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Abstract. Let V be a finite-dimensional vector space over a square-root
closed ordered field F (this restriction permits an inner product with corre-
sponding norm to be imposed on V). Many properties of the family
P :¼ PðVÞ of convex polytopes in V can be expressed in terms of valuations
(or finitely additive measures). Valuations such as volume, surface area and
the Euler characteristic are translation invariant, but others, such as the
moment vector and inertia tensor, display a polynomial behaviour under
translation. The common framework for such valuations is the polytope (or
Minkowski) ring � :¼ �ðVÞ, and its quotients under various powers of the
ideal T of � which is naturally associated with translations. A central result
in the theory is that, in all but one trivial respect, the ring �=T is actually a
graded algebra over F. Unfortunately, while the quotients �=Tkþ1 are still
graded rings for k > 1, they now only possess a rational algebra structure; to
obtain an algebra over F, some (weak) continuity assumptions have to be
made, although these can be achieved algebraically, by factoring out a further
ideal A, the algebra ideal.

An apparently unrelated topic concerns the piecewise polynomials on V (or,
more strictly, on the dual space V�), which are functions f on V whose restric-
tions f jC to each (closed) cone C of some complete fan (complex) C of convex
cones with apex the origin o are polynomials. The piecewise polynomials
form a graded algebra under pointwise addition and multiplication.

A bridge between these two notions is provided by the weight algebra
W :¼ WðVÞ. Initially, this attaches symmetric tensors to faces of polytopes
P 2 P; these satisfy certain Green-Minkowski connexions, which generalize (in
a sense) the Minkowski relations for facet areas of a polytope. The algebra
properties ofW correspond to fundamental geometric operations on polytopes.
More importantly, weights provide a concrete representation of the underlying
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abstract space for valuations which have a polynomial behaviour, and then
naturally link up with piecewise polynomials. In principle, as in �, there is
still the need to pass to suitable quotient spaces, but in the weight algebra W
such quotients almost sit as subspaces.

Motivated by duality and other considerations, and in particular a product
on valuations introduced by Alesker, it turns out that there is a quite different
fibre product which can be imposed onW; this has its origins in a modified con-
struction of fibre polytopes.

§1. Introduction. The universal group for valuations on the family
P :¼ PðVÞ of convex polytopes in a finite-dimensional vector space V over an
arbitrary ordered field F is the polytope or Minkowski ring � :¼ �ðVÞ.
Although the multiplication in � (which is induced by Minkowski addition)
is apparently unimportant for valuations themselves, it is, as we shall see, an
extremely useful feature.

The universal group for the translation invariant valuations onP is the poly-
tope algebra, which we described in [19] (see also [29]). This algebra is �=T ,
where T ¼ TðVÞ4� is the ideal which naturally corresponds to translations.
A key geometric construction (adapted from one originally due to Thorup in
[14] – see Theorem 3.6 below) shows that �=T is (in all but one trivial respect)
a graded algebra over F.

In [23], we described the weight algebra � ¼ �ðVÞ, which provides an
alternative, and perhaps more concrete, approach to the same circle of ideas
(in this context, it is convenient to assume that F is square-root closed, so
that the structure of an inner product space with norm can be imposed on V).
Together with [20, 22], there was established a (near) isomorphism between
�=T and �; in particular, the resulting machinery yields an easier route to
the proof in [20] of the necessity of the conditions of the g-theorem, which
describes the possible f -vectors (sequences of numbers of faces) of simple poly-
topes. (It is worth remarking here that all these algebras are graded, and that
isomorphisms only fail in grade 0, which corresponds to the Euler characteristic
– naturally, therefore, the grade zero terms arising from the original geometry
are just Z, whereas, in the more algebraic context, the rational numbers Q or
the base field F are appropriate.)

The universal groups for the wider classes of valuations which exhibit poly-
nomial behaviour under translation (for example, moment vectors and inertia
tensors) are the quotients �=Tkþ1 for some k5 1; here, the situation is
rather different. These higher polytope algebras still have algebra structures,
but now only over Q. However, the corresponding valuations which are most
interesting are also weakly continuous (we define this term later). It turns out
that there is a further algebra ideal A such that the quotients �ðTkþ1 þ AÞ
have a full F-algebra structure, and this is exactly what is needed to impose
weak continuity. Moreover, just as the polytope algebra admits a concrete
expression in terms of scalar-valued weights, it turns out that these higher
polytope algebras (modulo weak continuity) can be phrased in terms of
tensor-valued weights.

The basic tensor-valued weights are the tensorials of polytopes, which (up to
scaling factors) generalize the mass moments, whose initial terms are volume,
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moment vector and inertia tensor. The various tensorials of a given polytope
and its faces are not independent. The ways in which they are related, by
means of the Green-Minkowski connexions, which generalize the Minkowski
relations for scalar weights, provide the defining conditions for the tensor-
weight algebra W ¼ WðVÞ. A central result of this paper is that W is indeed
an algebra; the appropriate definition of multiplication closely follows that of
[23], and involves showing that tensor weights behave as they should under
linear mappings (for this latter result, a weakened Green-Minkowski relation
for weights serves the purpose). By looking at the subalgebraWðPÞ associated
with a simple polytope P, we prove thatW is generated by the space W1 of its
weights of degree 1. This will incidentally show thatWðPÞ is isomorphic to the
face ring of the dual simplicial polytope P�.

In [2] (a preliminary account of which appeared in [1]), Alesker introduced a
product of translation covariant valuations. Motivated by this, and by a homo-
morphism on weights induced by the fibre polytope construction found in [26],
we define here a new fibre product of weights; though analogous to Alesker’s
product, it is not quite the same.

A yet different algebra is that of the piecewise polynomial functions on V,
which has been used in [4, 7, 8] to investigate the structure of� and its quotients
�=Tkþ1. We show that this algebra is also isomorphic to W; this will be
straightforward, since we have a direct correspondence between natural genera-
tors of each. However, W has the advantage over the polynomial algebra, in
that the translation quotients are just obtained by truncating the tensor
weights in a natural way, setting to zero tensors of grade greater than k. The
equivalences classes then have unique representatives, which is obviously
more convenient for purposes of calculation.

An earlier and somewhat different approach to part of the material of this
paper first appeared in [24].

§2. The polytope ring. For the most part, we use the standard notation of
the theory of convex polytopes, although we have simplified some of it; for
general background material, see [6, 12, 37].

We begin by describing the basic properties of what has sometimes been
called the Minkowski ring (see [15, 9, 29]). We prefer the term polytope ring
for two reasons: first, it is the precursor of the polytope algebra of [19] (see
also [29] – we shall not repeatedly quote these basic references) and, second,
the alternative term puts overmuch emphasis on the multiplication in the ring.

We work here in a d-dimensional vector space V over an ordered field F. We
later assume that F is (positive) square-root closed. This is not a very serious
restriction, since we can always embed our initial ordered field in its square-
root closure. More to the point, it is convenient to be able to impose an inner
product h�; �i on V, with a corresponding norm k � k; only for emphasis will
we subsequently distinguish between V and its dual space V

�. We write
P :¼ PðVÞ for the family of non-empty convex polytopes in V.

The polytope ring � :¼ �ðVÞ is defined as follows.

. As an abelian group,� has a generator [P] for eachP 2 P; further, it is natural
to set ½;� :¼ 0.
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. The generators satisfy the relations ½P [Q� þ ½P \Q� ¼ ½P� þ ½Q�wheneverP,
Q 2 P are such that P [Q is also convex (this corresponds to the valuation
property).

. The multiplication on � is induced by Minkowski addition on P, namely,
½P� � ½Q� :¼ ½PþQ� for P;Q 2 P; the multiplication is extended by linearity.

In this context, we recall that a valuation is a mapping ’ from P into some
abelian semigroup, such that

’ðP [QÞ þ ’ðP \QÞ ¼ ’ðPÞ þ ’ðQÞ;
whenever P;Q 2 P are such that P [Q 2 P also. Thus a valuation on P induces
an additive (semi-)group homomorphism on �, and conversely. Further, the
Minkowski or vector sum of P and Q is

PþQ :¼ fxþ yjx 2 P; y 2 Qg:
When Q ¼ fyg is a point-set, we briefly write Pþ y :¼ Pþ fyg for the translate
of P by y; we also employ the abbreviation ½ y� :¼ ½fyg�.

There is an implied assertion here that the addition and multiplication on �
defined in this manner are compatible, that is, that the distributive laws hold.
Indeed, this is proved in, for example, [19, Lemma 6], if we ignore those parts
which refer to translation invariance. However, an easier approach uses the
following.

THEOREM 2.1 Linear mappings on V induce ring homomorphisms on �.

Proof. For completeness, we repeat the proofs of, for example, [19, 21, 27].
Let �: V!W be a linear mapping. For the moment, we ignore the distributive
laws.

For addition, let P;Q 2 PðVÞ be such that P [Q 2 PðVÞ also. It is clear that
ðP [QÞ� ¼ P� [Q�:

It is also clear that

ðP \QÞ� � P� \Q�:

For the opposite inclusion, let z 2 P� \Q�. Thus, there are x 2 P and y 2 Q
such that z ¼ x� ¼ y�. Since P [Q is convex, there exists 04�4 1 such
that ð1� �Þxþ �y 2 P \Q. Then

z ¼ ð1� �Þx�þ �y� ¼ ðð1� �Þxþ �yÞ� 2 ðP \QÞ�;
as was to be shown.

For multiplication, it is obvious that

ðPþQÞ� ¼ P�þQ�:

We now pass to the corresponding polytope classes, and the theorem then
follows. h

We then deduce

THEOREM 2.2 Under the given addition and multiplication, � is a commuta-
tive ring, with identity 1:¼ ½o�.
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Proof. We apply Theorem 2.1 to the summapping�:V� V! V, given by

ðx; yÞ� :¼ xþ y: ð2:1Þ
Since it is clear that

ðP1 [ P2Þ �Q ¼ ðP1 �QÞ [ ðP2 �QÞ; ðP1 \ P2Þ �Q ¼ ðP1 �QÞ \ ðP2 �QÞ;
whether or not P1 [ P2 is convex, the distributive laws immediately follow. h

A useful observation is the following. With a set S � V can be identified its
characteristic function �ðS; �Þ: V! f0; 1g, defined by

�ðS; xÞ :¼
1; if x 2 S;

0; if x =2 S:

�

The group generated by the functions �ðP; �Þ with P 2 P is denoted X ¼ XðVÞ.
Then we have a result which, in a slightly different form, is originally due to
Groemer [11].

LEMMA 2.3 As an abelian group, � ffi X .

In fact, Groemer goes on to define a multiplication on X , which is just that
induced by Minkowski addition.

We later need the scalar multiple of P by �, namely

�P :¼f�x j x 2 Pg;
this induces the dilatation on �, defined by

� � ½P� :¼ ½�P�
on the generators of �.

Much of our treatment actually extends to the ring � ¼ �ðVÞ derived in a
similar way from the family Q ¼ QðVÞ of polyhedra (polyhedral sets) in V.
However, only a small additional subfamily of Q is needed here. Recall that
K 2 Q is a cone with apex a if ð1� �Þaþ �K � K for each �5 0. Of most
importance are those cones with apex the origin o; the family of such cones in
V is denoted C ¼ CðVÞ, and the corresponding subring of � is denoted
� ¼ �ðVÞ. (Note that we have changed the notation to � from � of earlier
papers, since we have just employed � with a quite different meaning.)

The support functional �ðP; �Þ of P 2 P is defined as usual for u 2 V
� (or inV,

if we do not wish to distinguish the dual space) by

�ðP; uÞ :¼ supfhx; ui j x 2 Pg:
There is the natural convention �ð;; �Þ 	 �1; in fact, in all but this case, we can
replace ‘‘sup’’ by ‘‘max’’ in the definition (and even here with the obvious
meaning). The corresponding face of P in direction u is

FðP; uÞ :¼fx 2 P j hx; ui ¼ �ðP; uÞg:
We do not generally count the empty set ; as a face of a polyhedron P, but we
do think of P as a face of itself (formally, we take u ¼ o in the definition). If F is
a face of P 2 P, then we write F 4P or P5F , with F < P meaning addition-
ally that F 6¼ P. If F is a facet of P (that is, a face of codimension 1), then we
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write F 4P or P 5 F . Alternatively, FðPÞ denotes the family of (non-empty)
faces of P; we write F kðPÞ for the subfamily of its k-faces (those of dimension
k).

Finally, the normal cone to P at its face F is

NðF ;PÞ :¼fu 2 V
� jF 4FðP; uÞg:

The family NðPÞ :¼fNðF ;PÞ jF 4Pg of normal cones to faces of P forms a
complex, called the normal fan of P.

For future reference, we also mention here that, for �5 0,

�ð�P; �Þ ¼ ��ðP; �Þ:

Further, if t 2 V, then clearly �ðt; �Þ ¼ ht; �i.
Since

�ðP [Q; �Þ ¼ maxf�ðP; �Þ; �ðQ; �Þg

for all P, Q 2 P, and
�ðP \Q; �Þ ¼ minf�ðP; �Þ; �ðQ; �Þg

whenever P [Q is also convex, while

�ðPþQ; �Þ ¼ �ðP; �Þ þ �ðQ; �Þ;

we see that the mapping P 7! �ðP; �Þ :¼ expð�ðP; �ÞÞ (the latter regarded as a
formal power – we could even write X�ðP;�Þ, with X an indeterminate) induces
a ring homomorphism on �. Notice that we have the natural convention
�ð;; �Þ 	 0. (With Minkowski addition as the semigroup operation, we are
actually forming the semigroup ring of P.)

REMARK 2.4 In the wider context of polyhedra, there are two advantages
over [8, 29] in defining

�ðP; �Þ :¼ expð��ðP; �ÞÞ
for P 2 Q. First, the only special convention needed is that �ð;; �Þ 	 0, because,
if u is not a normal vector to a support hyperplane of P, so that �ðP; uÞ ¼ 1,
then �ðP; uÞ ¼ 0. Second, there results a pleasing symmetry, in the following
sense. The convex conjugate of the support functional is the convex indicator
functional ��ðP; �Þ, for which

��ðP; xÞ :¼
0; if x 2 P;

1; if x =2 P:

�

In turn, the characteristic functional of P is �ðP; �Þ ¼ expð���ðP; �ÞÞ.
A central result in the abstract theory is the following; we refer to [9, 15, 29]

for proofs.

THEOREM 2.5 The homomorphism � is an injection; that is, if x 2 � is such
that �ðx; �Þ 	 0, then x ¼ 0.

We do not need many properties of �, although it lurks in the background of
much of what we do later. However, there is one application which we shall use
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in Section 4. The Euler map ":�! � is defined on its generators by

½P�" :¼
X
F 4P

ð�1ÞdimF ½F �: ð2:2Þ

A little work shows that " is an involutory automorphism of �. We do not
reproduce the details here; however, let us remark that the easiest route to
showing that " is an endomorphism is the observation that the class [relint P]
of P 2 P is well defined by

½relintP� ¼ ð�1ÞdimP½P�":
In Section 4, we shall appeal to a result which is easily proved by applying �

to the product ½P� � ½�P�".

THEOREM 2.6 The class [P] of P 2 P is invertible in �; its inverse is

½P��1 ¼ ð�1Þ � ½P�" ¼ ½�P�":
We conclude the section by mentioning another endomorphism of �.

THEOREM 2.7 The mapping P 7!FðP; uÞ induces an endomorphism of �.

Proof. We make the natural definition: the endomorphism ’ on the gen-
erators of � is given by ½P�’ :¼ ½FðP; uÞ�. The properties of the support func-
tional listed above easily lead to the result. h

§3. Ideals and weak continuity. A crucial relationship in � is that between
the cylinder ideal Z and the translation ideal T, whose definitions are

Z :¼h½P� � 1 jP 2 Pi;
T :¼h½t� � 1 j t 2 Vi;

where hSi here denotes the ideal in � generated by its subset S; recall that we
make the identification 1 :¼ ½o�. We show the following important result,
which was already mentioned in [21, §3.5] (with an unfortunate mistake in the
direction of the inclusion), although its significance was not recognized there.

THEOREM 3.1 Zdþm 4Tm for each k5 0.

In fact, the result is probably better stated as Zdþm 4ZdTm (or even
Zdþm ¼ ZdTm).

We begin the proof with an almost obvious remark.

LEMMA 3.2 Let u0; . . . ; ud be non-zero vectors in V; and for j ¼ 0; . . . ; d; let
Hþj :¼fx 2 V j hx; "juji5 0g with "j ¼ 
1. Then there are choices of the "j such
that

Td
j¼0 intHþj ¼ ;.

Proof. We may assume that the uj are in linearly general position (that is,
that no d lie on any hyperplane), otherwise the result reduces to one in a lower
dimension, and we can appeal to induction – the lemma is trivial if d ¼ 1. There
are now non-zero numbers �0; . . . ; �d , such that

P
j¼0 �juj ¼ o; we then set
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"j :¼ sign�j. If we had a vector a 2
Td

j¼0 intHþj , then taking inner products
with a yields the contradiction

0 ¼ ha; oi ¼
Xd
j¼0

�jhuj; ai ¼
Xd
j¼0

j�jjh"juj ; ai > 0:

The lemma follows at once. h

We next have an easy remark.

LEMMA 3.3 Let F be a face of a polytope P, and let v be a vertex of F. Then
Nðv;PÞ � Nðv;FÞ.

Proof. This is clear; any hyperplane which supports P at v must also
support F . h

We are now in a position to prove Theorem 3.1. We first observe that there is
nothing to prove if m ¼ 0. Further, the general result follows from the case
m ¼ 1, since that will assert that we can replace any product of d þ 1 terms
½P� � 1, with P 2 P, by a sum of products of d such terms, with a translation
term ½t� � 1. Moreover, observe that � is generated by simplex classes (a neat
proof of the corresponding dissection result can be found in [36]).

LEMMA 3.4 Let P0; . . . ;Pd be simplices, with dimPj 5 1 for each
j ¼ 0; . . . ; d. Then there are facets Fj of Pj for j ¼ 0; . . . ; d, such that, for each
direction u, there is at least one j for which �ðFj ; uÞ ¼ �ðPj; uÞ.

Proof. To see this, pick any edge Ej of Pj for j ¼ 0; . . . ; d, and let uj be a
non-zero vector parallel to Ej for j ¼ 0; . . . ; d. Changing signs of the uj as neces-
sary, we can assume that the condition of Lemma 3.2 is satisfied (with uj in place
of "juj). Let vj be the vertex of Ej for which Hþj ¼ Nðvj;EjÞ is the normal cone.
Then intNðvj;EjÞ ¼ intHþj , so that Lemmas 3.2 and 3.3 imply that

\d
j¼0

intNðvj;PjÞ �
\d
j¼0

intNðvj;EjÞ ¼
\d
j¼0

intHþj ¼ ;:

Now let Fj be the facet of Pj opposite to vj for j ¼ 0; . . . ; d. The support hyper-
planes to Pj which also support Fj are just those whose outer normals do not lie
in intNðvj;PjÞ. That is, for each direction u, there is at least one j ¼ 0; . . . ; d for
which Pj and Fj have the same support hyperplane with outer normal u, which is
the lemma. h

The final step is

LEMMA 3.5 Theorem 3.1 is true if m ¼ 1.

Proof. Since� is generatedby the classesof simplices,weneedonly show that,
if P0; . . . ;Pd are non-empty simplices, then x :¼ð½P0� � 1Þ � � � ð½Pd � � 1Þ 2 T . We
use induction on the dimensions of the Pj. If one of them has dimension 0,
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then the result already holds, so that we can suppose that all have positive
dimension. Choose facets Fj of Pj for j ¼ 0; . . . ; d which satisfy the condition
of Lemma 3.4. We now use Theorem 2.5, which states that the mapping
P 7! �ðP; �Þ :¼ expð�ðP; �ÞÞ induces a separating ring homomorphism on �.
For each direction u, there is a j such that �ðPj; uÞ ¼ �ðFj ; uÞ, and so it
follows that

�ðð½P0� � ½F0�Þ � � � ð½Pd � � ½Fd �Þ; �Þ 	 0;

in other words,

y :¼ð½P0� � ½F0�Þ � � � ð½Pd � � ½Fd �Þ ¼ 0:

If we nowwrite ½Pj � � ½Fj � ¼ ð½Pj� � 1Þ � ð½Fj� � 1Þ for each j, expand the product
y ¼ ð½P0� � ½F0�Þ � � � ð½Pd � � ½Fd �Þ accordingly, and subtract y ¼ 0 from x, we see
that we have expressed the original product as a sum of such product terms, in
each of which the dimension of at least one Pj has been lowered by 1. This is
the required inductive step, which completes the proof. h

Many of the valuations ’ in which we are interested have additional proper-
ties, usually involving translation. For instance, an important sub-class consists
of those which are translation invariant, meaning that ’ðPþ tÞ ¼ ’ðPÞ for each
polytope P and translation vector t. Among such valuations are volume, surface
area and the Euler characteristic. Others, such as the moment vector, are
translation covariant, so that ’ðPþ tÞ ¼ ’ðPÞ þ  ðPÞt for some valuation  ;
here, ’ takes values in V itself, and  then turns out to be translation invariant.
A third example is the inertia tensor, which exhibits a quadratic behaviour
under translation.

In general, following [31], we define recursively a valuation ’ to be polyno-
mial of degree m if P 7!’ðPþ tÞ � ’ðPÞ is polynomial of degree m� 1 for each
translation vector t 2 V; the recursion begins with the case m ¼ 0 of translation
invariance. We loosely refer to this property as translation covariance also,
particularly when the degree of polynomiality is immaterial. The abstract
abelian group for such valuations turns out, as we shall see, to be the quotient
�=Tmþ1.

However, before we go further, it is convenient to impose another condition
on valuations. Let U ¼ ðu1; . . . ; unÞ be a (for the moment) fixed set of normal
vectors in V (or, more strictly, V�) which spans V positively, and write PðUÞ
for the family of (non-empty) polytopes in V of the form

PðU; bÞ :¼fx 2 V j hx; uji4 �j for j ¼ 1; . . . ; ng;

where b ¼ ð�1; . . . ; �nÞ 2 F
n is called the support vector of PðU; bÞ; the individual

�j are the support parameters. A valuation ’ on P is called weakly continuous if
the mapping b 7!’ðPðu; bÞÞ is continuous on PðUÞ for each such set U of
normals.

Our aim, later on, is to describe a suitable abstract model for weakly contin-
uous translation covariant valuations. At this stage, though, we wish to
rephrase the weak continuity condition algebraically. To this end, define the
algebra ideal A4Z2 by

A :¼ hð½�P� � 1Þð½Q� � 1Þ � ð½P� � 1Þð½�Q� � 1Þ jP;Q 2 P and � > 0i: ð3:1Þ
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Note that

ð½PþQ� � 1Þ � ð½P� � 1Þ � ð½Q� � 1Þ ¼ ð½P� � 1Þð½Q� � 1Þ 2 Z2

for P, Q 2 P, from which it is not hard to deduce that

ð½�P� � 1Þð½Q� � 1Þ � ð½P� � 1Þð½�Q� � 1Þ 2 Z3

when � 2 Q. A crucial result of [19], based on an earlier one in [14] (with a nice
geometric proof by Thorup – see also [33] for a different approach), can be
rewritten in the following form.

THEOREM 3.6 With the notation introduced previously,

A4Z3 þ T :

Again, it may be preferable to express this result in the form A4Z3 þ ZT .
As a consequence, we have the main result of [19].

COROLLARY 3.7 Except at grade 0, the quotient �=T is a graded algebra
over the base field F.

The exception is that, at grade 0, we have Z (the Euler characteristic) rather
than F.

We now introduce the core object of study in this paper. With a temporary
notation (which we shall later discard), define ���r :¼ ���rðVÞ by

���r :¼
F; if r ¼ 0;

Z=Z2; if r ¼ 1;

Zr=ðZrþ1 þ Zr�2AÞ; if r5 2;

8><
>: ð3:2Þ

with the obvious convention Z0 :¼�. Then we have

THEOREM 3.8 The ring

��� :¼
M
r5 0

���r

is a graded algebra over F.

Proof. The multiplication in ��� is clear; note that, indeed,

���r � ���s ¼ ���rþs

for r; s5 0, so long as we further take a product of any two elements modulo A
where appropriate. So, we need to show that each ���r is a vector space over F,
and that the multiplication is compatible with the vector space structure.

For ���1, we can follow the argument of [19], except that we do not factor out
by translation. So, if x 2 ���1 and � 2 F, we define

�x :¼
� � x; if �5 0;

�ð��Þ � x; if � < 0:

�
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Some easy manipulation (which we shall not go into) shows that this does
induce a vector space structure on ���1; the details can be found in [19, Lemma
27] (again, ignoring those parts which refer to translation invariance).

Also following [19], it can be seen that ���1 is isomorphic to the linear space of
differences of support functionals on P.

For ���2, we observe that

ð� � xÞ � y 	 x � ð� � yÞ ðmodAÞ

for x; y 2 ���1 and �5 0, and this permits us to define

�ðxyÞ :¼ð�xÞy

unambiguously for x; y 2 ���1 and � 2 F, with �x as defined previously. Since ���2

is generated by such products xy, this extends to a vector space structure on ���2.
The extension to ���r for larger r is now routine. h

Before we end this section, we should make some further remarks about the
ideal A. By itself, A is not particularly useful; it only really comes into force
when we take a quotient by some power of the cylinder ideal Z (or, equivalently
in view of Theorem 3.1, some power of the translation ideal T). Suppose that we
are working in�=Zmþ1 for somem. The remark after the definition ofA in (3.1)
easily leads to a rational algebra structure (except, as usual, in grade 0), and we
can define (again following [19])

logP :¼
Xm
r¼1

ð�1Þr�1

r
ð½P� � 1Þr:

Then logP 2 ���1 and, crucially for A,

logP 	 ½P� � 1 ðmodZ2Þ:

Thus logP � logQ 	 ð½P� � 1Þð½Q� � 1Þ ðmodZ3Þ, with obvious implications for
the rôle played by A in the definition of ���r for r5 2.

§4. Summand subalgebras. A strong combinatorial thread runs through
much of what we do in this paper, although it has not become apparent hitherto.
For many reasons, simple polytopes are natural objects of study; recall that a d-
polytope P is simple if each of its vertices belongs to exactly d of its facets. We
shall see below that the space of summands of a simple polytope is a natural
object of study in the present context.

We have already introduced the basic notions ofMinkowski linear combina-
tions. They play a central rôle in this paper, and so we now discuss them in more
detail. We largely follow [12, Chapter 14], to which we refer for further details,
but we slightly vary some terminology, and also introduce notation which is
more convenient for our purposes.

If P;Q 2 P are such that P ¼ QþQ0 for some Q0 2 P, then we call Q a
summand of P. Note that a translate of a summand is also a summand. We
write Q � P if Q is a summand of �P for some � > 0; observe that the relation
� is clearly transitive. Further, we write P � Q for the equivalence relation
given by P � Q � P, and call P and Q strongly isomorphic.
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Various properties of this relation follow directly from the definition, if we
bear in mind that ð�þ �ÞP ¼ �Pþ �P for �; �5 0. The key observation is that,
if Qj � Pj for j ¼ 1, 2, then Q1 þQ2 � P1 þ P2. In particular, if P1 ¼ P2 ¼ P,
then

Q1;Q2 � P ) Q1 þQ2 � P;

Q � P and �5 0 ) �Q � P:

It follows that

�KKðPÞ :¼fQ 2 P jQ � Pg
has the natural structure of a convex cone (indeed, it is not hard to see that it is
polyhedral); we call �KKðPÞ the (closed) type-cone of P. Note that, if Q � P, then
�KKðQÞ � �KKðPÞ; in fact, �KKðQÞ4 �KKðPÞ. In particular, if Q � P, then
�KKðQÞ ¼ �KKðPÞ.

From the definition in Section 2, it follows that, for P;Q 2 P and �5 0,

FðPþQ; uÞ ¼ FðP; uÞ þ FðQ; uÞ;

Fð�P; uÞ ¼ ðP; uÞ;

for each vector u 2 V. Hence, if Q � P, then FðQ; uÞ � FðP; uÞ for each normal
vector u.

In terms of normal fans, a necessary and sufficient condition for Q � P is
that NðPÞ be a refinement of NðQÞ; indeed, for a Minkowski sum, NðPþQÞ
is the common refinement of NðPÞ and NðQÞ. Thus, if P � Q, then
NðPÞ ¼ N ðQÞ, and there is an isomorphism between their faces given by
FðP; uÞ $ FðQ; uÞ for each vector u (this accounts for the term ‘‘strongly
isomorphic’’). We denote byKðPÞ the strong isomorphism class of P 2 P; that is,

KðPÞ :¼fQ 2 P jQ � Pg:

Looking at strong isomorphism from the viewpoint of normal cones accounts
for the alternative term normally equivalent sometimes used instead of strongly
isomorphic (see, for instance, [9]); other terms employed have been analogous
(particularly in translations from Russian – but this is so obviously a generally
useful word, and so should not be used in a specialized context) and locally
similar. In a natural sense, of course, �KKðPÞ ¼ clKðPÞ is the closure of KðPÞ in
the weak sense of limits of support vectors in any fixed class PðUÞ.

It is clear that, if P 2 PðUÞ andQ � P, thenQ 2 PðUÞ also. However, it will
not generally be the case that, if P;Q 2 PðUÞ, then PþQ 2 PðUÞ.

Let F and G be two polyhedra. If F 4G, then we denote by uðF ;GÞ the unit
outer normal vector to G at F , always taken intrinsically in the linear subspace

Gk :¼ linðG� GÞ4V ð4:1Þ

parallel to G (it is at this point that it is important to identify V
� with V, and to

assume that F is square-root closed). When F is not a facet of G, we can adopt
the convention that uðF ;GÞ :¼ o.

We may also observe here that, if Q is any polytope, and P is obtained from
Q by any sufficiently small parallel displacements of its facet hyperplanes, then
NðPÞ refines NðQÞ, so that Q � P. In particular, there is always a simple
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polytope P with the same number of facets as Q such that Q � P. A useful
remark for the future is the following.

LEMMA 4. 1 If Q1; . . . ;Qm 2 P are any polytopes, then there exists a simple
d-polytope P such that Qj 2 �KKðPÞ for each j ¼ 1; . . . ;m.

Proof. DefineQ :¼Q1 þ � � � þQm. By adding any d-polytope toQ if neces-
sary, we may assume that dimQ ¼ d. We may then suppose thatQ 2 PðUÞ for a
suitable set U of normal vectors. If P is obtained from Q by any sufficiently
small change in its support vector, then P is a simple polytope such that
NðPÞ refines NðQÞ, and hence Q � P. Since Qj � Q for each j, it follows that
Qj � P also, as required. h

When we work within�, on any given occasion we are only working in prac-
tice with the classes of finitely many polytopes. We therefore conclude from
Lemma 4.1 that we may always confine our attention to appropriate subrings
or corresponding quotient subalgebras. Let K be a strong isomorphism class
of polytopes. Then we define

�ðKÞ :¼h½P� � ½Q��1 jP;Q 2 Ki4�;

���ðKÞ :¼hlogQ jQ 2 Ki4 ���:

It is easy to see that �ðKÞ is a subring of � and, by definition, ���ðKÞ is a subring
of ���.

For the remainder of this section, let P be a fixed simple d-polytope, with
K :¼KðPÞ its strong isomorphism class. We write U ¼ ðu1; . . . ; unÞ for its set
of facet normals, and b ¼ ð�1; . . . ; �nÞ 2 F

n for its support vector, as defined
in Section 3; thus P ¼ PðU; bÞ. Let ej 2 F

n be the jth standard coordinate
basis vector. Note that, if we replace P by a sufficiently large dilatate
�P ¼ PðU; �bÞ (with � > 0), then �bþ ej is the support vector of a polytope
ðP; �bþ ejÞ 2 K. (Any small enough perturbation of the support vector of a
simple polytope preserves its strong isomorphism class.)

We now define

Ej :¼ ½PðU; �bþ ejÞ�½PðU; �bÞ��1 2 �ðKÞ: ð4:2Þ

LEMMA 4.2 The class Ej is independent of b and (suitably large) �.

Proof. Suppose that PðU; cÞ, PðU; �cþ ejÞ 2 K also, for some c 2 F
n and

� > 0. Then

Ej ¼ ½PðU; �bþ ejÞ�½PðU; �bÞ��1

¼ ð½PðU; �bþ ejÞ�½PðU; �cÞ�Þ � ð½PðU; �bÞ�½PðU; �cÞ�Þ�1

¼ ½PðU; �bþ ejÞ þ PðU; �cÞ� � ½PðU; �bÞ þ PðU; �cÞ��1

¼ ½PðU; �bþ �cþ ejÞ� � ½PðU; �bþ �cÞ��1;

which is now symmetric between ðb; �Þ and ðc; �Þ. h
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In what follows, we assume that any vectors b; c 2 F
n are chosen sufficiently

large so that all relevant polytopes are in K.

LEMMA 4.3 The class Ej is invertible in �ðKÞ.

Proof. If c is such that PðU; cÞ, PðU; c� ejÞ 2 K, then

½PðU; c� ejÞ�½PðU; cÞ��1 ¼ ð½PðU; ðc� ejÞ þ ejÞ�½PðU; c� ejÞ�Þ�1 ¼ E�1j ;

with c� ej instead of b (or �b) in the definition. This is as required. h

For P 2 K, we have ½P�k ¼ ½kP� for integer k5 0, with ½P�0 ¼ ½o� ¼ 1. Using
½P��1 ¼ ½�P�", we can clearly define ½P�q for any q 2 Q. We naturally extend the
definition to all � 2 F by writing

½P�� :¼
½�P�; if �5 0;

½�P�"; if � < 0:

�

A routine verification of cases shows that

LEMMA 4.4 If P 2 P, then

½P�ð�þ�Þ ¼ ½P�� � ½P��

for all �; � 2 F.

The definition above clearly extends to E�
j for each j and all � 2 F. We then

have

THEOREM 4.5 Let P ¼ PðU; bÞ be a simple polytope, with the conventions
for U and b adopted earlier. Then

½P� ¼
Yn
j¼1

E
�j
j :

So far as ��� is concerned, with the same simple polytope class K, we clearly
have ���1ðKÞ ffi F

n, and we can regard ���ðPÞ as a quotient algebra of the poly-
nomial algebra F½e1; . . . ; en�, where we can make the identification
ej :¼ logPðU; �bþ ejÞ � logPðU; �bÞ for each j (again, with suitably large
� > 0). In fact, we then have

logP ¼
Xn
i¼1

�iei:

A central structural result is

LEMMA 4.6 Let P be a simple d-polytope, and let Fjð1Þ; . . . ;FjðrÞ be facets of
P such that Fjð1Þ \ � � � \ FjðrÞ ¼ ;. Then

(a) ð½Pjð1Þ� � ½P�Þ � � � ð½PjðrÞ� � ½P�Þ ¼ 0 in �, where P ¼ PðU; bÞ and
Pj ¼ PðU; bþ ejÞ, with b replacing �b for suitably large � if necessary,
(b) ejð1Þ � � � ejðrÞ ¼ 0 in ���.
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Proof. Let u 2 V be arbitrary. Then u 2 Nðv;PÞ, for some vertex v of P.
Now �ðPk; uÞ 6¼ �ðP; uÞ only when v 2 Fk. Hence, under the given conditions,
for each vector u 2 V there is at least one j ¼ 1; . . . ; r such that
�ðPj; uÞ ¼ �ðP; uÞ. The two results claimed follow at once. (Recall that logP
is identified with �ðP; �Þ.) h

In the polynomial algebra F½X1; . . . ;Xn�, define the ideal M by

M :¼hXjð1Þ � � �XjðrÞ jFjð1Þ \ � � � \ FjðrÞ ¼ ;i;

where we continue to employ the same notation. The graded algebra
F½X1; . . . ;Xn�=M is called the face-ring of the simple polytope P (or, more
strictly, of the dual simplicial polytope P�). It follows immediately from
Theorem 4.6 that

COROLLARY 4.7 If P is a simple d-polytope in V, then the subalgebra ���ðPÞ
of ��� is isomorphic to a quotient of the face-ring of P.

As a matter of fact, ���ðPÞ is actually isomorphic to the face-ring. We could
prove this here, but we shall be able to do it more readily later in Section 11.

§5. Translation covariant valuations. Suppose that the valuation ’ on P is
polynomial of degree m5 1, so that ’0ð�; tÞ, defined for t 2 V by

’0ðP; tÞ ¼ ’ðPþ tÞ � ’ðPÞ;
is polynomial of degreem� 1. Recalling that� is the universal group for valua-
tions on P, we see that, when we lift ’ and ’0 to homomorphisms on � and use
linearity, we have

’0ð½P�; tÞ ¼ ’ð½P�ð½t� � 1ÞÞ;
with ’0ð½��; tÞ polynomial of degree m� 1. By induction, it follows that, for
(fixed) t1; . . . ; tk 2 V, the valuation

’ðkÞð½��; t1; . . . ; tkÞ :¼’ð½��ð½t1� � 1Þ � � � ð½tk� � 1ÞÞ
is polynomial of degree m� k, and thus, in particular, vanishes whenever
k > m. We conclude that we have shown

THEOREM 5.1 If ’ is a valuation on P which is polynomial of degree m, then,
as an induced homomorphism on �,

ker’5Tmþ1:

Theorem 3.1 implies that Zdþk ¼ ZdTk for each k5 0; it follows that we
can henceforth work in �=Zdþmþ1. Thus we can write

½P� ¼ expðlogPÞ ¼
Xdþm

s¼0

1

s!
ðlogPÞs;

with the sth term

½P�s :¼
1

s!
ðlogPÞs 2 Zs=Zsþ1
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(or in ���s, if we additionally factor out the algebra ideal A, which we shall do
shortly). Note that ½P�0 ¼ 1 and ½P�1 ¼ logP.

We deduce that a translation covariant valuation ’ admits a decomposition

’ ¼
Xdþm

s¼0

’s

for some m, where each ’s is (non-negative) homogeneous of degree s, in that

’sð�PÞ ¼ �s’sðPÞ ð5:1Þ
for each P 2 P and non-negative � 2 Q (with the appropriate convention
00 ¼ 1). If ’ is, in addition, weakly continuous, then (5.1) will hold for all �5 0.

Finally, if we consider aMinkowski linear combination P ¼
Pk

i¼1 �iPi, then

’sðPÞ ¼ ’sðð�1 logP1 þ � � � þ �k logPkÞsÞ
is a homogeneous polynomial of total degree s in �1; . . . ; �k for non-negative
�j 2 Q, and generally for �j 5 0 if ’ is weakly continuous.

We summarize the foregoing discussion in

THEOREM 5.2 Let ’ be a weakly continuous translation covariant valuation
on P. If P1; . . . ;Pk 2 P, then ’ð�1P1 þ � � � þ �kPkÞ admits a polynomial expan-
sion in the variables �1; . . . ; �k 5 0. If ’ is polynomial of degree m, then the poly-
nomial expansion has total degree (at most) d þm.

REMARK 5.3 The following is worth noting. Suppose that ’ is a weakly
continuous valuation on P which is homogeneous of degree r. We then see that

’ ¼ ’j���r

(that is, ’ðxÞ ¼ 0 if x 2 ���s for any s 6¼ r). Hence we can define

’ðP1; . . . ;PrÞ :¼’ðlogP1 � � � logPrÞ;
the expression on the right, of course, corresponding to the lift of ’ to ���. Then it
is exactly factoring out additionally by the algebra ideal A which makes sense of

’ð�P1;P2; . . . ;PrÞ ¼ �’ðP1;P2; . . . ;PrÞ
for all �5 0 if r5 2.

§6. Tensorials. The results of Section 5 show that weakly continuous
translation covariant valuations on P admit polynomial expansions in their
translation vector arguments. Since polynomial functions on V can be factored
through the tensor algebra over V (with appropriate coefficients, which here are
themselves valuations), in this section we introduce tensors, and an important
family of tensor-valued valuations.

Indeed, in preparation both for the separation theorem for ��� and for our
later definition of tensor weights, we now discuss the functions on polytopes
which are the general terms in the sequence volume, moment vector, inertia
tensor, and so on. To do this, we must first introduce symmetric tensors.

The space of symmetric tensors on V is just the graded polynomial algebra

T ¼ TðVÞ :¼F½e1; . . . ; ed �;
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with fe1; . . . ; edg any (linear) basis of V. The subspace of symmetric s-tensors
(that is, polynomials in T of degree s) is denoted Ts. Thus T0 ffi F, and
T1 ffi V itself. As a vector space over F, we have

dimTs ¼
�
d þ s� 1

s

�
:

It is occasionally helpful to identify an s-tensor with a homogeneous poly-
nomial function on the dual space V

� of total degree s. Note, however, that
we do not usually distinguish between the dual spaces V and V

�, which we
identify by means of the inner product. However, at one place in Section 8
we shall find it helpful to make this distinction. In the same spirit, there is
one point at which it is perhaps preferable to distinguish between tensors on
V and those on V

�. In particular, we wish to talk about the family Ts;1 of
tensors of type ðs; 1Þ, where the ‘‘1’’ indicates a component from the dual V�.
However, this concept occurs only once, and then incidentally.

Because we wish to emphasize the fact that T :¼
L

s5 0 Ts is an algebra, we
always write the (tensor) product of two tensors a and b as ab, rather than as
asym b (with sym denoting the symmetric tensor over F), thus suppressing
the tensor symbol. (In contrast, an unadorned  is the usual non-symmetric
tensor product over Z.) In particular, if x 2 V ¼ T1, then xs is a basic s-tensor.

So far, we have not needed the extra assumption that our ground field F is
square-root closed. Even here there are ways to avoid this, although they are
somewhat clumsy; however, the convenience of being able to work in an
inner product space V with a corresponding norm far outweighs the disadvan-
tage of loss of generality.

Let P be a k-polytope, that is, a polytope of dimension k. The s-tensorial
MsðPÞ of P is defined by

MsðPÞ :¼
1

s!

ð
P
xsdx 2 Ts;

where the integral is with respect to the ordinary k-dimensional volume measure
(scaled by the unit cube derived from an orthonormal basis) in k-flats (affine
subspaces of dimension k). The reason for scaling by 1=s! will become apparent
later, when we consider the abstract analogues of tensorials; without the scaling,
an alternative term for the concept is a mass moment. As a function of P, the s-
tensorial is (positive) homogeneous of degree kþ s, in that

Msð�PÞ ¼ �kþ sMsðPÞ

for all �5 0. We thus see that M0 ¼ volk is ordinary k-volume, while M1ðPÞ is
the moment vector of P and M2ðPÞ is half the usual inertia tensor of P. When
k ¼ 0, the appropriate definition is that the 0-volume of a singleton point-set is
1, so that

MsðvÞ ¼
1

s!
vs

for v 2 V. Finally, we find it convenient to define MsðPÞ :¼ 0 when s < 0.
A particular fact about tensorials will be central to our investigations.

Before stating the general result, let us motivate it by means of a few examples.
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As before, if P is a k-polytope and F 4P, then uðF ;PÞ denotes the outer unit
normal vector to P at F . The Minkowski relation for areas of facets says thatX

F 4P

volk�1ðFÞuðF ;PÞ ¼ o;

the zero vector. Perhaps less familiar isX
F 4P

hM1ðFÞ; uðF ;PÞi ¼ k volkðPÞ;

this shows that the k-volume of P is determined by the moment vectors of its
facets.

It turns out that there is a general family of such relations (although the last
is not a typical example). What we call the Green-Minkowski connexion between
tensorials, or GMC for short, is the following.

THEOREM 6.1 Let k5 1, let P be a k-polytope, and let t 2 Pk. ThenX
F 4P

MsðFÞhuðF ;PÞ; ti ¼Ms�1ðPÞt:

Proof. This is actually just Green’s Theorem [10], applied to the function
xs. We have

ht;rixs ¼ ht;rPixs ¼ sxs�1t;

where rP is the divergence restricted to Pk, so thatX
F 4P

MsðFÞhuðF ;PÞ; ti ¼
X
F 4P

�
1

s!

ð
F
xsdx

�
huðF ;PÞ; ti

¼ 1

s!

ð
P
sxs�1t dx

¼Ms�1ðPÞt;

as claimed. h

When we recall that T embeds in its field of fractions (because the product of
two non-zero tensors is clearly non-zero), we see that we can actually solve the
Green-Minkowski connexion for Ms�1ðPÞ, which we therefore conclude is
completely determined by the MsðFÞ for the facets F of P. We may observe
that, to solve for Ms�1ðPÞ in this way, we need only consider a single non-
zero t 2 Pk.

A variant of the relation of Theorem 6.1 involves tensors in Ts;1 (we recall
that the suffix ‘‘1’’ refers to a tensor component in V

�). We obtain this by
removing the dependence on the vector t 2 Pk. If dimP ¼ k, let fe1; . . . ; ekg
be a basis of Pk, and define

qðPÞ :¼
Xk
i¼1

eie
�
i 2 T1;1;

with fe�1; . . . ; e�kg the corresponding dual basis.
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COROLLARY 6.2 Let k5 1, and let P be a k-polytope. Then, for each s,X
F 4P

MsðFÞuðF ;PÞ ¼Ms�1ðPÞqðPÞ:

A general k-polytope P can be dissected into k-simplices, and so, to find
MsðPÞ, it is enough to be able to calculate the s-tensorial of a k-simplex.
Although we shall not need the formula (and in any case it is more easily
proved using Theorem 18.2 or, rather, its expression in terms of weights), we
give a proof here to illustrate how to apply the Green-Minkowski connexion.

THEOREM 6.3 Let P ¼ convfw0; . . . ;wkg be a k-simplex in V. Then

MsðPÞ ¼
k!

ðkþ sÞ! volkðPÞ
X

sð0Þþ ���þ sðkÞ¼ s

w
sð0Þ
0 � � �wsðkÞ

k :

Proof. We use Theorem 6.1, with sþ 1 instead of s and
t :¼kw1 � w0k�1ðw1 � w0Þ. The case k ¼ 0 is trivial, since Msðw0Þ ¼ ð1=s!Þws

0.
We therefore suppose that k > 0, and make the inductive assumption that the
result holds for ðk� 1Þ-simplices and each s5 0.

For j ¼ 0; . . . ; k, let Fj :¼ convfw0; . . . ; bwwj; . . . ;wkg be a facet of P (as usual,
the notation means that wj is omitted), and let uj :¼ uðFj;PÞ be the correspond-
ing unit facet normal. Now

’ :¼ht; u1ivolk�1ðF1Þ ¼ �ht; u0ivolk�1ðF0Þ

is the common ðk� 1Þ-volume of the orthogonal projection of F0 and F1 on the
hyperplane orthogonal to t; it thus follows that

kw1 � w0k’ ¼ k volkðPÞ:

Since ht; uji ¼ 0 for j5 2, we use the inductive assumption to deduce that

tMsðPÞ ¼
Xk
j¼0

ht; ujiMsþ1ðFjÞ

¼ ht; u0i
ðk� 1Þ!
ðkþ sÞ! volk�1ðF0Þ

X
sð1Þþ ���þ sðkÞ¼ sþ1

w
sð1Þ
1 � � �wsðkÞ

k

þ ht; u1i
ðk� 1Þ!
ðkþ sÞ! volk�1ðF1Þ

X
sð0Þþ sð2Þþ ���þ sðkÞ¼ sþ1

w
sð0Þ
0 w

sð2Þ
2 � � �wsðkÞ

k

¼ ðk� 1Þ!
ðkþ sÞ! ’

X
r5 0

ðwrþ1
1 � wrþ1

0 Þ
X

sð2Þþ ���þ sðkÞ¼ s� r

w
sð2Þ
2 � � �wsðkÞ

k

¼ ðk� 1Þ!
ðkþ sÞ! ’ðw1 � w0Þ

X
sð0Þþ ���þ sðkÞ¼ s

w
sð0Þ
0 � � �wsðkÞ

k

¼ t
k!

ðkþ sÞ! volkðPÞ
X

sð0Þþ ���þ sðkÞ¼ s

w
sð0Þ
0 � � �wsðkÞ

k ;

and on cancelling t we obtain the required formula for MsðPÞ. h
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§7. Cone groups and separation. In this section, we describe the central
separation theorem for the algebra ���. We shall not, in fact, prove the
theorem at this stage; the proof will depend upon a characterization of
certain subalgebras of the weight algebra W which will be the object of study
of the next few sections, together with Theorem 4.7.

First, we must introduce the cone groups. Let L be a linear subspace of V,
and denote by CðLÞ the family of polyhedral cones in L with apex o. Then the
cone group b��L is the abelian group with a generator hKi for each K 2 CðLÞ,
which is called the class of K . These generators satisfy the relations
hK [ K 0i þ hK \ K 0i ¼ hKi þ hK 0i whenever K [ K 0 2 CðLÞ also, and hKi ¼ 0
if dimK < dimL; thus b��L is the abstract group for simple valuations on CðLÞ.
If we define the additive subgroup �<ðLÞ of �ðLÞ by

�<ðLÞ :¼h½K � jK 2 CðLÞ and dimK < dimLi;

then, as an abelian group, we have

b��L :¼�ðLÞ=�<ðLÞ: ð7:1Þ

Thus, for K 2 CðLÞ, we have hKi :¼ ½K � þ �<ðLÞ. Of course, b��L has a rather
trivial group structure, and we can think of one of its elements as a finite
family of cones with integer multiplicities (which may be negative), where
lower-dimensional cones in L are ignored. The full cone group b�� is then
defined to be

b�� ¼ b��ðVÞ :¼ M
L4V

b��L:

It is also useful to set

b��s :¼
M

dimL¼ s

b��L:

If F is a face of a polytope P 2 P, let L :¼ linNðF ;PÞ, with NðF ;PÞ the
normal cone to P at F , and write bnnðF ;PÞ :¼hNðF ;PÞi for the class of
NðF ;PÞ in b��L; that is, we take the class intrinsically. Note that, if dimF ¼ k,
then dimNðF ;PÞ ¼ d � k, so that bnnðF ;PÞ 2 b��d�k; in particular, if P is a d-poly-
tope, then NðP;PÞ ¼ fog.

Finally, we define the function Vk;s on P by

Vk;sðPÞ :¼
X

F 2F kðPÞ
MsðFÞ  bnnðF ;PÞ 2 Ts  b��d�k: ð7:2Þ

It is a variant of a standard result (compare [19, 22, 23]) that Vk;s is a weakly
continuous translation covariant valuation, and thus induces a (group) homo-
morphism on ��� (and hence on � also), which we denote by the same symbol.

The basic separation result, for which see Sections 11 and 13, is

THEOREM 7.1 If x 2 ��� is such that Vk;sðxÞ ¼ 0 for all k ¼ 0; . . . ; d and
s ¼ 0; . . . ;m; then x 2 Tmþ1.

§8. Tensor weights. As an important part of the background for the proof
of Theorem 7.1, wemust provide an algebra as the target for the homomorphisms
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Vk;s. Of course, the images of the Vk;s must fit together to give an algebra under
the operations induced by those on ���; however, it is not immediately obvious
what those operations will actually be.

In this section, we generalize the notion of (scalar) weight introduced in
[23], and in the next we show that certain families of these weights form an
algebra. Much of the treatment will parallel that of [23]; however, we follow
a slightly simpler approach suggested by Paterson [30]. As in [23], for the
most part we work with weights on fixed polytopes; the extension to the
more abstract context is provided by standard results, which we mention
when appropriate.

Let P be a polytope in V. A (tensor) weight a on P is a mapping a: FðPÞ ! T

which satisfies the Green-Minkowski relations (GMR), in that there exists an a0:
FðPÞ ! T such that X

F 4G

aðFÞhuðF ;GÞ; ti ¼ a0ðGÞt; ð8:1Þ

for each face G of P; the conventions for the unit normal vectors uðF ;GÞ are
those introduced in Section 6. In Section 10, we shall show that a0 is itself a
weight; however, for the moment we do not assume this. The vector space of
all weights on P is denoted �WWðPÞ (the reason for this notation will be made
clear later). Comparing degrees shows that the GMR associates s-tensors
aðFÞ on k-faces F with ðs� 1Þ-tensors a0ðGÞ on ðkþ 1Þ-faces G. The subspace
of �WWðPÞ consisting of those weights in �WWðPÞ whose values are tensors of
degree s on k-faces is denoted �WWk;sðPÞ.

Defining qðPÞ 2 T1;1 as in Section 6 enables us to express (8.1) in the alter-
native form X

F 4G

aðFÞuðF ;GÞ ¼ a0ðGÞqðGÞ; ð8:2Þ

for each face G of P.
We may set everything in a more abstract context by identifying a weight a

on P with the element X
F 4P

aðFÞ  bnnðF ;PÞ 2 T b��: ð8:3Þ

As far as the GMR are concerned, the thing to bear in mind is that F 4G4P if
and only if NðF ;PÞ 5 NðG;PÞ; moreover, we then have

uðF ;GÞ ¼ �uðNðG;PÞ;NðF ;PÞÞ:

It follows that, if we are given an element of T b��, sayX
K 2C

bðKÞ  hKi;

with b: C ! T, then this corresponds to a weight exactly when, for each K 0 2 C,
we have X

K 5 K 0
bðKÞuðK 0;KÞ ¼ �qðK 0?Þb0ðK 0Þ;
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for some function b0: C ! T. Here,

P? :¼ðPkÞ?

for P 2 Q.
The next result shows why we can make such an identification.

PROPOSITION 8.1 Let P;Q 2 P be such that P � Q. Then there is a natural
embedding �WWðPÞ ,! �WWðQÞ.

Proof. We define �:FðQÞ ! FðPÞ as follows. For G4Q, pick u 2
relintNðG;QÞ, and set G� :¼FðP; uÞ4P; this satisfies relintNðG;QÞ �
relintNðG�;PÞ. Define

bðGÞ :¼
aðG�Þ; if dimG ¼ dimG�;

0; if dimG > dimG�:

�

Note that this is well defined, becauseG� is independent of the particular choice
of u; the second case arises ifNðG;QÞ has smaller dimension thanNðG�;PÞ. We
make exactly the same definitions for the mapping a0 associated with a by GMR,
giving b0 defined on FðQÞ.

We must now verify GMR for Q; that is, we have to show that, for each
J4Q, X

G 4 J

bðGÞuðG; JÞ ¼ b0ðJÞqðJÞ:

There are various possibilities, which must be dealt with separately; we label the
cases, so that we can refer to them again in the proof of Theorem 12.2. However,
since FðP; uÞ � FðQ; uÞ for each normal vector u, we readily see that it is enough
to consider the case J ¼ Q itself, for which Q� ¼ P; moreover, we lose no
generality in assuming that dimQ ¼ d.

Case (a): dimP ¼ d. Note here that qðPÞ ¼ qðQÞ. Among the G 4Q, certain
ones will have dim ðG�Þ ¼ d � 1, and then uðG�;PÞ ¼ uðG;QÞ. More impor-
tantly, each F 4P will arise as F ¼ G� (for some G 4Q) in this way. There
then follows X

G 4Q

bðGÞuðG;QÞ ¼
X
G 4Q

aðG�ÞuðG�;PÞ

¼
X
F 4P

aðFÞuðF ;PÞ

¼ a0ðPÞqðPÞ ¼ b0ðQÞqðQÞ;

as required.

Case (b): dimP ¼ d � 1. Now Q has just two facets G1;G2 for which
dimðGj�Þ ¼ d � 1; indeed, we have here Gj� ¼ P for j ¼ 1; 2. Moreover,
uðG1;QÞ and uðG2;QÞ are the two unit normals to the hyperplane aff P; hence
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uðG1;QÞ ¼ �uðG2;QÞ, and thusX
G 4 J

bðGÞuðG; JÞ ¼ aðG1�ÞuðG1�; J�Þ þ aðG2�ÞuðG2�; J�Þ

¼ aðPÞðuðG1;QÞ þ uðG2;QÞÞ

¼ 0 ¼ b0ðQÞqðQÞ;

as we need.

Case (c): dimðPÞ4 d � 2. Here, bðGÞ ¼ 0 for all G 4Q, because G� ¼ P for
such G, and hence dimðG�Þ4 dimG� 1. Thus all terms in the GMR vanish.

This completes the proof. h

There is an immediate consequence, although this is really an elementary
observation.

COROLLARY 8.2 If P � Q, with the strong isomorphism given by F $ G,
then there is a natural isomorphism a 7! b between �WWðPÞ and �WWðQÞ given by
bðGÞ :¼ aðFÞ for each a 2 �WWðPÞ.

It is obvious from their definition that weights are designed to mimic ten-
sorials; a priori, the various tensorials of the faces of P induce weights on P.
In fact, the core of the paper consists in showing that, in a sense, weights are
just linear combinations of tensorials. However, a little care will be needed. A
natural guess is that a weight on P will be an image (under the maps Vk;s) of
an element of ���ðPÞ. Unfortunately, this is generally untrue unless P is simple;
we shall give an easy counter-example in Section 10.

The parallel with tensorials does motivate one important definition. Central
to our arguments will be the way that weights behave under linear mappings. In
the translates of a linear subspace L, volume volL is uniquely specified by
reference to a unit cube with respect to any orthonormal basis of L. If � is a
linear mapping on V (the target space need not be specified), then, for each k-
dimensional linear subspace L of V, there is a constant �ðL;�Þ5 0, called the
volume ratio, such that

volkðQ�Þ ¼ �ðL;�Þ volkðQÞ;

for each polytope Q lying in a flat parallel to L (this constant is the volume of
Q�, when Q is a unit cube in L). Further, � induces a linear mapping, also
denoted �, on the algebra T of symmetric tensors on V; if a 2 T, then its
image under � is thus written a�. Finally, if the weight aðGÞ is attached to a
face G of a polytope Q, then the weight attached to G� will be

ða�ÞðG�Þ :¼�ðG;�ÞaðGÞ�: ð8:4Þ

In other words, we apply the linear mapping to the tensor value of the weight,
and then further scale by the appropriate volume ratio.

As we should expect, we have

LEMMA 8.3 The Green-Minkowski relations are preserved under non-
singular linear mappings.
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Proof. Here, we need to distinguish between the effects of a linear mapping
on a vector space and on its dual. We first observe that, in verifying that GMR is
preserved for a face G of a polytope P, we clearly need only assume that our
linear mapping � is non-singular on G itself. Hence it is enough to suppose
that G ¼ P, which is full-dimensional. Further, since orthogonal mappings
(with respect to our inner product) obviously preserve GMR, it is sufficient to
consider the case when �: V! V is an invertible linear mapping.

The right side of GMR transforms under � into

�ðP;�ÞðaðPÞtÞ� ¼ �ðP;�ÞðaðPÞ�Þðt�Þ ¼ ðða�ÞðP�ÞÞðt�Þ:
For the left side, consider the contribution from a facet F of P. We pick an
orthonormal basis fe1; . . . ; edg of V, in such a way that fe2; . . . ; edg is a basis
of the hyperplane L :¼Fk parallel to F . Thus

�ðP;�Þ ¼ j detðe1�; . . . ; ed�Þj;
with the determinant taken relative to the chosen basis fe1; . . . ; edg. The dual
basis fe�1; . . . ; e�dg is transformed by the adjoint �� ¼ ð��1Þ> of �; we therefore
have

1 ¼ he�1; e1i ¼ huðF ;PÞ; e1i ¼ huðF ;PÞ��; e1�i:
But since uðF ;PÞ�?ðF�Þk ¼ L�, we have uðF ;PÞ� ¼ �uðF�;P�Þ for some
�ð> 0Þ. On the other hand, direct calculation of the volume ratios gives

�ðP;�Þ ¼ �ðF ;�ÞhuðF�;P�Þ; e1�i;
since facet normals are always unit vectors, and hence

�ðP;�ÞðuðF ;PÞ��Þ ¼ �ðF ;�ÞuðF�;P�Þ:
Collecting these terms together, we conclude that

�ðP;�ÞðaðFÞ�ÞhuðF ;PÞ; ti ¼ �ðP;�ÞðaðFÞ�ÞhuðF ;PÞ��; t�i

¼ ð�ðF ;�ÞðaðFÞ�ÞÞhuðF�;P�Þ; t�i

¼ ða�ÞðF�ÞhuðF�;P�Þ; t�i;

which provides the required contribution to the left side of GMR. h

Lemma 8.3 shows that the image of a weight under a non-singular linear
mapping is also a weight. We also need the same result to hold for singular
linear mappings. Since we can factor such a mapping into a composition of
an (internal) orthogonal projection, a non-singular linear mapping and an
isometric injection (which is trivial in this context), the next step is

LEMMA 8.4 Let W4V be a linear hyperplane, and let a be a weight on a
polytope P 2 PðVÞ. Then orthogonal projection �:V! V induces a weight
a� 2 �WWðP�Þ.

Proof. We must describe a� on each face of P�. It is clear from Theorem
8.5 that we may suppose � to be singular on P (and that P be full-dimensional,
although this is less important). Moreover, the inverse image under � of a face
of P� is either of the form F on which � is non-singular, or of the form G on
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which � is singular. In the former case, Theorem 8.3 gives us ða�ÞðF�Þ. In the
latter, G� admits two dissections into a union of faces F�, with each F 4G. Let
the unit vector t span ker�. We claim that

ða�ÞðG�Þ :¼
X

ht;uðF ;GÞi>0

�ðF ;�Þða�ÞðF�Þ ¼
X

ht;uðF ;GÞi<0

�ðF ;�Þða�ÞðF�Þ

defines a� on G�. Note that �ðF ;�Þ ¼ jht; uðF ;GÞij, so that facets F with
ht; uðF ;GÞi ¼ 0 do not contribute to either sum.

First, it follows directly from applying� to the GMR (8.1) that the two sums
coincide, since t� ¼ o. It remains to check that this a� satisfies GMR on G�.
Now � is one-to-one on each F 4G, so that Theorem 8.5 implies that the
GMR holds for each F�. If J 4F , then there are two possibilities. If
J� \ relintðG�Þ 6¼ ;, then J 4F 0 for some other F 0 4G, and the contributions
from ða�ÞðJ�Þ to GMR for G� cancel. There remain the contributions from
those J with J� � relbdðG�Þ, and these sum to give GMR for G� itself. h

We remark that the tensorials themselves satisfy Lemmas 8.3 and 8.4, as
indeed they must.

Putting together Lemmas 8.3 and 8.4, we deduce

THEOREM 8.5 If P 2 PðVÞ, then a linear mapping �:V!W induces a
homomorphism from �WWðPÞ to �WWðP�Þ.

We denote this induced homomorphism by the same symbol �.

REMARK 8.6 Observe that, if the linear mapping � is non-singular on a
polytope P, then

MsðP�Þ ¼ ðMsðPÞÞ�;

as we have defined the effect of such mappings on weights.

§9. Weight algebras. We now discuss under what circumstances we can
multiply two weights together, in a way that generalizes what we can do for
tensorials. A weight a 2 �WWðPÞ is said to satisfy the Green-Minkowski connexion
(GMC) if, in the GMR (8.1), a0 ¼ a; that is,X

F 4G

aðFÞhuðF ;GÞ; ti ¼ aðGÞt; ð9:1Þ

for each G4P. We write WðPÞ for the subspace of those a 2 �WWðPÞ which
satisfy GMC. As with �WWðPÞ, if the aðFÞ are s-tensors on k-faces F , then the
aðGÞ are ðs� 1Þ-tensors on ðkþ 1Þ-faces G; thus the (total) degree r :¼ sþ k
of a is well defined. We denote by WrðPÞ the subspace of GMC-weights on P
of degree r.

Further, we call a quasi-scalar if a0 ¼ 0; the family of quasi-scalar weights on
P is denoted ���ðPÞ. We call a 2 �WWðPÞ a scalar weight if a:FðPÞ ! F, and denote
the family of them by �ðPÞ (this accords with the notation of [23]); clearly, the
GMR (8.1) implies that �ðPÞ4 ���ðPÞ.
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LEMMA 9.1 If P 2 PðVÞ and Q 2 PðWÞ are polytopes, then weights
a 2 �WWðPÞ and b 2 �WWðQÞ induce a weight a� b 2 �WWðP�QÞ on the direct
(cartesian) product P�Q if either a and b satisfy the GMC, or are (quasi-)scalar.

Proof. The definition of a� b is again that which we are forced to adopt, if
we wish weights to mimic tensorials. Namely, we set

ða� bÞðF � GÞ :¼ aðFÞbðGÞ;

for all faces F 2 FðPÞ and G 2 FðQÞ. The astute reader will notice that our
scaling of tensorials (so that we use these rather than mass moments) is designed
to facilitate this definition; otherwise, the degrees of the tensors would need to
be specified, and binomial coefficients would need to be introduced. Naturally,
we call a� b the direct product of a and b. Observe that aðFÞbðGÞ 2 TðV�WÞ
in an obvious way (note that TðVÞ ,!TðV�WÞ naturally under x 7! ðx; oÞ, and
similarly for TðWÞ).

It clearly suffices to check GMR (8.1) on P�Q itself. A general vector
t 2 ðP�QÞk is uniquely expressible as t ¼ tP þ tQ ¼ ðtP; tQÞ, with tP 2 Pk and
tQ 2 Qk. The facets of P�Q are of two kinds, namely F �Q with F 4P, or
P� G, with G 4Q. The corresponding unit normal vectors are

uðF �Q;P�QÞ ¼ ðuðF ;PÞ; oÞ;

uðP�Q;P�QÞ ¼ ðo; uðG;QÞÞ:

Of course, we then have

huðF �Q;P�QÞ; ti ¼ huðF ;PÞ; tPi;

huðP�Q;P�QÞ; ti ¼ huðG;QÞ; tQi:

For GMR, in general we haveX
F 4P

ða� bÞðF �QÞhuðF �Q;P�QÞ; ti

þ
X
G 4Q

ða� bÞðP� GÞhuðP� G;P�QÞ; ti

¼
X
F 4P

aðFÞbðQÞhuðF ;PÞ; tPi þ
X
G 4Q

aðPÞbðGÞhuðG;QÞ; tQi

¼ a0ðPÞbðQÞtP þ aðPÞb0ðQÞtQ:

We now address the two cases separately. If a and b satisfy GMC, so that a0 ¼ a
and b0 ¼ b, then the last expression is aðPÞbðQÞt, and hence a� b also satisfies
GMC. If a and b are (quasi-)scalar, so that a0 ¼ b0 ¼ 0, then the last expression
is 0, and hence a� b is also (quasi-)scalar. h

We can now establish the algebra properties which we announced earlier.

THEOREM 9.2 For each P;Q 2 P, there is a multiplication
WðPÞ WðQÞ ! WðPþQÞ. In particular, WðPÞ is an algebra over F for each
P 2 P. Moreover, the direct limit W ¼WðVÞ of the WðPÞ under � exists.
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Proof. As in (2.1), let �:V� V! V be the sum mapping, given by

ðx; yÞ� :¼ xþ y:

For a 2 WðPÞ and b 2 WðQÞ, we define
ab :¼ða� bÞ�;

with �:WðP�QÞ ! WðPþQÞ the corresponding induced mapping of
Lemma 8.4. Since a� b 2 WðP�QÞ by Lemma 9.1, we see that indeed
ab 2 WðPþQÞ.

This is the multiplication asked for; note that the distributive laws follow
automatically.

By Proposition 8.2,WðPþ PÞ ¼ Wð2PÞ ¼ WðPÞ for each P 2 P, and so we
obtain the required product on WðPÞ. Clearly, this satisfies

ab ¼ ba;

ðaþ a0Þb ¼ abþ a0b;

ð�aÞb ¼ �ðabÞ;

for each a; a0; b 2 WðPÞ and � 2 F, and hence WðPÞ is an algebra over F.
Finally, let iQ 2 WðQÞ be given by

iQðGÞ :¼
1; if G is a vertex of Q;

0; otherwise:

�
ð9:2Þ

It is easy to check that multiplication by iQ embedsWðPÞ inWðPþQÞ. In fact,
in the picture of (8.3), the embedding is just given by the corresponding refine-
ment of normal cones (which induces an addition on b��). h

Let us expand this last comment a little. Consider first a product weight ab
on PþQ itself. A typical contribution to ðabÞðPþQÞ comes from a pair of
faces F 4P and G4Q of complementary dimension (in PþQ); this will be

�ðF ;GÞaðFÞbðGÞ;

where �ðF ;GÞ :¼�ðF � G;�Þ gives the volume of the sum of unit cubes (of the
appropriate dimension) in Fk and Gk. Later on, we shall need an explicit
description of which such pairs of faces contribute to the product. This is
given in terms of the normal fans of P and Q. We choose a general translation
vector v 2 V

�, and pick those faces F 4P and G4Q for which
relintNðF ;PÞ \ relint ðNðG;QÞ � vÞ is a single point. (For a proof, see [3] or,
for a more general result, [13, 34]; the latter is set in an even more general
context in [25].)

The analogous calculations, carried out intrinsically, give ðabÞðF þ GÞ when
F 4P and G4Q, and in (8.3) we have

NðF þ G;PþQÞ ¼ NðF ;PÞ \NðG;QÞ:

When b ¼ iQ, the contribution of iQ to T b�� is carried on full-dimensional
cones alone; indeed,

iQ 7! 1 hVi;
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since the union of these cones is just V itself. Thus multiplying a 2 WðPÞ by iQ
just corresponds to subdividing the normal cones NðF ;PÞ of P (if we now think
of normal cones to PþQ), but addition in b�� shows that we actually obtain a
again.

Exactly the same arguments show that ���ðPÞ and �ðPÞ are algebras over F
(the latter was established in [23]), and so we shall not repeat the details.

REMARK 9.3 The tensorials Ms themselves, while motivating the defini-
tions we have used, do not behave in such an elementary way as weights. In
fact, an easy calculation shows that

MsðP�QÞ ¼
Xs
k¼0

MkðPÞMs�kðQÞ;

we use here

1

s!

�
s

k

�
¼ 1

k!

1

ðs� kÞ! ;

which shows why we incorporated the scaling factor 1=s! in the definition ofMs.
If we consider the formal power series

MðP; tÞ :¼
X
s5 0

MsðPÞts;

then we deduce that

MðP�Q; tÞ ¼MðP; tÞMðQ; tÞ:
§10. Simple polytopes. An important step in establishing the isomorphism

theorem of Section 11 is to show that, if P is a simple polytope, then the sub-
algebra WðPÞ is generated by its first weight space. In the course of this, we
also prove a kind of separation theorem for WðPÞ. The following argument
appeals to [16] (in the dual form), which gives an easier approach than the
analogous one to that in [19].

Let P 2 PðVÞ be a simple d-polytope. Recall that this means that each vertex
of P lies in exactly d facets (the minimum number). As before, if
U ¼ ðu1; . . . ; unÞ is the (ordered) set of unit facet normals to P, we write P in
the form

P ¼ PðU; bÞ :¼fx 2 V j hx; uji4�j for j ¼ 1; . . . ; ng;

where b :¼ð�1; . . . ; �nÞ 2 F
n. If, as in Section 4, we replace b by a suitably large

positive multiple, we may clearly assume that each PðU; bþ ejÞ � P, where
ej 2 F

n is the jth standard basis vector for j ¼ 1; . . . ; n.
Just as with the subalgebra ���ðPÞ, for each j ¼ 1; . . . ; n, we have an element

inW1ðPÞ which we can identify with ej . This is the 1-weight on P corresponding
to unit displacement of the jth facet hyperplane

Hj :¼Hðuj; �jÞ :¼fx 2 V j hx; uji ¼ �jg

which meets P in the facet Fj (say); we use the same symbol ej for it. It is clear
that the weight ej is localized to Fj , in that it vanishes on every face of P which
does not meet Fj. It follows that, for 14 jð1Þ4 � � � 4 jðrÞ4 n, the product
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ejð1Þ � � � ejðrÞ is localized to the intersection Fjð1Þ \ � � � \ FjðrÞ, and so vanishes
unless the intersection is non-empty.

Notice, as well, that

t !ðht; u1i; . . . ; ht; uniÞ ¼
Xn
i¼1

ht; uiiei;

for t 2 V, embeds T into the corresponding translation subalgebra T ðPÞ of
WðPÞ.

We call a (non-zero) vector v 2 V
� general (with respect to P – it is useful to

distinguish the dual space here) if no hyperplane

Hðv; �Þ :¼fx 2 V j hx; vi ¼ �g

contains more than one vertex of P. It is clear that such general directions v
exist; indeed, v only needs to avoid the finitely many hyperplanes in V

� of the
form

fw 2 V
� j hx;wi ¼ hy;wig;

where x; y 2 vertP.
We now sweep the hyperplane Hðv; �Þ, or, rather, the associated half-space

H�ðv; �Þ :¼fx 2 V j hx; vi4 �g;

through P; that is, we increase � from �1 to 1. We say that x 2 vertP is of
type r if H�ðv; �Þ, with � :¼hx; vi, contains exactly r downward edges of P
through x. Thus x is the top vertex (with respect to v) of an r-face F of P; we
call F a distinguished face of P for the direction v. The complementary set of
d � r upward edges through x which lie in the other half-space Hþðv; �Þ
bounded by Hðv; �Þ similarly determines a ðd � rÞ-face F 0 of P, which is
distinguished for �v. Now F 0 is the intersection of r (distinct) facets of P, say

F 0 ¼ Fjð1Þ \ � � � \ FjðrÞ;

with 14 jð1Þ < � � � < jðrÞ4 n. Since the product eF :¼ ejð1Þ � � � ejðrÞ is localized to
F 0, and since ejðsÞ takes a positive (scalar) value on the downward edge which
does not lie in FjðsÞ for each s ¼ 1; . . . ; r; we easily see that, if G is an r-face of
P lying in H�ðv; �Þ, then eF ðGÞ 2 F satisfies

eFðGÞ
> 0; if G ¼ F ;

¼ 0; otherwise:

�

Now let a 2 WðPÞ. We up-date a as we sweep through P. When the sweeping
half-space acquires the vertex x, and corresponding distinguished r-face F , we
suppose that aðGÞ ¼ o whenever G4P is such that G � intH�ðv; �Þ (that is,
G � H�ðv; �Þ, but x =2G). It is fairly clear that aðFÞ determines aðGÞ for each
face G4P with x 2 G � H�ðv; �Þ; we shall return to this point in the wider
context of Section 12. We then redefine

a0 :¼ a� ðaðFÞ=eFðFÞÞeF
to be the new a. Then a0ðGÞ ¼ o whenever G � H�ðv; �Þ (including all those G
with x 2 G). We conclude at once that we have proved
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THEOREM 10.1 If P is a simple polytope, then the weights eF , with F running
over the distinguished faces of P when P is swept in some general direction v, form
a basis of WðPÞ as a module over the translation subalgebra T ðPÞ (or over T).

We call Bv :¼feF jF 4P distinguished for vg the sweep basis of WðPÞ for the
direction v.

Since the translations themselves are linear combinations of the basic 1-
weights ej, an immediate consequence is

COROLLARY 10.2 The subalgebra WðPÞ4W is generated by e1; . . . ; en,
and hence is generated by W1ðPÞ.

For completeness, we recall some further facts, and note how they are
reflected inWðPÞ. Associated with a simple d-polytope P are certain combina-
torial invariants hrðPÞ. We define these as follows. For j ¼ 0; . . . ; d; let fjðPÞ
denote the number of j-faces of P, and set

f ðP; tÞ :¼
Xd
j¼0

fjðPÞtj ;

with t an indeterminate. Define the new polynomial hðP; tÞ ¼
Pd

r¼0 hrðPÞtr by
hðP; tÞ :¼ f ðP; t� 1Þ:

Then we have

PROPOSITION 10.3 For each r ¼ 0; . . . ; d; hrðPÞ is the number of vertices of
P of type r with respect to any sweep, or the number of distinguished r-faces of P.

Proof. This result is (by now) very well known. At a vertex x of type r, with
distinguished face F , the sweeping half-space H�ðv; �Þ acquires each of the j-
faces of F which contain x. Thus the change in hðP; tÞ at x is

	hðP; tÞ ¼ 	f ðP; t� 1Þ ¼
Xr
j¼0

�
r

j

�
ðt� 1Þj ¼ tr;

and the desired conclusion follows at once. h

Reversing the direction of the sweep, and so changing v to �v, leads at once
to the Dehn-Sommerville equations

hrðPÞ ¼ hd� rðPÞ for r ¼ 0; . . . ; d:

The Hilbert function ofWðPÞ counts the dimension ofWrðPÞ for each r5 0.
It is usually expressed as a formal power series; from the results above we deduce

PROPOSITION 10.4 If P is a simple d-polytope, then the Hilbert function of
WðPÞ is

hðP; tÞ
ð1� tÞd

:
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Exactly the same arguments apply to �ðPÞ and ���ðPÞ (and, indeed, with a
forward look to Section 12, to �WWðPÞ as well). Each distinguished face F in a
sweep basis gives a corresponding basis element eF of �ðPÞ, ���ðPÞ and �WWðPÞ,
which takes a scalar value on F . We conclude

THEOREM 10.5 Let P 2 PðVÞ be a simple d-polytope. Then

(a) Bv is a basis for �ðPÞ over F;
(b) Bv is a basis for ���ðPÞ as a module over T;
(c) Bv is a basis for �WWðPÞ as a module over T.

In the last case, we must interpret each eF as an element of WðPÞ.
The dimensions of subspaces of �ðPÞ and ���ðPÞ are easily calculated. Since

dimTs ¼
�
sþ d � 1

s

�
;

writing ���k;s for the space of s-tensor quasi-scalar weights on k-faces of P, and
using the known value dim ���0;kðPÞ ¼ dim�kðPÞ ¼ hkðPÞ from [20, 23], we
thus have

THEOREM 10.6 For k ¼ 0; . . . ; d and each s5 0,

dim ���k;sðPÞ ¼
�
sþ d � 1

s

�
hkðPÞ:

Let us now do similar calculations for the dimensions of the spaces �WWk;sðPÞ.
At this point, we make a forward reference to Theorem 12.1. This says, in effect,
that �WWkþ1; s�1ðPÞ is the image of �WWk;sðPÞ under the GMC. The kernel of the
GMC consists of ���k;s. Hence,

dim �WWk;sðPÞ ¼ dim �WWs�1;kþ1ðPÞ þ dim ���k;sðPÞ:

By an induction argument, there follows at once

THEOREM 10.7 For k ¼ 0; . . . ; d and each s5 0,

dim �WWk;sðPÞ ¼
Xd
j¼k

�
d þ sþ k� j � 1

sþ k� j

�
hjðPÞ:

§11. The isomorphism theorem. We are now in a position to prove the
central results in the theory of tensor-valued weights. The main one depends
on the following

LEMMA 11.1 Let P 2 PðVÞ be a simple polytope. Then

���ðPÞ ffi WðPÞ:
Proof. Define the canonical r-weight of Q 2 KðPÞ by

qrðFÞ :¼Mr�dimF ðGÞ;
where G4Q corresponds to F 4P under the strong isomorphism P � Q.
(Recall the convention that Ms 	 0 if s < 0.) It is clear that the mapping
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Q 7! qr is a weakly continuous valuation which is polynomial of degree r. As we
saw in Theorem 6.1, each qr satisfies GMC, so that qr 2 WðPÞ. Furthermore,

qr ¼
1

r!
ðq1Þr;

because this relation certainly holds on the vertices of P.
Now suppose that P ¼ PðU; bÞ as in Section 4, and recall from there the

identification

ej :¼ logPj � logP;

with Pj :¼PðU; bþ ejÞ for j ¼ 1; . . . ; n. Setting Q :¼Pj, we can further identify
ej with q1 � p1, and, as we saw in Corollary 10.2, WðPÞ is generated by
e1; . . . ; en. Finally, Proposition 10.4 tells us, in effect, that WðPÞ is isomorphic
to the face ring of the simplicial polytope P� dual to P, while Corollary 4.7
says that ��� is a quotient of this face ring. The claim of the lemma follows at
once. h

Lemma 4.1 shows that, given anyQ1; . . . ;Qm 2 P, there is some simple poly-
tope P such that Qj � P for each j. The main isomorphism theorem is an
immediate consequence.

THEOREM 11.2 Let V be a finite dimensional vector space over the square-
root closed ordered field F. Then the graded algebras ���ðVÞ and WðVÞ are iso-
morphic.

In view of our alternative picture of tensor weights as elements of T b��, we
can rephrase Theorem 11.2 in the following way.

THEOREM 11.3 Let V be as in Theorem 11.2. For each r5 0, define the r-
class of a polytope P 2 PðVÞ by

pr :¼
Xr
s¼0

X
dimF ¼ r� s

MsðFÞ  bnnðF ;PÞ ¼ X
kþ s¼ r

Vk;sðPÞ;

with Vk;s as in (7.2). Then, as weights, these r-classes generate WrðVÞ. In parti-
cular, the mappings P 7! pr induce isomorphisms from ���rðVÞ to WrðVÞ.

We end the section with a far-ranging generalization of the main theorem of
[17], which follows at once from Theorem 11.3. Write VðV;WÞ for the family of
weakly continuous translation covariant valuations ’:PðVÞ !W into the
(finite dimensional) vector space W over F.

THEOREM 11.4 Let V be as in Theorem 11.2, let W be another vector space
over F, and let ’ 2 VðV;WÞ. Then there are homomorphisms
 : b��ðVÞ ! HomZðTðVÞ;WÞ such that

’ðPÞ ¼
X
F 4P

X
s5 0

MsðFÞðbnnðF ;PÞ sÞ;

where all but finitely many  s vanish.
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It must be borne in mind here that valuations pay no attention to the
multiplicative structure of �, or of W. Thus there will not necessarily be any
relationships among the different  s.

§12. Extensions. So far as (weakly continuous translation covariant)
valuations are concerned, it is only the additive structure of �WW which is
significant. In other words, as Theorem 11.4 shows, the vector spaces �WWs;k of
s-tensor weights on k-faces of polytopes can act quite independently as
source spaces for valuations. Nevertheless, Theorem 11.2 shows that it is
actually the subspaces of W, whose elements are related by the GMC, which
are universal.

For the behaviour of a valuation on any finite family of polytopes, we can
confine our attention to a subalgebra �WWðPÞ, for some P 2 P. However, only
when P is simple can we guarantee that �WWðPÞ is generated over T by W1ðPÞ.
Indeed, if P is a simplicial d polytope which is not a simplex, and so has (say)
n5 d þ 2 facets, then P has ðd � 1Þ-weights which do not lie in W1ðPÞd�1.

The extension problem is the following. Let P 2 P, and let a:F rðPÞ ! T

satisfy the GMR, so that there exists b:F rþ1ðPÞ ! T such thatX
F

aðFÞuðF ;GÞ ¼ bðGÞqðGÞ ð12:1Þ

for each such G 2 F rþ1ðPÞ. There arise two questions. First, does b itself
satisfy the GMR on ðrþ 2Þ-faces of P? Second, if so, is a the restriction of a
(GMC-)weight in WðPÞ to F rðPÞ?

We can answer these questions in a special case; however, in the wider
context of the whole space �WW of tensor weights, this answers both questions
positively.

THEOREM 12.1 Let P be a simple d-polytope, let 04 r < d, and suppose that
a:F rðPÞ ! T satisfies the GMR (12.1) on F rþ1ðPÞ. Then a is the restriction of a
GMC-weight in WðPÞ to F rðPÞ.

Proof. There is nothing to prove when r ¼ d � 1, but we need to bear this
case in mind. When r4 d � 2, we first have to show that, for each J 2 F rþ2ðPÞ,
there exists cðJÞ 2 T such that

P
G bðGÞuðG; JÞ ¼ cðJÞqðJÞ. It is thus clear that

we need only consider the case r ¼ d � 2, so that J ¼ P.
A good part of the argument refers to what we did earlier; the basic idea is to

restrict a to ridges ((d � 2)-faces) and b to facets of P which contain a single
vertex. So, we sweep P by a hyperplane in a general direction, ending at the
final vertex x, say. Vertices of P of type s < d � 2 do not concern us. At a
vertex of type d � 2 we strip off the appropriate multiple of the corresponding
element of the sweep basis inWd�2ðPÞ; at a vertex of type d � 1 we do the same,
noting that the GMC deals with the corresponding (d � 2)-faces as well.

We end up with a and b localized to the final vertex x in the sweep. Let the
facets of P through x be F1; . . . ;Fd , with corresponding unit outer normal
vectors uj :¼ uðFj;PÞ for j ¼ 1; . . . ; d. Let Gjk :¼Fj \ Fk, and write for short

ajk :¼ aðGjkÞ; bj :¼ bðFjÞ;
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for each j and k. The unit outer normal to Fj at Gjk is

vjk :¼ uðGjk;FjÞ ¼ ð1� huk; uji2Þ�1=2ðuk � huk; ujiujÞ:

Let ðu�1; . . . ; u�dÞ be the dual basis to ðu1; . . . ; udÞ, so that huj; uki ¼ �jk for each
j and k. Then u�j 2 V is a vector along the edge of P into x which does not lie in
Fj. From the GMR for a, we thus have

bju
�
k ¼

X
i 6¼ j

ajihvji; u�ki

¼ ð1� huk; uji2Þ�1=2ajk
¼ bku

�
j ;

by symmetry, for each j; k ¼ 1; . . . ; d. It follows that we can write

bj ¼ cu�j ;

for some c 2 T (recall that T can be embedded in its field of fractions, so that
division in T is unique). But now we immediately have

Xd
j¼1

bjuj ¼ c
Xd
j¼1

uju
�
j ¼ cq

with q :¼ qðPÞ, so that b satisfies GMR (with c the corresponding value on P).
This part of the proof shows that (reverting to a more suitable notation), if a

is defined on r-faces of P satisfying GMR, then a is defined on s-faces for
s ¼ r; . . . ; d. But now we can strip off a, beginning with P. If, for some
s ¼ r; . . . ; d; we have subtracted weights so that a vanishes on faces of dimen-
sion greater than s, then, because the new a still satifies GMR on F sðPÞ, it
follows that a is a quasi-scalar weight on F sðPÞ, that is, a T-linear combination
of sweep-basis elements inWsðPÞ. Once we have worked back to r-faces we are
done, since a was not specified on faces of lower dimension. This completes the
proof. h

We can now appeal to the discussion of Section 8, and deduce from Theorem
12.1 the corresponding extension result for general polytopes.

THEOREM 12.2 Let P;Q 2 P with Q a simple d-polytope such that P � Q.
Let 04 r < d, and suppose that a:F rðPÞ ! T satisfies the GMR (12.1) on
F rþ1ðPÞ. Then a is the restriction of a GMC-weight in WðQÞ to F rðPÞ.

Proof. Choose any simple d-polytope Q such that P � Q. By Proposition
8.1, there exist induced weights a0, b0 on Q. We thus know from Theorem 12.1
that b0 itself satisfies the GMR, with corresponding weight c0. As in the previous
theorem, the only important case is r ¼ d � 2, so that c0 just takes its value onQ
itself (we do not assume that dimP ¼ d, and so this does cover all cases). In case
(a) of Proposition 8.1, for which dimP ¼ d, we see immediately that
cðPÞ :¼ c0ðQÞ is the correct definition; exactly as in that case (with b0, c0
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instead of a0, b0), because qðPÞ ¼ qðQÞ we haveX
F 4P

bðFÞuðF ;PÞ ¼
X
G 4Q

b0ðGÞuðG;QÞ ¼ c0ðQÞqðQÞ ¼ cðPÞqðPÞ;

as required. Similarly, when dimP ¼ d � 1 the proof follows case (b) of the
proposition, while if dimP4 d � 2 it follows case (c); in both cases,
cðPÞ ¼ 0. h

REMARK 12.3 The method of proof of Theorem 12.1 shows that, on a
simple polytope, a GMR-weight extends to faces of lower dimension as well.
This is not the case for polytopes in general. If P is a simplicial d-polytope
(all its proper faces are simplices), then the restriction of Wd�1ðPÞ to the
facets of P is 1-dimensional – it just consists of multiples of the (d � 1)-
volumes (areas) of the facets. However, if P is not a simplex, then �WWd�1ðPÞ is
( f � d)-dimensional, where f > d þ 1 is the number of facets of P.

§13. Translation quotients. In Section 6, we wrote Ts ¼ TsðVÞ for the space
of symmetric s-tensors over V. We have seen also that T embeds naturally in
W ¼WðVÞ. It is then clear that the quotient W=Trþ1 ffi ���=Trþ1. For a given
polytope P, which we usually take to be simple, it follows that we have sub-
algebras WrðPÞ :¼WðPÞ=ðWðPÞ \ T rþ1ðPÞÞ, with T ðPÞ the image of T in
WðPÞ, which correspond to the valuations which are polynomial of degree at
most r. It is clear that WrðPÞ4 �WWðPÞ in a natural way. The multiplication is
just that induced from WðPÞ itself; this works in spite of the fact that the
GMC (9.1) does not always hold (because tensor weights of degree r on s-
faces do not come from those of degree rþ 1 on (s� 1)-faces) – this is taken
care of by factoring out Trþ1.

The claim of Theorem 7.1 follows immediately. Theorem 11.3 gives the basic
isomorphism theorem, and factoring out by the space tensors Tmþ1 of degree
mþ 1 just corresponds to restriction to those Vk;s for which s4m.

§14. Weights as valuations. It is a special case of Theorem 7.1 that a weakly
continuous translation covariant valuation ’:PðVÞ ! F is expressible in the
form

P’ ¼
Xr
s¼0

X
F 4P

hMsðFÞ; bnnðF ;PÞ si ð14:1Þ

for some r and some homomorphisms  s: b��! T
�
s , the grade s term of the

dual tensor algebra T
� :¼TðV�Þ, and h�; �i is the natural pairing between T

and T
�.

Suppose, however, that we are interested in the restriction of such valuations
to a given class KðPÞ (or its closure �KKðPÞ), with P a simple polytope. With
v 2 V

� a general direction, we have a sweep-basis Bv of WðPÞ as a module
over T. We write the elements of Bv as b1; � � � ; bm; in the order in which the
corresponding m vertices of P are met by the sweep hyperplane. We similarly
have a sweep basis B�v where we reverse the sweep direction. We label its
elements b�m; . . . ; b

�
1; again in the sweep order, so that bj and b�j arise from the
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same vertex of P (met in opposite directions). We then have

LEMMA 14.1 For 14 j < k4m,

ðb�j bkÞðPÞ ¼ 0;

while for 14 j4m,

ðb�j bjÞðPÞ > 0

is a scalar.

Proof. For the first assertion, if bk is localized to the face Gk 4P, so that

bk ¼
Y

Fi 5G

ei;

and if b�j is similarly localized to G�j , then b�j bk ¼ 0 because G�j \ Gk ¼ ;. For the
second assertion, G�j and Gj are faces of complementary dimensions meeting in
the jth vertex, and so their product gives a positive scalar on P. h

REMARK 14.2 Lemma 14.1 almost says that Bv and B�v are dual bases of
WðPÞ as a T-module; more exactly, it is easy (in principle) to construct such a
basis dual to Bv as linear combinations of elements of B�v.

A particularly interesting case of duality which has already been used exten-
sively (see, for example, [20, 23]) is the fact that (in the sense we have been
considering) �ðPÞ is its own dual; more specifically, �rðPÞ� ¼ �d� rðPÞ. To be
more precise, for a 2 �rðPÞ and b 2 �sðPÞ, we can define

ha; bi :¼ðabÞðPÞ;

the value that the product in �ðPÞ takes on P itself. This will vanish unless
rþ s ¼ d. More generally, for a; b 2 �ðVÞ, say a 2 �ðPÞ and b 2 �ðQÞ with
P;Q 2 PðVÞ, we can define

ha; bi :¼ðabÞðPþQÞ ¼ ðabÞðVÞ; ð14:2Þ
in an obvious sense when we proceed to the direct limit.

In fact, this extends even further. As before, we write ���ðPÞ for the space of
quasi-scalar weights on the simple d-polytope P. We have seen in Theorem 10.5
that an element of ���ðPÞ is just a T-linear combination of elements of �ðPÞ. We
can therefore define ����ðPÞ similarly to be the space of T�-linear combinations of
elements of �ðPÞ, for a moment retaining the distinction between T and T

�.
There is an obvious pairing ���ðPÞ  ����ðPÞ ! F; just take the value of the
weight product on P itself in the natural way, and then apply the pairing
T T

� ! F which is induced by the duality between V and V
�. Because the

weights are quasi-scalar, there is no problem with the product weight a� b in
Lemma 9.1, even though aðFÞbðGÞ 2 T T

�; indeed, it is quite natural to
apply the pairing at this stage, so that aðFÞbðGÞ 7! haðFÞ; bðGÞi. With this
definition, we can draw an immediate conclusion.

THEOREM 14.3 The vector spaces ���ðPÞ and ����ðPÞ are duals.
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REMARK 14.4 We have only sketched this last notion, because, while it is
very suggestive, it does not lead to the generalization which we need in the next
section.

In a slightly different direction, there is a further generalization.

THEOREM 14.5 Let P be a simple polytope. Then, regarded as a T-module,
the space WðPÞ is self-dual.

Proof. Again, this is a direct consequence of Lemma 14.1 (and the subse-
quent remark), about which no more needs to be said. h

§15. Dual maps. It is a staple of vector space theory that, if 
:V!W is a
linear mapping between vector spaces, then there is a dual mapping

�:W� ! V

�, such that

hx
; yi ¼ hx; y
�i

for all x 2 V and y 2W
�. We have seen in Theorem 8.5 that a linear mapping

induces a corresponding homomorphism on the spaces of GMR-weights.
Since it is only the vector space structure (rather than the algebra structure)
which is germane in this context, it is natural to ask about the induced linear
mapping on the dual spaces. Unfortunately, our description of the dual space
in (14.1) is not very helpful from this point of view, because it is not clear
what the induced dual mappings on the spaces HomFðb��;T�Þ are.

There is one special case where we can explicitly describe the dual mapping.
This is for the spaces � ¼ �ðVÞ, where we have constructed the pairing
�� �! F given by ha; bi :¼ðabÞðPþQÞ, if a 2 �ðPÞ and b 2 �ðQÞ. Of
course, two weights can always be taken to lie in �ðPÞ for a common P 2 P,
and, indeed, we have seen in Section 14 that we can proceed to the direct
limit �ðVÞ; thus we can write ha; bi :¼ðabÞðVÞ with an obvious meaning.

Now suppose that we have a linear mapping �:V!W. We have used the
same symbol � to indicate the induced (algebra) mapping from �ðVÞ to
�ðWÞ. We now ask: what is the induced dual linear mapping
���:�ðWÞ ! �ðVÞ, such that

ha�; bi ¼ ha; b���i ð15:1Þ

for all a 2 �ðVÞ and b 2 �ðWÞ? We use the distinctive notation ��� rather than a
more conventional ��, in part because we are working in inner product spaces,
for which �� would be the mapping between the weight algebras induced by the
dual mapping ��:W! V. However, the notation will be consistent with that of
the next section.

Before we give the definition, we lay the foundations for it. We begin with a
result which lies at the heart of what we do. First, let L;M4V be such that L
and M are subspaces of complementary dimension; thus L and M? (the ortho-
gonal complement of M) have the same dimension. We write
�ðL;MÞ :¼�ðL�M;�Þ, the volume ratio of the projection of the product
onto the sum; thus, if A � L and B �M are unit boxes, then
�ðL;MÞ ¼ volðAþ BÞ. Further, recall this definition from number theory: if
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A is the matrix with rows a1; . . . ; ar 2 V, thought of as coordinate vectors with
respect to some orthonormal basis, then

DetA :¼ðdetAA>Þ1=2:
Moreover, to save space, we write (e1; e2; . . .) for the matrix with rows e1; e2; . . ..
We then have

LEMMA 15.1 Let L;M4V be subspaces of complementary dimension, and
let fe1; . . . ; edg and f f1; . . . ; fdg be orthonormal bases of V such that (for some r)
L ¼ linfe1; . . . ; erg and M ¼ linf frþ1; . . . ; fdg. Then

�ðL;MÞ ¼ j detðhei; fjiÞ j 14 i; j4 rÞj:
Proof. By definition, �ðL;MÞ is the absolute value of
detðe1; . . . ; er; frþ1; . . . ; fdÞ ¼ 
detððe1; . . . ; er; frþ1; . . . ; fdÞ

�½ f >1 � � � f >r f >rþ1 � � � f >d �Þ

¼ 
det
�
ðhei; fjiÞ j 14 i; j4 rÞ

0

�
Id� r

�
;

which gives the result claimed. h

Motivated by what must be the case when W ¼ V and � is invertible, we
regard �ðWÞ as a subspace of F b��ðWÞ, and so define b���, for b 2 �ðWÞ, by� X

K 2CðWÞ
bðKÞ  hKi

�
��� :¼

X
K 2CðWÞ

�ðK ;��ÞbðKÞ  hKi�� 2 F b��ðVÞ; ð15:2Þ
where

hKi�� :¼
hK��i; if �� is non-singular on K ;

0; otherwise:

�
ð15:3Þ

noting that this is actually taken care of by the volume ratio �ðK ;��Þ. We then
have

THEOREM 15.2 The mapping ��� defined by (15.2) satisfies the duality prop-
erty (15.1).

Proof. To simplify the calculations involved, we split the proof into three
parts, according to the nature of �: first, �:V! V is invertible; second, � is
orthogonal projection onto a hyperplane W4V; third, � is isometric injection
into a hyperplane V4W. Every linear mapping is a composition of these
special kinds.

Recall first how we calculate ha; bi. Regard a 2 �rðPÞ for some P 2 P, and
the (d � r)-weight b as an element of F b��, as above; to aid geometric visuali-
zation, however, it is convenient to think of b 2 �d� rðQÞ for some Q 2 P as
well. Choose a general vector v 2 V. Then F 2 F rðPÞ contributes to the
product ha; bi precisely when

relintNðF ;PÞ \ ðrelintK � vÞ 6¼ ;
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for some r-cone K (which we visualize as NðG;QÞ for some Q 2 F d� rðQÞ), and
then the contribution is �ðNðF ;PÞ;KÞaðFÞbðKÞ. Here, �ðNðF ;PÞ;KÞ is an
abbreviation for �ðNðF ;PÞk;KkÞ.

In each case, our subsequent calculations replace P by P� and a by a�.
For the first case, we let our typical contribution come from F� (with

F 2 F rðPÞ as before) and G 2 F d� rðQÞ such that K ¼ NðG;QÞ. Following
Lemma 15.1, if fe1; . . . ; erg and f f1; . . . ; frg are orthonormal bases of Fk and
Kk, respectively, then fe1�; . . . ; er�g is a basis of ðF�Þk, which is such that

�ðF ;�Þ ¼ Detðe1�; . . . ; er�Þ:
It follows at once that

j detðhei�; fjiÞ j 14 i; j4 rÞ j aðFÞbðKÞ

is the contribution of F� and K (or G) to ha�; bi. Now, in this case, the dissec-
tion of P�þQ given by a normal vector v corresponds to that of PþQ��1

given by v��. Since

hei�; fji ¼ hei; fj��i
(bearing in mind here that we should think of fj 2 V

� for each j), the same argu-
ment shows that the contribution from F and K�� to ha; b���i is

j detðhei; fj��iÞ j 14 i; j4 rÞ j aðFÞbðKÞ;
which is exactly what we want.

In the second case, we can work in V, in which case �� is just the injection of
W into V (or, more strictly, of W� into V

�). The general vector v 2W used to
calculate ha�; bi must now be lifted slightly into general position v0 in V, say
by adding a small vector in W

?; we think of this as lying on the ‘‘positive’’
side ofW. So far as a face F 0 2 F rðP�Þ is concerned, there are two possibilities.
If F 0 ¼ F� for some r-face F 4P, then v0 will pick out F for

relintNðF ;PÞ \ ðrelintðK�� � v0Þ 6¼ ;:
Essentially the same argument as in the previous paragraph will show that the
contribution to ha; b���i is the same. Otherwise, F 0 will arise from a (rþ 1)-face of
P, and each r-face F in the ‘‘upper surface’’ of this face will contribute. Again,
though, Lemma 15.1 will ensure that the total contribution to ha; b���i will be the
same.

Finally, the last case is trivial; it is really the same as the first, except that now
�� is orthogonal projection from W to V (or from W

� to V
�), and a general

vector in V (giving a suitable dissection) lifts to a general vector in W giving
essentially the same dissection. h

We can now generalize Theorem 15.2 in a somewhat artificial way.
However, this description, combined with results from [26], will motivate
what we do in the next section. We saw in Theorem 14.3 that the spaces ���ðPÞ
and ����ðPÞ are duals. In fact, the abstract description of the product of
weights in terms of the interaction between normal fans enables us to talk
about the pairing ���ðVÞ and ���ðV�Þ (with some looseness of language). For
a 2 ���ðVÞ and b 2 ���ðV�Þ, we define ha; bi to be the value given by Section 14
on V itself (that is, on PþQ if a 2 ���ðPÞ and b 2 ����ðQÞ).
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It is then natural to ask the following question. Let �:V!W be a linear
mapping. Then � induces a linear mapping �: ���ðVÞ ! ���ðWÞ. What, if any,
linear mapping ���: ���ðW�Þ ! ���ðV�Þ is induced by �, in the sense that, if
a 2 ���ðVÞ and b 2 ���ðW�Þ, then ha�; bi ¼ ha; b���i?

To define ���, we again return to the picture of the weight b as

b ¼
X

K 2CðW�Þ
bðKÞ  hKi;

where the (finite) sum runs over cones, and the bðKÞ 2 T
� ¼ TðW�Þ, interpreted

as weights, satisfy the GMR. Then the appropriate definition of ��� is

b��� :¼
X
K 2C

�ðK ;��ÞbðKÞ��  hK	�i: ð15:4Þ

With the pairing of Section 14, there follows at once

ha�; bi ¼ ha; b���i; ð15:5Þ

for all a 2 ���ðVÞ and b 2 ���ðWÞ.

REMARK 15.3 A comment is in order here. It is only the artificial definition
of ���� which ensures that b��� is actually a weight.

§16. The fibre product. In [1] (see also [2]), Alesker defined a multiplication
on smooth translation covariant valuations on the space of convex bodies in a
euclidean space. In [26], we described a mapping on tensor weights induced by
the fibre polytope construction. While the two ideas are closely connected by the
concept which we shall shortly introduce, it is far from clear exactly how the
appropriate homomorphism induced by a general linear map should behave;
the fibre polytope construction employed was tied in with the structure of an
inner product space (no harm results if we call this structure euclidean).

We begin with some background. In keeping with the more general setting of
[25], we have (proper) orthogonal complementary subspaces X and Y of an
inner product space V, and let �:X! V be the (isometric) injection and
�:V! Y the orthogonal projection. Thus we have a short exact sequence

O�!X�!� V�!� Y�!O

of spaces and mappings. In [26], we redefined the original notion in [5] of the
fibre polytope fibðP; �Þ to be

fibðP; �Þ :¼
ð
Y

ððP� yÞ \ XÞ dy;

where we replace an empty integrand by o. We showed there that the mapping
P 7! fibðP; �Þ induces a natural homomorphism ���:WðPÞ ! WðfibðP; �ÞÞ.
Indeed, let ��:V! X be the (dual) orthogonal projection (as usual, we identify
a space with its dual when we have an inner product). The mapping �� induces a
corresponding homomorphism on the tensor algebra T :¼TðVÞ, which we
denote by the same symbol.

The result from [26] is the following.
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THEOREM 16.1 If �:X ,!V is an isometric injection, define
���:TðVÞ  b��ðVÞ ! TðXÞ  b��ðXÞ on its generators by

ða hKiÞ��� :¼�ðK ;��Þða��Þ  hKi��:

Then ��� induces a vector space homomorphism fromWðVÞ toWðXÞ. If a 2 WðPÞ
for some P 2 PðVÞ, then a��� 2 WðfibðP; �ÞÞ.

Proof. For completeness, we briefly sketch the proof from [26]. Let
P 2 PðVÞ, and let a 2 WðPÞ. Using Proposition 8.1 and Theorem 9.2, we
may assume that P is simple, and that a is a canonical weight on P. The
weight induced by a on fibðP;�Þ is the natural one, obtained by integrating
over the fibres. Notice, by the way, that GMC holds for each such fibre, and
so the corresponding weight contribution to fibðP; �Þ must also satisfy GMC;
that is, it will indeed be a weight.

A face F 4Pwill make a contribution only if F� is full-dimensional inY, so
that dimðF�Þ ¼ m :¼ dimY. Such a face we call general; the rest are singular.
We wish to apply Fubini’s theorem, but we need a scaling factor, called the
volume ratio, defined as follows. Pick an orthonormal basis fb1; . . . ; bkg, say,
of Fk, so that fbmþ1; . . . ; bkg is a basis of Fk \ X. Let C be the unit m-cube
based on fb1; . . . ; bmg; then the scaling factor is the volume of C�. A little
thought shows that, if K :¼NðF ;PÞ is the normal cone to P at F , then the
scaling factor is, in fact, �ðK ;��Þ, namely, that of the projection �� on K .
(To see this, note that, if we extend to an orthonormal basis fb1; . . . ; bdg of
V, then fbkþ1; . . . ; bdg is an orthonormal basis of linK .)

Direct calculation shows thatð
F�

MsðF \ ðXþ yÞÞ dy ¼ �ðK ;��ÞMsðFÞ:

Now

MsððF � yÞ \ XÞ ¼ ðMsðF \ ðXþ yÞÞÞ��;

and so, taking the orthogonal projection �� outside the integral, we see that F
contributes �ðK ;��ÞMsðFÞ�� to the corresponding weight on fibðP; �Þ.

It is clear that the same calculation carries over to a singular face F ; here we
have �ðK ;��Þ ¼ 0.

Now the normal fan of fibðP; �Þ, which consists of the complex of normal
cones to its faces, is just the common refinement of the fan induced by the
projection of the normal fan of P under �� (see, for example, [25]). Finally, if
F 4P, then the contribution of its normal cone is thus NðF ;PÞ��. The desired
conclusion follows. h

We call ��� the fibre map. Of course, ��� is certainly not an algebra homo-
morphism, if only because it does not preserve degrees. It also bears emphasiz-
ing that it is the euclidean structure that makes the fibre map construction work
in a unique way.

Let us note that ��� preserves dimensions of normal cones rather than (as in
the homomorphisms of weight algebras introduced previously) those of faces.
If, as before, dimV ¼ d and dimY ¼ m (this turns out to be a better choice
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than specifying dimX), then we have ���:Ws;kðPÞ ! Wsþm;k�mðfibðP; �ÞÞ.
Another thing to observe that all normal cones contribute to the image under
���; contrast this with the situation for the homomorphism of (8.4), where
choices have to be made of cells in induced subdivisions.

An important property of ��� is the following. We refer to [26] for the fairly
elementary proof.

THEOREM 16.2 The fibre map ���:WðVÞ ! WðXÞ is surjective.

As we said, it is not obvious how to define the homomorphism induced by a
general linear mapping. The root of the problem is very basic. The original
definition of the fibre polytope is a bit of a hybrid: the injection �:X! V

leads to a mapping PðVÞ ! PðXÞ, and while the mapping ��� does arise in a
natural way (given the setting of inner product spaces), it is unnatural in that
it acts on tensors in one space and cones in its dual. (We point out that ��

should operate on T
� rather than on T.)

All that said, there are circumstances where we have a natural decomposi-
tion of a space into orthogonal subspaces; one of these leads to what we call
the fibre producth� onW which, while motivated by Alesker’s product of valua-
tions in [1, 2], does not actually correspond to it exactly. Let 	:V! V� V be
the diagonal mapping, given by

z	 :¼ðx; xÞ:
Its dual is therefore the sum mapping �, given by

ðx; yÞ� :¼ xþ y:

These are not quite an isometric injection and orthogonal projection, but they
are up to scaling; these are given by ð1=

ffiffiffi
2
p
Þ	 and ð1=

ffiffiffi
2
p
Þ�, respectively.

Observe that V	 has a natural complement fðx;�xÞ j x 2 Vg. If, as before,
we define the volume ratio of cones J and K in V to be

�ðJ;KÞ :¼�ðJ � K ;�Þ;
then we have a product h�: W �W !W, induced by

ah� b$ ðaðJÞ  hJiÞh�ðbðKÞ  hKiÞ :¼ �ðJ;KÞaðJÞbðKÞ  hJþ Ki: ð16:1Þ
The definition of h� makes the following theorem transparent; the only

comment needed for the proof is the obvious �ðK1;K2Þ�ðK1 þ K2;K3Þ ¼
�ðK1;K2 þ K3Þ�ðK2;K3Þ.

THEOREM 16.3 The fibre product h� on W turns it into a commutative
algebra over F. It has a unity, namely, 1 hfogi.

The unity corresponds to a full-dimensional unit volume.
In contrast to the situation for the standard product onW, the fibre product

does not generally preserve the subsets WðPÞ (to avoid confusion between the
two products, we resile from calling WðPÞ a subalgebra here). However, if C
is a finite family of polyhedral cones in V, let us write WðCÞ for the family of
weights of the form X

K2C
aðKÞ  hKi:
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Then the following is clear.

THEOREM 16.4 Let C be a finite family of cones in V. Then the set of weights
WðCÞ is closed under h� if and only if J þ K 2 C whenever J;K 2 C are such that
�ðJ;KÞ > 0.

Observe that any such finite family generates another finite family which is
closed under þ. The general setting here is thus a family CðUÞ generated by the
half-lines posfujg, with U ¼ ðu1; . . . ; unÞ � V.

To answer a question which we have implicitly raised, we need one more
idea. Call a d-polytope P 2 PðVÞ monotypic if every polytope in V with the
same setU :¼UðPÞ of outer facet normals is (strongly) isomorphic to P. Mono-
typic polytopes, together with related classes, were investigated in [28]. Then we
have

THEOREM 16.5 Let P 2 PðVÞ. ThenWðPÞ is closed under the fibre product
h� if and only if P is monotypic.

Proof. What is required here is that every (non-degenerate) sum J þ K of
normal cones to P be dissectable into normal cones of P. In particular, this must
happen for every cone of the form posfujg þ posfukg, with uj; uk 2 UðPÞ, and
the monotypicity of P then easily follows (with reference to [28]). h

§17. Mixed polytopes. Building on earlier work, in [35] Schneider
described what he called mixed polytopes of P1; . . . ;Pk in a euclidean space
E; their support functionals are the coefficients (suitably normalized) of
�1; . . . ; �k 5 0 inð

Ek� 1
�ð�1P1 \ ð�2P2 þ x2Þ \ � � � \ ð�kPk þ xkÞ; �Þ dx2 � � � dxk;

with our previous convention that sets �ð;; �Þ ¼ 0. In [25], we modified his
original definition (which is not quite symmetric in P1; . . . ;Pk), to bring it
into line with the general constructions which we introduced there.

Schneider himself related his mixed polytopes to particular cases of fibre
polytopes. Our formulation is the following. We have k polytopes P1; . . . ;Pk

in d-dimensional euclidean space E. Then, by (our) definition, the mixed poly-
topes of P1; . . . ;Pk are the coefficients of the powers of �1; . . . ; �k 5 0 in the
expansion of fibð�1P1 � � � � � �kPk; 	Þ, where 	:E! V :¼E

k, given by

x	 :¼ðx; . . . ; xÞ;

is the diagonal mapping; this is an isometric injection only up to a scaling factor,
but will serve the purpose. The orthogonal complement of X :¼ im	 in V is

Y ¼ fy ¼ ðx1; . . . ; xkÞ 2 V j x1 þ � � � þ xk ¼ og:

We obtain a fibre over the typical point y 2 Y just when

ð�1P1 � x1Þ \ � � � \ ð�kPk � xkÞ 6¼ ;;
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note that this restores the symmetry among P1; . . . ;Pk. The dual of	 is the sum
mapping �:V! E, given by

ðx1; . . . ; xkÞ� :¼ x1 þ � � � þ xk;

again, up to a scaling factor, this is an orthogonal projection.
In [26], we pointed out that our techniques would enable us to calculate the

mixed polytopes explicitly. With the introduction of the fibre product in Section
16, we can now go further. Again as we remarked in [26], we wish to calculate
the 1-weight, which arises as the projection of a ððk� 1Þd þ 1Þ-weight in V

under the induced fibre map ���. If we want the coefficient of, say, �r11 � � ��
rk
k ,

with r1 þ � � � þ rk ¼ ðk� 1Þd þ 1, this will come from the ððk� 1Þd þ 1Þ-
volumes of faces F1 � � � � � Fk of P1 � � � � � Pk, with dimFj ¼ rj for
j ¼ 1; . . . ; k. In effect, these are the canonical rj-weights pj;rj of Pj for each j,
from which we deduce

THEOREM 17.1 The 1-weights of the mixed polytopes of P1; . . . ;Pk, are

p1;r1 h� � � � h� pk;rk ;

where r1; . . . ; rk 5 0 with r1 þ � � � þ rk ¼ ðk� 1Þd þ 1.

§18. Piecewise polynomials. A function f on the dual space V� is piecewise
polynomial if there exists a fan (complex)N of polyhedral cones in V

� with apex
o whose union is the whole space (that is, N is complete), such that the restric-
tion f jC of f to each (closed) coneC 2 N is a polynomial function. It is clear
that piecewise polynomial functions are continuous, and that they form an
algebra under the usual addition and multiplication of functions. This algebra
has been studied extensively; we cite [4, 7, 8] for more background.

For simplicity in the following discussion, we shall confine our attention to a
fixed fanN ¼ NðPÞ, which is the normal fan to some simple d-polytope inPðVÞ
(this accounts for our setting in the dual space), and the corresponding subalge-
braR ¼ RðPÞ. This is not a severe restriction, since any given complete fan can
be refined to one of such a formNðPÞ; of course, refinement (which is implicit in
both addition and multiplication) preserves piecewise polynomiality, and at any
time we can only be looking at finitely many functions.

In [7, 8], Brion has related piecewise polynomials to the polytope algebras.
As we remarked in Section 3, the quotients �=Tkþ1 only have a rational
algebra structure when k5 1 (as usual, we gloss over the fact that the zero-
grade space is only isomorphic to Z); [8, §4.4] shows this explicitly. However,
what we do have is

THEOREM 18.1 If P is a simple d-polytope, then the algebras RðPÞ and
WðPÞ are naturally isomorphic.

Proof. We only sketch the proof, since the details are very similar to those
in the papers cited above. We begin by observing that tensors on V correspond
directly to (global) polynomial functions on V

�, and so the component of a
tensor weight X

v2vertP
aðvÞ  bnnðv;PÞ
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on the vertex-set of a polytope P gives a corresponding piecewise polynomial f on
the fanNðPÞ in V

�; the GMC for the edges of P enforces continuity. Indeed, if
v;w 2 vertP are adjacent, so that the normal cones Nðv;PÞ and Nðw;PÞ share a
facet NðE;PÞ with E ¼ convfv;wg, then aðvÞ � aðwÞ is divisible by v� w, so
that the associated polynomials coincide on NðE;PÞ. Conversely, we saw in
Section 12 that we only need the GMR for edges to show that we have a weight,
which implies that a piecewise polynomial in RðPÞ yields an associated weight.

Suppose, as before, that U ¼ ðu1; . . . ; unÞ � V
� is the set of (unit) outer

normals to the facets of P. For each j ¼ 1; . . . ; n; define the piecewise linear
function fj by

fj ¼ �ðPðU; bþ ejÞ; �Þ � �ðPðU; bÞ; �Þ;

where (again as before) P ¼ PðU; bÞ, with the components of the support vector
b chosen so that PðU; bþ ejÞ � P. Following [8], we can describe fj explicitly.
First, fjðujÞ ¼ 1. Second, if C 2 NðPÞ contains uj, let D be its facet with
uj =2D; then fj vanishes onD. Finally, f jC 	 0 ifC 2 N with uj =2C. We identified
the ej with elements of W1ðPÞ which generate WðPÞ as a module over T; it is
now not hard to see that ej $ fj induces the required isomorphism between
WðPÞ and RðPÞ. h

The following discussion actually expands this sketch a little. In [8, §2.2],
Brion produces a linear mapping 
P:RðPÞ ! RðV�Þ of grade �d. We demon-
strate that 
P just gives the correspondence between the components of a weight
a on the vertices of a simple d-polytope P and the component on P itself,
through iteration of the GMC.

We define 
P as follows. There are d edges of P through each v 2 vertP. Let
w1ðvÞ; . . . ;wdðvÞ be vectors directed along these edges towards v, and chosen so
that det ðw1ðvÞ; . . . ;wdðvÞÞ ¼ 
1. If f 2 RðPÞ, then

f
P :¼
X

v2vertP

f

hw1ðvÞ; �i � � � hwdðvÞ; �i
: ð18:1Þ

Initially, it is far from clear that f
P is even well defined, let alone a polynomial.
However, we prove

THEOREM 18.2 Let P be a simple d-polytope. Then the mapping 
P onRðPÞ
of (18.1) induces a corresponding mapping 
P:WðPÞjvertP !WðPÞjP between
components of weights in WðPÞ.

Proof. Translated into terms of weights, we have

a
P :¼
X

v2vertP
aðvÞ=w1ðvÞ � � �wdðvÞ;

again assuming that this is well defined.
We need to follow the GMC from vert P through to P, and show that it has

the same effect as 
P. First, recall that, if w1; . . . ;wr 2 V, then (as before) we
define Detðw1; . . . ;wrÞ by

Detðw1; . . . ;wrÞ2 :¼ jhwi;wjij;
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so that

Detðw1; . . . ;wdÞ ¼ j detðw1; . . . ;wdÞj:
For any given vertex v, we can clearly normalize the wj :¼wjðvÞ so that
Detðw1; . . . ;wrÞ ¼ 1 for r ¼ 1; . . . ; d (we shall order the wj suitably later).
Thus we may assume inductively that, for each (proper) face F < P, the analo-
gous mapping 
F :WðPÞjvertF !WðPÞjF has the required properties. (It should
be borne in mind thatWðPÞjFðFÞ ¼ WðFÞ.) Moreover, since 
P clearly preserves
the module structure over T, it is enough to calculate its effect on elements of a
sweep basis of WðPÞ.

We first treat the basic d-weight a. This is supported by the last vertex v
encountered in the sweep, and the faces of P which contain it. Let uj be the
unit normals to the jth facet Fj of P which contain v, so that wj points along
the edge of P through v which does not lie in Fj . If Detðw1; . . . ;wd�1Þ ¼ 1, then

Detðw1; . . . ;wdÞ ¼ 1¼)hwd ; udi ¼ 1:

In the GMC (9.1), we choose t :¼wd . Our inductive assumption then leads to

aðPÞwd ¼ aðFdÞhwd ; udi ¼ aðvÞ=w1 � � �wd�1;

since hwd ; uji ¼ 0 for j ¼ 1; . . . ; d � 1; as we wanted to show.
We next look at a basic ðd � 1Þ-weight. This is localized to an edge

E ¼ convfv; v0g, say. If F ;F 0 are the two facets of P whose unit normals are
u; u0; and which contain v; v0 (respectively) but not E, then we take t :¼ v� v0

in the GMC (9.1). With wd again pointing along E to v, we have

hwd ; ui ¼ 1¼)wd ¼ hv� v0; ui�1ðv� v0Þ;
and similarly

w0d ¼ hv0 � v; u0i�1ðv0 � vÞ ¼ hv� v0; u0i�1ðv� v0Þ;
with w0d playing the analogous rôle for v0. The GMC then yields

aðFÞ=wd þ aðF 0Þ=w0d ¼ ðaðFÞhv� v0; ui þ aðF 0Þhv� v0; u0iÞ=ðv� v0Þ ¼ aðPÞ ¼ o;

as we wanted.
Finally, if a is a basic r-weight with r4 d � 2, then the calculations from

GMC yield aðFÞ ¼ o whenever dimF 5 d � 1, once again agreeing with those
arising from 
P. h
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