition holds:
d1 � d2; F1 and F2 are the maximum values for /1 and /2, respectively.
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length is usually of the order of 1 cm (varying between 0.5
and 4.0 cm); the time step (when specified) is in the range
1.0E 204 s to 1.0E 202 s. In our study, the choice of using
a grid resolution of 0.5 cm and a time step of 1.0E 204 s is
therefore conservative and should be adequate and suffi-
ciently small.

Experimental

The experimental set-up used in this work, shown in Fig-
ure 3, consists of a two-dimensional Plexiglas rectangular
column, 600-mm high, 350-mm wide, and 10-mm thick. The
distributor is a uniformly permeable sintered bronze rectan-
gular plate with a thickness of 3.5 mm. The fluidizing gas,
air, is supplied via rotameters. The gas is dehumidified and
filtered to remove possible impurities present in the stream.
Pressure taps are installed 100 mm apart along the height of
the bed from which pressure readings are collected via an
electronic manometer. A system of two interlocked on/off
valves operated simultaneously is installed on the rig to
allow for instantaneous evacuation of the fluidizing gas dur-
ing the bed freeze tests performed for the analysis of the
mixing and segregation that occurs in the bed.

The binary system investigated is characterized by compo-
nents that differ in size and have the same density. Ballotini

powder samples (PSD reported in Figures 4 and 5) with
mean particle diameter of 200 lm and 350 lm respectively
and density of 2500 kg/m3 were used in the fluidization
experiments. The larger and smaller ballotini particles repre-
sent the jetsam and flotsam particles, respectively. The bed is
initially completely segregated. The flotsam particles are
filled first up to a height of 150 mm; the jetsam particles are
then added on top up to a height of 300 mm. This corre-
sponds to 0.88 and 0.97 kg of the flotsam and jetsam
particles, respectively.

The experiments were carried out at a superficial gas ve-
locity Uo of 0.25 m/s. This value was determined using the
procedure described below based on two semiempirical cor-
relations. The first correlation is the one derived by Wu and
Baeyens,19 which relates an index M representative of the

Table 3. Computational Parameters Used in the
CFD Simulations

Description Symbol Value Units Comments

Gas density qf 1.29 kg/m3

Gas viscosity lf 1.85 3 1025 Pa s
Bed height Hb 0.60 m
Settled bed height Hs 0.30 m
Grid cell size Dx and Dy 0.005 m Square cells
Time step Dt 1024 s
Superficial
gas velocity Uo 0.25 m/s

Coefficient of
restitution e 0.97 – Syamlal29

Coefficient of
friction Cf 0.15 – Syamlal29

Figure 3. Experimental apparatus: (A) Windbox; (B) Flu-
idized bed; (C) Freeboard.

Figure 4. Particle size distribution of the flotsam
powder.

Figure 5. Particle size distribution of the jetsam powder.
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bed mixedness (whose formal definition is given in Mixing
and Segregation section under Results and Discussion
section) to the visible bubble flow rate QB/A throughout the
bed, which is thought to be the real driving force behind
mixing and segregation:

M ¼ 1� 0:0067dR1:33
QB

A

8>: 9>;�0:75

(39)

In this last equation, dR is the ratio d1/d2 of the larger diame-
ter to the smaller diameter of the particles. The second corre-
lation was used to evaluate QB/A and is a modification of the
original correlation derived in the two-phase theory of fluid-
ization proposed by Toomey and Johnstone59 and succes-
sively developed by Davidson and Harrison.60 The modified
correlation takes the form:

QB

A
¼ cðUo � UmfÞ (40)

where Umf is the minimum fluidization velocity of the system
and c is a throughflow empirical corrective factor. The two-
phase theory was a first attempt at quantifying QB/A. The
theory modeled a fluidized bed as consisting of an emulsion
phase of voidage emf, wherein the fluid flow rate is equal to
that at incipient fluidization conditions and a bubble phase,
which carries the additional flow of fluid. The visible bubble
flow rate was considered to be equal to the excess gas flow
above that required for minimum fluidization, i.e. c 5 1 in
Eq. 40. It was noted, however, that in practice QB/A was
rather smaller than the one predicted by the original theory.
This led to the introduction of the corrective factor c featur-
ing in Eq. 40. In the present work, the empirical correlation
for c advanced by Wu and Baeyens19 has been used:

cðArÞ ¼ 1 for Ar � 50

2:27Ar�0:21 for Ar > 50

(
(41)

where the Archimedes number Ar of the mixture is given by

Ar ¼ qm � qf
qf

Ga;
1

qm
¼ x1

q1
þ x2

q2
(42)

and the Galileo number Ga is equal to

Ga ¼ d3mq
2
f g

l2f
; dm ¼ x1q2 þ x2q1

x1q2d2 þ x2q1d1
d1d2 (43)

In Eqs. 42 and 43, the quantities x1 and x2 denote the mass
fractions of the larger and smaller particles respectively in
the powder devoid of fluid; these therefore take the expres-
sions:

x1 ¼ /1q1
/1q1 þ /2q2

; x2 ¼ /2q2
/1q1 þ /2q2

(44)

The minimum fluidization velocity Umf of the mixture was
calculated using the correlation proposed by Gossens et al.61:

Umf ¼ lf
qfdm

ð33:72 þ 0:0408ArÞ0:5 � 33:7
h i

(45)

Equations 39 and 40 were used to calculate the superficial
gas velocity Uo as follows: (a) the desired mixing index M
was chosen and the visible bubble flow rate was evaluated
from Eq. 39; (b) the minimum fluidization velocity Umf of
the mixture was then gauged using Eq. 45; (c) the superficial
gas velocity Uo was finally assessed using Eq. 40. In the
present work, an arbitrary value of 0.9 was chosen for the
mixing index M; this corresponds to a state of almost perfect
mixing within the bed, as it will be further discussed in Mix-
ing and Segregation section under Results and Discussion
section.

Digital video recordings of the fluid bed were made to
analyze the development of the bubble dynamics within the
bed and to determine the bubble size at the operating condi-
tions employed. Images captured by means of a web camera
at 14 frames/s for 80 s were recorded and subsequently ana-
lyzed using Optimas 6.0, an image analysis software.

A bed freeze analysis, for the experimental investigation
of mixing and segregation, was conducted 1 min after the
initiation of the experiments (time required by the real sys-
tem to achieve steady-state conditions). In the bed freeze
tests, the fluidizing air supply was shut off abruptly. The bed
at rest was then split into four horizontal layers and each
layer was sieved to obtain the percentage by weight of the
different components. Samples used for sieving in this work
were collected by means of a probe attached to a vacuum
pump. Results of the bed freeze analysis are reported in
Table 4 and Figures 6 and 7 and shall be discussed later on.

Results and Discussion

Mixing and segregation

A proper description of the state of particle distribution in
a binary gas-fluidized bed can be achieved by means of two
established parameters, the mixing index M and the coeffi-
cient of segregation Cs. The use of either depends on the
approach of interest. If the mixedness of the system is of pri-
mary concern, then the mixing index is more appropriate; if,
on the other hand, the degree of segregation is of direct inter-
est, then the coefficient of segregation is more suitable. The
two however, even if not directly related, should ultimately
provide the same physical information. The mixing index
was first defined by Rowe et al.62 as:

Table 4. Experimental and Theoretical Values of the Mixing
Index M and the Coefficient of Segregation Cs for

All Simulations

Drag Model
Mixing
Index

Coefficient of
Segregation

Experimental 0.886 13.520
Wu and Baeyens19 0.900 –
Bell21 0.972 12.456
Gidaspow et al.20 0.984 11.312
Syamlal29 0.999 20.620
No particle drag implemented 0.637 117.177
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M ¼ hxjetit
hxjetio

(46)

where hxjetit is the average mass fraction of the jetsam phase
in the top region of the bed and hxjetio is the average mass
fraction of the jetsam phase evaluated over the entire bed.
The top region of the bed is not uniquely defined, but can be
chosen somewhat arbitrarily. Here, following van Wachem
et al.,24 the region was assumed to be the top 25% of the
bed. The above definition intrinsically equates a state of per-
fect jetsam segregation at the bottom of the bed to a mixing
index of M 5 0 and a state of perfect mixing to a mixing
index of M 5 1. Perfect jetsam segregation at the top of the
bed, which is usually imposed before the system is fluidized,
is instead given by a mixing index of M 5 (mjet 1 mflot)/
mjet, where mjet and mflot are the overall masses of jetsam
and flotsam in the bed, respectively. In the present case,
since mjet 5 0.97 kg and mflot 5 0.88 kg, the index varies
between 0 and 1.91. The coefficient of segregation, intro-
duced by Geldart,63 is given by:

Cs ¼ hxjetib � hxjetit
hxjetib þ hxjetit

� 100 (47)

where hxjetib and hxjetit are the mass fractions of the jetsam
phase in the bottom and top halves of the bed. Clearly Cs

varies between 2100 and 1100, with 2100 denoting perfect
jetsam segregation at the top of the bed, 0 being representa-
tive of perfect mixing, and 1100 indicating perfect jetsam
segregation at the bottom of the bed.

Table 4 reports the mixing index M and the coefficient of
segregation Cs calculated from experiments and after 10 s of
simulation for all the different case studies examined. The
values of M are also compared with the prediction obtained
from the semiempirical correlation developed by Wu and
Baeyens19 and presented formerly in the Experimental sec-
tion. All the simulations show a reasonably good agreement
with the experimental data and the semitheoretical expression
with the exception of the case where the particle–particle
drag was neglected. In quantitative terms, as regards the mix-

ing index, the correlation by Wu and Baeyens19 yields pre-
dictions, which deviate from experimental measurements by
1.6%, the numerical simulations accounting for the particle–
particle drag present a deviation in the range 9% (Bell21 clo-
sure)–13% (Syamlal29 closure), whereas when the foregoing
contribution is neglected a percent error is found in excess of
28%. The theoretical results obtained when the particle–parti-
cle drag is accounted for are not noticeably affected by the
specific closure adopted and always appear to slightly over-
predict the degree of mixing within the bed. In particular, the
equation by Syamlal29 yields an almost perfect mixing with
a mixing index of roughly 1. Conversely, in the reference
simulation, where no drag force is implemented, the segrega-
tion of the jetsam phase is somewhat overestimated as clearly
indicated by the low mixing index and high coefficient of
segregation obtained in this instance. In the light of these
results, it seems reasonable to conclude that the absence of
particle–particle drag causes the jetsam phase to migrate
swiftly toward the bottom of the bed on account of the lack
of hindrance (friction) that would otherwise have hampered
this motion.

Figures 6 and 7 show a comparison between theoretical
and experimental concentration profiles of the jetsam phase
throughout the bed. The computational values were deter-
mined after 10 s of simulation by splitting the bed into 28
horizontal layers of equal volume and by calculating the
average jetsam mass fraction in each layer. The experimental
results were obtained as described earlier on in Experimental
section; in this case, only four horizontal layers were consid-
ered. The profiles shown are consistent with the figures
reported in Table 4 and confirm the conclusions previously
drawn. In the case study, where the Syamlal29 equation was
used, we find an almost flat vertical profile with a constant
jetsam mass fraction throughout the bed equal to roughly
0.52. This corresponds to a state of almost perfect mixing
where the jetsam mass fraction would be equal to hxjetio 5
0.97/(0.97 1 0.88) 5 0.524. The degree of mixing is also
slightly overestimated in the case studies where the equations
of closure by Gidaspow et al.20 and Bell21 were used. Here,

Figure 7. Comparison of computational and experi-
mental segregation patterns.

[Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]

Figure 6. Comparison of computational and experi-
mental segregation patterns.

[Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]
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as expected, the jetsam mass fraction profiles almost overlap
with the limit of perfect mixing, with a jetsam concentration
on the bottom of the bed slightly higher than on top. This is
in agreement with the values of M and Cs formerly calcu-
lated and shown in Table 4. The effect due to lack of hin-
drance on the jetsam phase is again clearly found when no
particle–particle drag was considered. In this instance, the
jetsam distribution throughout the bed is highly uneven. In
the upper region of the bed, the jetsam mass fraction drops
to values as low as 0.3 and the profile lies on the left of the
limit of perfect mixing. In the remainder of the bed, con-
versely, the jetsam concentration is appreciatively higher, the
profile shifts to the right of the limit of perfect mixing, and
the mass fraction reaches values up to 0.66. This is clearly
indicative of a state of segregation within the bed and con-
firms what was previously found from the analysis of the
segregation and mixing parameters. This prediction is in
sharp contrast with the experimental findings, which present
a jetsam phase far more evenly distributed and with a mass
fraction spanning a quite narrower range (0.464–0.577).

Figure 8 shows the evolution of the jetsam mass fraction
profile with time obtained using the Syamlal29 drag correla-
tion as an example. From the figure, we note that during the
first 2 s, the jetsam phase spreads rapidly throughout the sys-
tem; its mass fraction is seen to gradually increase at the bot-
tom of the bed until an even distribution is attained (fully
mixed state) after about 4 s of simulation. The jetsam mixing
profile varies little thereafter and therefore is not reported. In
terms of the time required by the system to reach steady-state
conditions, the above computational prediction is found to be
at variance with experimental observations, where the bed
becomes fully mixed after roughly 1 min. The difference in
mixing time between experimental and computational predic-
tions clearly reveals a limitation in the predictive capability
of the model. This might be due to possible shortcomings in
the closures adopted or to the fact that the stress internal to
the solid phases has not been considered in the present work.
The extent to which either factor predominates is presently

unknown; however, it is worth pointing out that similar dis-
parities have also been encountered by other researchers who
have carried out analogous investigations while taking into
account the solid stress contribution. We mention, in this
regard, the work of Huilin et al.64 where the fluid dynamic
behavior of a gas-fluidized binary mixture of Geldart Group
D particles is simulated starting from initial conditions of
perfect mixing. In the operating conditions chosen, the sys-
tem tends to segregate and within roughly 10 s almost com-
plete segregation is predicted.

Bubble dynamics

An analysis of the bubble dynamics within the bed was car-
ried out by comparing results in terms of computational bub-
ble diameter with data obtained from experimental investiga-
tion. In defining a bubble, an appropriate voidage had to be
selected as the boundary between emulsion and gas phases. A
voidage contour of 0.80 was assumed in the simulations. This
subjective figure is in conformity with values used in litera-
ture; in this regard, we refer, for instance, to the work by
Yates et al.,65 and Mazzei and Lettieri.66 The experimental
analysis of the bubble diameter was conducted using Optimas
6.0, an image analysis software. The computational analysis,
on the other hand, was performed using the numerical algo-
rithm recently developed by Mazzei and Lettieri,66 where bub-
ble diameters are assessed by capturing void regions within
the simulated fluidized bed and then gauging their equivalent
diameter (diameter of the circle of equivalent area).

Figure 9 shows a comparison between experimental and
simulated bubble diameters. The data reported refer to exper-
imental findings, results from the reference simulation where
the particle–particle drag was neglected, and predictions
obtained using the closure by Syamlal.29 Results relevant to
other constitutive equations have not been reported, since
these did not appreciably differ from those based on the
Syamlal29 equation. Indeed, as the figure clearly shows, the
theoretical predictions in terms of bubble diameter are not

Figure 8. Evolution of the jetsam mass fraction profile
with time obtained using the Syamlal29 drag
correlation.

[Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]

Figure 9. Comparison of experimental with the simu-
lated bubble diameter for Syamlal29 particle
drag model and no implemented drag model.

[Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]
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significantly affected by the inclusion of the particle–particle
drag force; this contribution seems therefore not to have a
dominant effect on the bubble dynamics of the system. The
experimental bubbles are always found to be larger than the
simulated ones. Experimental evidence also indicates an
increase in bubble size with increasing bed height due to co-
alescence, a phenomenon that appears less pronounced in the
numerical results. A possible cause that might contribute in
the underestimation of the computed bubble size might be
found in the dimensionality of the computational domain
used in the simulations. A previous investigation carried out
by Owoyemi et al.9 using a 2D computational domain high-
lighted a disparity between experimental and predicted
bubble sizes. The difference was attributed to the subtle dis-
similarity in geometry between the 2D computational domain
and the experimental 3D, ‘‘thin 2D,’’ domain.

To complete the analysis, Figure 10 reports a comparison
between experimental and simulated bed voidage profiles
obtained using the different constitutive expressions for the
particle–particle drag force previously presented. All the sim-
ulations predict the bubbling phenomenon, albeit modestly,
alongside other macroscopic phenomena like bubble coales-
cence and bed expansion. However, once again, this specific
kind of investigation does not seem to discriminate between
different particle–particle drag force closures and appears to
be quite insensitive to the inclusion of such term.

Bed expansion

A quantitative comparison of the bulk properties of the
bed is shown in Table 5 in which results for bed height and
voidage are reported. The properties were time-averaged

Figure 10. Snapshots showing a comparison between (a) experimental bed, (b) computational bed obtained using
the drag closure by Bell,21 (c) computational bed obtained using the drag closure by Gidaspow et al.,20

(d) computational bed obtained using the drag closure by Syamlal,29 and (e) computational bed obtained
using no particle drag expression.

[Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]
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ignoring the first 2 s of simulation to reduce the effect of
perturbations associated with the bed start-up. Very little
difference is found between the various cases examined, the
percent error spanning the range 3.3% (Syamlal29 closure)–
5.8% (no particle drag implemented). Also in this instance,
the computational predictions are quite insensitive to the spe-
cific particle–particle drag force closure adopted and do not
seem to be significantly affected by the inclusion of such
contribution. This is not entirely surprising, since the concen-
tration profiles of the solid phases within the bed are not
expected to have a marked effect on overall bed properties
such as bed height and mean bed void fraction.

Effect of grid and time resolution on the
simulation results

The size of the grid cells determines to a large extent the
computational effort (time) required by the simulations as
well as the extent of numerical diffusion. The size of the
time step, on the other hand, influences the numerical con-
vergence of the differential equations as well as the overall
computational time. Thus, it is important that an optimum be
found for the above quantities (cell size and time step). To
this end, a study was conducted to investigate the effect of
time and grid resolution on the numerical predictions of the
main macroscopic fluidization properties of interest. Four
simulations were carried out using uniform grids with square
cells of 5 and 10 mm side length and time steps of 10E 204
and 10E 203 s. The simulation conditions employed (physi-
cal properties, initial and boundary conditions, etc.) are those
reported in the Simulations section. Here again, the particle
drag law by Syamlal29 was used to describe the interaction
between the solid phases in all the simulations.

Table 6 shows a comparison of the results in terms of
averaged macroscopic fluidization properties obtained after
10 s of simulation for all the different cases considered. A
change in the grid cell size is observed to have very little
influence on the averaged numerical predictions of the fluid-
ization indicators. In particular, using a constant time step of

10E 204 s and increasing the grid cell size from 5 to 10
mm results in no appreciable change in the predicted numeri-
cal values of bed height and voidage. There is a small effect
on the numerical predictions of mixing index and coefficient
of segregation; such an effect, however, is quite negligible
within the range of variation of the two indexes (refer to
Mixing and Segregation section under Results and Discussion
section).

On the other hand, a reduction in the time step from 10E
203 to 10E 204 s whilst using a constant grid cell size of 5
mm results in a 2.0% change in the numerical prediction of
bed height and voidage. Here again, it appears that the effect
of a time step reduction on the predictions of mixing index
and coefficient of segregation is minimal. Overall, we might
say that a change in time step has a slightly more pro-
nounced effect on the numerical predictions than a corre-
sponding change in grid cell size.

It would be desirable at this point to conduct also a study
where smaller grid cells and time steps be considered; how-
ever, the long computational times involved render such a
study unfeasible. With our current computational resources,
simulations performed using a time step of 1.0E 204 s and
square cells of 5-mm side length required an overall compu-
tational time of roughly 2200 h (92 days). For the same time
step, if the side length of the cells is halved (2.5 mm), the
computational time rises to about 4800 h (200 days) for the
same amount of real time simulation. Similarly, for the same
grid resolution, if the time step is lowered to 1.0E 205 s, the
computational time rises to about 9950 h (415 days).

Effect of the solid pressure contribution on the
simulation results

For completeness, the effect of the solid pressure contribu-
tion on the mixing and segregation behavior of the binary
system herein examined was investigated. An additional sim-
ulation was performed with the inclusion of the isotropic part
of the solid stress tensor, and without the implementation of
the numerical algorithm for the solid phase compaction con-
trol developed in this work. The simple solid pressure model
advanced by Bouillard et al.67 was employed to account for
the solid stress in the particulate phases. Default simulation
conditions and computational parameters were used; once
again, the particle drag law by Syamlal29 was adopted to
describe the interaction between the solid phases.

Table 7 reports the mixing index M and the coefficient of
segregation Cs calculated from experiments and after 10 s of
simulation for the two different cases. The values of M are

Table 5. Comparison of Time-Averaged Macroscopic
Fluidization Properties with Experimental Data

Drag Model
Bed

Height (m)
Bed

Voidage

Experimental 0.365 0.520
Bell21 0.354 0.500
Gidaspow et al.20 0.353 0.498
Syamlal29 0.355 0.503
No particle drag implemented 0.347 0.490

Table 6. Comparison of the Simulation Results in Terms of
Averaged Fluidization Properties for the Numerical

Investigation of Grid and Time Resolution

Time
Step (s)

Grid
Size (mm)

Bed
Height (m)

Bed
Voidage

Mixing
Index

Coefficient of
Segregation

1024 5 0.355 0.503 0.998 20.620
1023 5 0.350 0.496 0.985 10.951
1024 10 0.355 0.501 0.988 10.132
1023 10 0.350 0.496 0.987 10.211

Table 7. Comparison of Numerical Values of Mixing Index
and Coefficient of Segregation Obtained by (a) Considering

and (b) Neglecting the Isotropic Contribution to the
Solid Stress

Study
Solid Stress

Model
Mixing
Index

Coefficient of
Segregation

Experimental – 0.886 13.520
Wu and Baeyens10 – 0.900 –
Default Simulation – 0.999 20.620
New Simulation Bouillard et al.67 0.972 11.160

Experimental results are also reported for completeness.
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also compared with the prediction obtained using the semi-
empirical correlation by Wu and Baeyens.19

The two simulations, in agreement with experimental find-
ings, yield similar results for the mixing index and coefficient
of segregation. Quantitatively, as regards the mixing index,
the numerical predictions that account for the isotropic solid
phase stress deviate from the experimental measurements by
roughly 9%; a percent error of 13% is instead found when the
particle stress is neglected. Thus, it seems reasonable to con-
clude that the simple pressure stress considered in this study
does not play a dominant role on the numerical prediction of
mixing index and coefficient of segregation. Figure 11 shows
the evolution of the jetsam mass fraction profile with time
obtained when the isotropic solid phase stress is modeled. It
can be observed that during the first 2 s, the jetsam phase
spreads rapidly throughout the system in concurrence with
what was shown in Figure 8, where the solid stress was
neglected. In both figures, the mass fraction gradually
increases at the bottom of the bed until an even distribution
(fully mixed state) is finally attained after about 4 s of simula-
tion. This seems to confirm that the computational predictions
of the mixing time are not significantly affected by the inclu-
sion of the solid pressure contribution for the solid phases.

Conclusions

This work has described the derivation of the Eulerian–
Eulerian averaged equations of change for binary mixtures of
solid particles fluidized by means of Newtonian fluids. The
equations have been derived by applying the averaging
scheme put forward by Jackson,8,9 more specifically particle
phase averages have been employed in place of the usual
solid phase averages. The application of this alternative
scheme, along with the various considerations presented, has
added new insight into the meaning of each of the terms fea-
turing in the equations. The origin of the particle–particle
interaction force has been clearly presented; the relevance of
this contribution to the fluid dynamic behavior of binary sys-
tems has been investigated and alternative closures available

in literature have been examined and compared. A brief
description of a new fluid dynamic model formerly devel-
oped by the authors has been given. The model has been
solved using the commercial CFD code CFX 4.4. Four simu-
lations have been carried out; three wherein different consti-
tutive equations for the particle–particle drag force were
used, and a final one where the force was entirely neglected.
The first three case studies yielded similar results in terms of
jetsam particle distribution within the bed, with an almost
perfect mixing and a good agreement with the experimental
data. In the forth case study, conversely, an overprediction of
the jetsam mobility was found with a resulting tendency of
such phase to segregate toward the bottom of the bed. This
was in clear contrast with the experimental evidence. An
investigation into the bubble dynamics and bulk properties of
the system was also conducted and concluded the work. This
did not discriminate between different particle–particle drag
force closures and appeared to be quite insensitive to the
inclusion of such a contribution. In addition, a sensitivity
analysis concerning the grid and time resolution and the
effect of the contribution of the solid pressure on the simula-
tions results was carried out.
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