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‘‘Phylogenetic profiling’’ is based on the hypothesis that during evolution functionally or physically interacting genes
are likely to be inherited or eliminated in a codependent manner. Creating presence–absence profiles of orthologous
genes is now a common and powerful way of identifying functionally associated genes. In this approach, correctly
determining orthology, as a means of identifying functional equivalence between two genes, is a critical and nontrivial
step and largely explains why previous work in this area has mainly focused on using presence–absence profiles in
prokaryotic species. Here, we demonstrate that eukaryotic genomes have a high proportion of multigene families
whose phylogenetic profile distributions are poor in presence–absence information content. This feature makes them
prone to orthology mis-assignment and unsuited to standard profile-based prediction methods. Using CATH structural
domain assignments from the Gene3D database for 13 complete eukaryotic genomes, we have developed a novel
modification of the phylogenetic profiling method that uses genome copy number of each domain superfamily to
predict functional relationships. In our approach, superfamilies are subclustered at ten levels of sequence identity—
from 30% to 100%—and phylogenetic profiles built at each level. All the profiles are compared using normalised
Euclidean distances to identify those with correlated changes in their domain copy number. We demonstrate that two
protein families will ‘‘auto-tune’’ with strong co-evolutionary signals when their profiles are compared at the similarity
levels that capture their functional relationship. Our method finds functional relationships that are not detectable by
the conventional presence–absence profile comparisons, and it does not require a priori any fixed criteria to define
orthologous genes.
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Introduction

Comparison of the phylogenetic profiles of orthologous
proteins in different species is a well-known and powerful
method for detecting functionally related proteins. The
approach assumes that two functionally related proteins will
have been inherited or eliminated in a codependent fashion
through speciation. Therefore, by examining correlated
presence–absence patterns in different genomes, it is possible
to infer protein co-evolution and a functional relationship.

After the original idea was published [1], the phylogenetic
profile method was improved or reinterpreted in many
different ways. For example: through the application of more
complex logical rules to associate and compare protein
profiles [2]; the use of domain profiles instead of whole
proteins [3]; refining the algorithm [4]; or integration of
species phylogenetic information [5,6].

Although the phylogenetic profile method can be improved
by integrating new sources of information, in all cases the
prediction quality of this method depends on two critical
steps: the selection of the reference species sample and the
determination of which proteins are orthologues. Typically
the latter is done using a ‘‘Reciprocal Best Hits’’ (RBH)
approach with similarity determined by the BLAST algorithm
[4,7–8] and an E-value cutoff for potential orthologues. In
fact, these two steps have different impacts on the prediction
quality. The reference species problem can be avoided by
simply increasing the sample size with new genomes until a

certain number has been reached. However, there are many
problems, e.g., [8–11], in determining orthology (two genes
from two different species that derive from a single gene in
the last common ancestor), especially the separation of
orthologues from paralogues (genes that derive from a single
gene that was duplicated within a genome). Multigene
families that exist within one genome can also exhibit
functional overlap and substitutability between the members.
The fact that genes evolve at different rates, due to both

uneven natural selection pressure on their functions and
different species having different mutation rates—e.g.,
rodents accumulate point mutations more rapidly than apes
[12] —implies that the evolutionary rates of proteins may vary
over several orders of magnitude in the different gene
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families [13]. This rate variation makes it difficult to choose a
single similarity E-value cutoff that can be broadly applied to
identify those orthologues most likely to have retained similar
functionality.

The multigene family problem is particularly challenging
in eukaryotic genomes wherein the percentage of genes
present in multiple homologous copies is much higher than
in prokaryotic genomes. However, the higher percentage of
multigene families is not the only problem that makes it more
difficult to correctly assign orthologous relationships in
eukaryotic species. In contrast to prokaryotes, accurate
identification of ORFs (open reading frames) is complicated
in eukaryotes by noise from domain rearrangements, more
complex gene architectures, and a higher presence of
noncoding regions. Furthermore, in eukaryotes there is a
weaker correlation between the number of ORFs and the
phenotypic complexity of an organism. This is probably due
to a number of reasons, perhaps most significantly the greater
use of RNA-based regulatory mechanisms [14].

We have developed a novel modification of the phyloge-
netic profile method that bypasses several of these problems,
especially the orthology—or functional equivalence as it can
also be perceived—detection problem, and can detect
interacting multigene families. This method is particularly
applicable to identifying functional networks in eukaryotes,
which have so far proven intractable.

Our approach is based around protein domains, since these
are the most elemental units of protein function. Further-
more, this allows us to bypass confusion caused by domain
rearrangements. For this study we have used the domain
annotation from the Gene3D database, which stores CATH
assignments for complete genomes. The first key modification
is that we do not consider the presence–absence of domains
but the number of copies of the domain. The second key
modification is that we subcluster all the domains at ten levels
of sequence identity from 30% to 100%. We then create

profiles for every domain family and the subclusters within it,
which enables the identification of distinct functional
subgroups within domain families.
Although it is clear that there are always exceptions to any

evolutionary model that can be proposed, the co-evolu-
tionary hypothesis implicit in our model supposes that gene
copy number in two functionally related protein clusters
(superfamilies or subclusters) will vary in a related fashion. In
our approach, domain occurrence profiles are built at many
identity levels, and therefore it is expected that two protein
clusters will ‘‘auto-tune’’ with a significant correlation signal
when their profiles are compared at the similarity levels that
retain their functional relationship. Therefore, domain
occurrence profiles were compared all against all (super-
families and subclusters) to identify correlations in domain
copy number variation in all the different identity levels. Our
method found strong co-evolutionary signals amongst func-
tionally related multigene domain families that could not
have been predicted by the conventional presence–absence
comparison of profiles proposed by Pellegrini et al. [1].
This new approach has a number of features that make it

especially useful for eukaryotic genome analysis. Firstly,
phylogenetic profiles based on protein domains can detect
functional relationships that are not detectable using
phylogenetic profiles of whole proteins, reducing the noise
that protein domain rearrangements produce, particularly in
eukaryotes [3]. Secondly, it uses domain occurrence profiles
instead of presence–absence profiles. The latter are less
effective in eukaryotic genomes as they do not account for
the wide variation in gene copy number observed in
eukaryotes. And thirdly, the method applied does not require
a priori any fixed E-value cutoff to define orthologous groups.
Because domain clusters are built at several discrete identity
levels, the method takes into account much of the variation
that uneven selection pressure produces on sequence and
functional conservation.

Results/Discussion

Calculating the Information Content of Eukaryotic and
Prokaryotic Profiles
Using CATH structural domain assignments from the

Gene3D database for 13 complete eukaryotic genomes and
106 complete prokaryotic genomes, all superfamily domains
found in eukaryotes and prokaryotes were clustered at ten
sequence identity levels (from 30% to 100%; see Figure 1).
Each domain was hence assigned a unique identifier
composed of the four-part CATH code and a ten-part
hierarchical cluster code allowing the simple creation of
profiles. Occurrence profiles across species were calculated
for all the identity and superfamily levels in these two phyla.
Subsequently 10,005 eukaryotic and 28,080 prokaryotic
profiles with sufficient taxonomic representation (present in
six or more species) were selected for further analysis (see
Materials and Methods).
To compare the information content associated with

eukaryotic and prokaryotic profiles, we performed two kinds
of calculations based on different features of the gene
distribution in the profiles. One of these calculations is
related to the presence–absence pattern of the domain
clusters throughout the different species, and it is similar to
that used by other groups (e.g., [3]). This will be referred to as
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Author Summary

The vast number of protein sequences being determined by the
international genomics projects means that it is not possible to
functionally characterise all the proteins through direct experimen-
tation. One of the more successful electronic methods for detecting
functionally associated genes has been through the comparison of
genes’ phylogenetic profiles. This method is based on the
hypothesis that two functionally related genes will show very
similar presence–absence profile patterns throughout different
organisms. Whilst these methods have grown increasingly sophis-
ticated, they have largely been based on detecting functionally
homologous genes in different species (technically known as
orthologous genes) and thus better suited to prokaryotic genomes,
where this can be done more easily. We have developed a new type
of hierarchical phylogenetic profile by subdividing protein families
into subclusters in different sequence identity levels. This new
approach encapsulates a more realistic model of the functional
variation that uneven natural selection pressure produces on
different protein families and organisms, and it can detect functional
relationships between protein families without the initial application
of rigid sequence similarity thresholds or complex protocols for
orthology assignment. These advantages are especially useful in
eukaryotes since the larger average size of eukaryotic multigene
families makes them more prone to orthology mis-assignment than
in prokaryotes.

Predicting Protein Function with Profiles



Rþ/� information content. The other measure is related to
the variation in gene copy number throughout the species in
the profiles, and this will be referred to as Ro or occurrence
information (see Materials and Methods).

The profiles of the eukaryotic clusters show significantly
higher Ro information content values than the prokaryotic
profiles for all sequence identity levels except the s100 level
(see Figure 2A). In contrast, the Rþ/� information content in
eukaryotic profiles is constantly and significantly less than in
prokaryotes (see Figure 2B). These results seem to be
explained by the differences in the gene copy distributions
and average cluster sizes between the two phyla. Eukaryotic
genomes show average cluster sizes of around two gene copies
per species, and therefore a higher proportion of multigene
clusters than in prokaryotes, whose protein clusters are about
one copy per species at all identity levels (see Figure 2C).

Larger multigene clusters in eukaryotes are also related to a
larger cluster size variation and Ro information variation in
this phylum than in prokaryotes (compare the standard
deviation values of Ro and cluster sizes between the two phyla
at different sequence identity levels in Figure 2A and 2C). In
contrast, lower average cluster sizes of one gene copy per
species, distributed throughout a higher number of species,
give rise to profiles with lower Ro and higher Rþ/�
information content in the prokaryotic profiles (see Figure
2A and 2B).

These results indicate that except for the s100 level,
eukaryotic genomes have a high proportion of multigene
families whose phylogenetic profile distributions are poor in
Rþ/� information content. This feature of eukaryotic profiles
makes them prone to orthology mis-assignment and bad
models for the standard phylogenetic prediction methods of
the ‘‘1/0 gene presence–absence’’ type. In contrast, a majority
of the eukaryotic profiles show high Ro information content
not previously exploited in conventional correlated profiles
analyses. There are no prokaryotic profiles with Ro informa-

tion content above 0.1, except for at the superfamily level (see
Figure 2A). Therefore, because we wanted to focus on the
analysis of the previously neglected multigene families,
without applying conventional 1/0 phylogenetic profile
comparisons, only the cluster profiles with Ro � 0.1 were
selected for further analysis.

Removing the Effect of Genome Size Correlation on Profile
Comparison in Eukaryotes
In many cases a high correlation amongst multigene

families and genome size variation has been observed [15].
This is likely to lead to spurious correlations between
occurrence profiles due to their correlation with genome
size. To analyse the effect on occurrence profile comparison,
correlations with genome size were calculated for all the
profiles in the eukaryotic matrix (see Materials and Methods).
At all sequence identity levels, eukaryotic profiles show a

bias toward higher genome size correlation values compared
to the prokaryotic sample (see Figure 3A). The heterogeneous
distribution of genome sizes in different phylogenetic groups
for the eukaryotic sample (see Figures S1A and S1B), the
larger average genome sizes and the higher proportion of
multigene families in this phylogenetic group are all likely to
be contributing to the trend for these profiles to correlate
with genome size. Whatever the causes, this tendency of
eukaryotic profiles to correlate with genome size increases
the probability of profile pairs having high similarity scores
due to this spurious shared tendency.
To estimate the effect that genome size correlation has on

the Euclidean distance (Ed) score used to measure profile
similarity (see Material and Methods), the Ro information
content and the profiles’ Eds were calculated and compared
for the random and the real matrix models (see Figure 3B–
3D; see Materials and Methods for description of the random
and real matrices). Ro information values of the GS (random
model—Genome Shuffling) profiles’ matrix distribute sim-

Figure 1. Building Gene3D Phylogenetic Occurrence Profiles

(A) Domain family assignments at different cluster levels: the different sequence identity levels are indicated (s30, 30% sequence identity; s35, s40, etc.);
circles represent sequences from different species (colours), grouped by sequence identity.
(B) Matrix of occurrence profiles for different clusters (superfamilies and their derived sequence identity subclusters). Occurrence profiles are derived
from the number of relatives identified in each genome for each sequence identity cluster. Thus phylogenetic profiles are generated for all the clusters
(superfamilies and subclusters) across complete genomes in Gene3D.
doi:10.1371/journal.pcbi.0030237.g001
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ilarly to those of the real profiles’ matrix except for
universally distributed clusters (e.g., clusters present in 12
eukaryotic species, see Figure 3B). GS profiles of these
universally distributed clusters show a clearly differentiated
distribution with significant bias toward higher Ro values
than the real cluster profiles (see Figure 3B).

Ed comparison of the profile pairs shows that GS profiles
with Ro values above 0.4 contribute most to the error in the
similarity calculations associated with genome size correla-
tion (see Figure 3C). This observation is reversed and the GS
distribution is shifted to higher distance classes when
similarities are calculated for profiles with Ro below 0.4 (see
Figure 3D and compare with Figure 3C). Therefore Ro ¼ 0.4
appears to be a good selection boundary to reduce the
genome size correlation error on profile similarity calcu-
lations. As observed in Figure 2A, this Ro¼ 0.4 boundary only

affects eukaryotic profiles at the lowest sequence identity
level and also shows that universal and highly populated
superfamilies are more likely to generate spurious similarity
scores due to their probable correlation with genome size (as
also observed in [15]). Therefore, to reduce the error arising
from genome size correlation in profile similarity calcula-
tions, profiles with Ro . 0.4 were removed before performing
further analyses on the matrix.

Assessment of Profile Similarity and Predicting
Functionally Related Clusters
Finally, a matrix of 3,721 different eukaryotic profiles with

protein clusters present in at least six out of 13 species and
with 0.1 � Ro � 0.4 were selected for profile pair similarity
comparison and functional prediction analysis. Z scores (Zs)
for the similarity comparisons were calculated from an all-
against-all comparison of profile pairs (see Materials and
Methods). Functionally related pairs of protein clusters from
the four datasets (‘‘cellular components’’, ‘‘biological pro-
cesses’’, ‘‘biological function’’, and the ‘‘all functional groups’’
dataset; see Materials and Methods) were identified within the
whole dataset of profile pairs, and their frequencies plotted as
a true positive (TP) prediction rate in each Z-score bin (see
coloured but not yellow bars in Figure 4).
The same process of TP estimation was then repeated with

ten randomized versions built up from each of the four
functionally related clusters datasets. The average frequency
of random pairs found in each Z-score bin was taken as the
false positive (FP) rate (see yellow bars in Figure 4). Precision
was then calculated from the TP and FP rates with the
formula: TP / (TPþFP) (see the declining black lines in Figure
4).
Within all four datasets analysed, it can be seen that higher

Zs correlate with higher frequencies of TP predictions and
with lower rates of FP predictions (see Figure 4). The Phylo-
Tuner method’s precision in distinguishing TP from FP cases
is around 90% in the highest Z-score bin (Zs ��3.5), drops to
around 80% in the lower Z-score bin range (between�3.5 and
�3.0), and in all cases gradually decreases to the random
proportion of 50% when the Z-score values are in the range
�1.0 to �0.5.

If the Phylo-Tuner method’s precision rates are assessed
over the entire Z-score distributions of all compared cluster
pairs, we see that almost 90% of the 2,344 pairs (formed by
352 different clusters) with Zs � �3.5 (2,109 pairs) are true
functionally related clusters. If the slightly lower Z-score
boundary is considered (Zs ��3.0), around 80% of the 5,255
pairs (736 different clusters) found below this Z-score value
(4,204 clusters pairs) would be expected to correspond to TP
predictions. Files containing predicted pairs with Zs � �3.0,
and information to generate the profile matrix and perform
validation of the Phylo-Tuner method using GO, are provided
on the ftp site ftp://ftp.biochem.ucl.ac.uk/ pub/ gene3d_data/
CURRENT_RELEASE/ PHYLOTUNER/. (We also provide
files with the new prediction results using an updated profile
matrix with 26 eukaryotic species at the same ftp site).
Also interestingly, for all cluster pairs with Zs ��3.0, only

3% correspond to instances of domains that frequently co-
occur in the same proteins. This indicates that the Phylo-
Tuner is able to identify a strong co-evolutionary signal
between domains that is not simply due to their fusion in the
same gene.

Figure 2. Comparison between Eukaryotic (Blue) and Prokaryotic (Red)

(A) Ro and (B) Rþ/� Information Content Averages at Different Sequence

Identity Levels (x-Axis); and (C) Average Cluster Size (Average Number of

Gene Copies per Species along the x-Axis)

Standard deviations are also shown (blue and red dashed lines). The
large average sizes and standard deviations found at the superfamily
level in the cluster sizes plot distorts the graph and therefore the
medians of the distributions are shown instead. Ro information value
boundaries for eukaryotic profile selection are also indicated (black
horizontal dashed lines in (A).
doi:10.1371/journal.pcbi.0030237.g002
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These results clearly indicate that multigene eukaryotic
protein clusters with similar phylogenetic profiles tend to be
functionally related and confirm the evolutionary theory
behind the Phylo-Tuner method, which holds that function-
ally linked eukaryotic multigene families have co-evolved and
varied their numbers of gene copies in a codependent fashion
throughout the speciation process.

The specificity and sensitivity of the method were not
calculated due to the difficulty in obtaining reliable datasets
for true negative and false negative predictions. It is highly
probable that two functionally related protein families divide
into clusters at different levels that retain some functionally
related intersections from the parental families, but in many
cases without similar profiles. Therefore, whilst it is expected
that highly significant profile similarities would indicate
highly functionally related protein clusters, it is not necessa-
rily true that functionally related clusters always present
profiles with high similarity. This lack of transitivity makes it
very difficult to establish with real confidence the false
negative predictions produced by the method, and therefore
how the method’s sensitivity rate varies with respect to the
profile similarity Zs.

Similarly, we do not have a reliable dataset of functionally
unrelated protein clusters (true negative predictions) to
estimate the Phylo-Tuner method’s specificity, since the GO
annotation of the domain sequences in our dataset is clearly
incomplete (;50%) and restricted to the human genome;
therefore, many functional relationships have probably been
missed from the functionally related clusters’ datasets.

Comparing the Performance of Phylo-Tuner with the
Presence–Absence Phylogenetic Profiles
Ed and binary (present–absent) or bit distances (Bds) were

calculated for all cluster profile pairs on the same matrix of
3,721 protein clusters and assessed with the same procedure
as described in the former section (for the Bd calculations all
cluster profiles were converted into the presence–absence
type). Precision and statistical power differential ratios
(equivalent to sensitivity differential ratios) were calculated
for both methods using their respective TP and FP rates for
each Zs bin (see Figure 5).
Both methods show the same precision at all levels of

significance (see blue and red lines in Figure 5). However, Ed
statistics show it to be more powerful than the Bd approach
when the Zs values increase toward the highest significant
levels (see bars in Figure 5). Ed predicts 4.6-fold more TPs
than Bd for Zs � �3.5 (both with 90% precision); almost 3-
fold more sensitive for Zs � �3.0 (80% precision); and 1.6-
fold more sensitive for Zs � �2.5 (.70% of precision).
Additionally, the Ed values show no correlation with the Bd
values calculated for the same sample of significant pairs with
Zs � �3.0 (see Figure S2). This lack of correlation indicates
that the Phylo-Tuner method retrieves independent and
additional predictions by exploiting the profiles’ Ro infor-
mation content.

Example Predictions by Phylo-Tuner
Many of our predictions can be considered ‘‘novel’’ since it

is generally difficult to find examples of functional associa-
tion predictions that have clear supporting evidence in the

Figure 3. Analysis of the Genome Size Correlation Effect on the Eukaryotic Profile Similarity Calculation

(A) Average genome size correlations (y-axis) of eukaryotic (blue) and prokaryotic (red) profiles at different sequence identity levels (x-axis) and their
corresponding standard deviation (vertical dashed lines).
(B) Percentage distribution of profiles (y-axis) by their Ro information values (x-axis), for profiles from the real model (black) and from the GS random
model (red), having gene representations in six species (continuous line) and in 12 species (dashed lines); the Ro¼ 0.4 boundary is also shown (vertical
black dashed line).
(C,D) Percentage distribution of profile pairs (y-axis) with (C) Ro . 0.4 and (D) Ro � 0.4 for different Ed bins (x-axis) for the real matrix (blue), and for the
GS (pink) and the PS (yellow) models.
doi:10.1371/journal.pcbi.0030237.g003
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literature. As examples of novel functional relationship
predictions, we have selected ten pairs of clusters with high
statistical significance that we consider to be very promising
targets for experimental validation (see Table S1). Detailed
functional analysis of the literature revealed particular links
between some genes in the majority of the ten selected pairs
(see Text S1), suggesting that the functional relationships
between these predicted pairs merits further experimental
validation. To enable experimental validation of our method
by the scientific community, the Phylo-Tuner profiles and
source code presented in this work will be made freely
available from the same Gene3D ftp site given in the section
Assessment of Profile Similarity and Predicting Functionally
Related Clusters above.

Two pairs of protein domain clusters with significant Zs (Zs
� �3.0)—and a clear functional relationship in the liter-
ature—were selected for more detailed comparison between
our method and a standard presence–absence profile analysis
(see Table 1). These two pairs were selected as examples
because of extreme differences in gene family representa-
tions in the species (one pair was present in all organisms,

and the other pair was present in only six species), and their
different functional roles in the cell (one is involved in the
cellular cytoskeleton, and the other in the regulation of
cellular differentiation).
To test how robust the Phylo-Tuner method is to noise, we

decided to add back into the occurrence matrix additional
information from profiles with representations from less than
six species (e.g., four and five species) that we had previously
removed from our analysis to see whether we could still
detect a signal. Profile comparison and analysis of the cluster
pairs in our example were therefore performed using an
extended version of the original matrix. This extended matrix
was made by adding to the 3,721 clusters’ profiles of the
original matrix (see Materials and Methods section) the
20,954 clusters’ profiles with representation in four or more
species, and without the application of the 0.1 � Ro � 0.4
information boundaries threshold.

The CCT Chaperone and Actin-Like Families
The first pair of clusters examined comprises different

CATH domains at the superfamily level: 3.50.7.10 and
3.90.640.10. Genes from these clusters are distributed

Figure 4. Association of the Zs Similarity Values, for Protein Cluster Comparisons, with Functional Relationships

Frequency (left-hand y-axis) of TPs and FPs (bars) in different profile similarity Zs bins (x-axis) for (A), all functional groups dataset (grey bars); (B), cellular
component (blue); (C), molecular function (red) and biological processes (green). FP frequencies (yellow bars) are the average values and standard
deviations (vertical lines) calculated from ten different randomised versions of each of the four functionally related clusters’ datasets. The method’s
precision percentage (right-hand y-axis) for different Zs bins (x-axis) and the random precision 50% value (dashed line) are also shown.
doi:10.1371/journal.pcbi.0030237.g004
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throughout the entire sample of organisms (see Table 1).
Cluster 1, 3.50.7.10, corresponds to the apical domain of the
eukaryotic CCT chaperonin subunit involved in substrate
binding, whilst the 3.90.640.10 domain of cluster 2 constitutes
the Actin-like protein family involved, amongst other
functions, in cytoskeleton formation and protein folding.

The CCT protein is the eukaryotic relative of the better-
characterised prokaryotic chaperonin GroEL, sharing the
same general monomer architecture of three domains: an
equatorial domain that carries ATPase activity (cluster code:
1.10.560.10), an intermediate domain (3.30.260.10), and an
apical domain, involved in substrate binding (3.50.7.10) [16].
In contrast to GroEL, the CCT chaperonin shows a more
specific functional role dedicated to the folding of the
cytoskeletal proteins actin and tubulin, and collaborating
with the Hsp70 actin-like protein in the cytosolic chaperone
network [17].
In the Ed distribution of the CCT apical domain cluster

(3.50.7.10) compared against the other 24,675 cluster profiles
(see Figure 6A), the Actin cluster (3.90.640.10) shows the
closest distance (Ed¼ 0.98, Zs¼�5.5; see 0.5–1.0 bin in Figure
6A, and Table 1) followed next by nine other protein clusters.
Amongst these nine protein clusters are found the CCT
equatorial domain (cluster code: 1.10.560.10) and the inter-
mediate domain (3.30.260.10) (see 1.0–1.5 bin in Figure 6A).
Profile comparison of the CCT and Actin-like clusters at

different identity levels show that only when the actin-like
proteins are clustered at the superfamily level does its profile
give the closest match (shortest Ed) with the CCT apical
domain superfamily profile and vice versa (see Figure 6B and
Figure S3A). Therefore, without any prior assumptions in
setting similarity thresholds for recognising and clustering
orthologues, the Phylo-Tuner method is able to distinguish
statistically significant co-evolution signals from different
identity levels in the CCT and Actin-like families.
When all the cluster profiles in the profiles matrix are

converted into the presence–absence type profile and their
distances to the 3.50.7.10 profile are calculated in bits (as is
typically performed for this type of analysis, see [3], also
Figure 6C), more than 300 different protein clusters show
short distances of 0 bits to the CCT terminal domain
(3.50.7.10) cluster profile (see number of clusters in the 0
class bin in Figure 6C). The increase in the number of

Figure 5. Comparison of Ed versus Bd Methods

The power or sensitivity differential between the methods is measured
by the (Ed’s TP)/(Bd’s TP) prediction ratios (bars; left-hand y-axis) for
every Zs class (x-axis). The number of Ed and Bd TPs are indicated for the
three highest Zs levels (figures in brackets). Also shown is the precision
percentage distribution (right-hand y-axis) for the Bd (blue line) and Ed
(red lines methods) by Zs value classes. Standard deviation (vertical
lines), the random precision 50% value (dashed line), and the neutral
sensitivity differential ratio of value 1 (dotted line) are also indicated. In
the traditional language of statistical hypothesis testing, the sensitivity of
a test is called the statistical power of the test. A more sensitive test will
have fewer type II errors. The type II error is the ‘‘false negative’’ error, or
the probability of rejecting a TP prediction. Since Ed and Bd statistics are
run on the same matrix (sample), the total number of TP pairs is the
same for both methods. Considering this premise, and that both
methods show the same precision at all Zs significance levels, the ratios
(Ed sensitivity)/(Bd sensitivity) and (Ed power/ Bd power) are equal to the
ratio (Ed TP rate)/(Bd TP rate) for every Zs bin.
doi:10.1371/journal.pcbi.0030237.g005

Table 1. Profile Comparison Scores and Statistics for Two Example Pairs

Target Match Euclidean Zs N1

Species

N2

Species

Cluster

Size 1

Cluster

Size 2

Percent

Fused

Size

Correl-

ation 1

Size

Correl-

ation 2

Function

Target Match

3.50.7.10 3.90.640.10 0.98 �5.5 12 13 190 174 0 0.48 0.52 Chaperonin

CCT apical

domain

Actin

4.10.900.10 1.10.880.10.2 0.71 �3.2 6 6 50 47 0 0.48 0.48 N-terminal

CTNNB1

(b-catenin)

binding domain

Maf-related

transcription

factors

Pairs (cluster codes): the protein cluster codes in the original occurrence matrix for each pair (target, match).
Euclidean: Ed between the cluster profiles.
Zs: Zeta score of the profile distances with respect to the whole Eds distribution.
N1 Species: number of species with representatives in the first protein cluster in the pair.
N2 Species: number of species with representatives in the second protein cluster in the pair.
Cluster Size 1: number of homologous gene domains in the first cluster.
Cluster Size 2: number of homologous gene domains in the second cluster.
Percent Fused: percentage of domains from the two clusters in the pair which are fused in the same ORF.
Size Correlation 1: correlation with genome size of the first cluster profile in a given pair.
Size Correlation 2: correlation with genome size of the second cluster profile in a given pair.
Function: functional description of the respective protein clusters in each pair (target, match).
doi:10.1371/journal.pcbi.0030237.t001
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matches, and therefore in the statistical uncertainty, indicates
that the use of occurrence information (i.e., copy variation
throughout the species) provides an additional and inde-
pendent approach (see Figure S3B) that significantly in-
creases the precision and sensitivity for co-evolution signal
detection.

A beta-Catenin Binding Domain and the SMAF-1
Transcription Factor Family
The second example pair comprises clusters 4.10.900.10

and 1.10.880.10.2. The protein clusters in this pair show a
more specific distribution being present in only six different
species (see Table 1). The first corresponds to the N-terminal
CTNNB1 binding domain, which appears to bind the
armadillo repeat of CTNNB1 (beta-catenin) forming a stable
complex. Beta-catenin is involved in the signalling stream of
the Wnt regulatory pathway. The canonical Wnt signalling
pathway regulates decisions in embryonic development
through body axis specification and morphogenic signalling
and its malfunctioning can cause some diseases, such as
cancer [18,19].
The 1.10.880.10.2 cluster represents a family of tran-

scription factors important in the regulation of embryonic
development and cell differentiation, including oncogenic
proteins [20]. Apart from the similar functional role of these
two clusters described above, there is additional evidence that
suggest a close functional relationship between relatives of
these two protein families [21].
The Ed distribution of the 4.10.900.10 cluster profile, in

comparison to the rest of profiles in the extended occurrence
matrix, shows the 1.10.880.10.2 cluster as the most signifi-
cantly close cluster (Ed ¼ 0.71, Zs ¼�3.2; see 0.5–1.0 bin in
Figure 7A, and Table 1), indicating a high probability of
functional relationship and co-evolution amongst these two
multigene families. As observed in the former example for
the CCT and Actin clusters, the profiles comparison of the
4.10.900.10 and the 1.10.880.10.2 clusters at different identity
levels show again that the Phylo-Tuner method is distinguish-
ing statistically significant co-evolution signals at specific
identity levels (see Figure 7B and Figure S4A).
As with the previous example, Bds calculated for the

presence–absence version of the occurrence matrix again
show no correlation with the Eds calculated on the same
sample (see Figure S4B). Furthermore, the use of presence–
absence information alone dramatically increases the un-
certainty regarding putative functionally related partners for
the 4.10.900.10 cluster. Bd distribution of protein clusters
shows that almost 2,000 different profiles are significantly
close to the 4.10.900.10 cluster profile (see 0 bin in Figure 7C).
The more specific functional relationship with the
1.10.880.10.2 protein cluster is only separated from the other
2,000 clusters when the information on domain number
occurrence is used, as in the Phylo-Tuner method, to increase
the predictive power.

Conclusions and Future Directions
Eukaryotic protein cluster profiles are poorer in Rþ/� and

richer in Ro information content due to bigger average
family sizes and wider gene-copy variation through species
than for prokaryotes (Figure 2A–2C). We have found that by
exploiting the Ro information resource in eukaryotic profiles,
the Phylo-Tuner method is able to find co-evolutionary
signals amongst functionally related multigene families (see
Figure 4) that could not have been predicted by the standard
presence–absence profile methods (see Figures 5–7, and
Figure S2).
We have demonstrated that two protein clusters will ‘‘tune’’

with a significant correlation signal when their profiles are
compared at the sequence similarity levels that capture their

Figure 6. Profile Comparison of the 3.50.7.10 Domain Cluster against the

Rest of Profiles in the Extended Matrix (See the Section, Example

Predictions by Phylo-Tuner)

(A) Number of cluster pairs (y-axis) in different Ed bins (x-axis) for the
3.50.7.10 cluster comparisons (blue bars). In addition, the average
number of pairs for comparisons involving five randomisations of this
cluster profile are also shown together with standard deviations (red bars
and vertical black lines); the location of the closest related cluster, Actin-
like (3.90.640.10), is indicated with a red arrow together with a closeup of
the left-hand extreme of the distribution (upper smaller graph).
(B) Number of domain copies (y-axis) for the 3.50.7.10 cluster (thick blue
line), the cluster profile with the closest Ed (3.90.640.10, thick red line).
Also shown is the number of domain copies in each of the S35
subclusters of the Actin 3.90.640.10 cluster. Further subdivisions were
not shown to maintain clarity.
(C) Number of cluster pairs (y-axis) in different Bd bins (for presence–
absence profile comparison) (x-axis) for the 3.50.7.10 cluster comparisons
(blue bars) and the average number of cluster pairs in each bin, for five
randomised models of the same cluster, together with their standard
deviations (red bars and vertical black lines).
doi:10.1371/journal.pcbi.0030237.g006

PLoS Computational Biology | www.ploscompbiol.org November 2007 | Volume 3 | Issue 11 | e2372373

Predicting Protein Function with Profiles



functional relationship (see Figures 6A, 6B, 7A, and 7B; and
Figures S3A and S4A). Therefore, subdividing protein
families into discrete sequence identity levels is a novel
implementation of phylogenetic occurrence matrices with
three main advantages. Firstly, it takes into account the wide
variation in gene copy number observed in eukaryotes.
Secondly, it encapsulates a more realistic model of the
variation that uneven natural selection presser produces on
different protein families and organisms. Thirdly, it does not

require the initial application of rigid similarity E-value
boundaries or complex protocols for orthology assignment.
This last advantage is especially useful since the bigger
average size of eukaryotic multigenes families makes them
more prone to orthology mis-assignment than in prokaryotes.
Regarding protein families clustered at different sequence

identity levels, it would clearly also be possible to use other
approaches to clustering, for instance based on discrete
subdivisions of phylogenetic trees. That is, selecting protein
clusters associated with different nodes within each family’s
phylogenetic tree and generating the occurrence profiles
from these tree-based subdivisions.
Protein cluster profiles in prokaryotes typically show an

average representation of one copy per species (see Figure
2C). This feature of gene copy distributions in prokaryotes
allows the prediction of specific functional relationships
between proteins using ‘‘presence–absence’’ profiles and
standard profiling methods. However, protein clusters in
eukaryotic genomes are frequently represented by more than
one gene copy per organism (see Figures 2C, 6B, and 7B).
Therefore, whilst the Phylo-Tuner method can clearly detect
functional relationships between eukaryotic protein clusters,
because there is generally more than one gene copy per
species, it cannot identify the specific orthologues involved in
the functional association amongst all the homologous genes
within the same cluster.
To illustrate this point by referring to one of the examples

described above, the pair of protein clusters comprising the
N-terminal beta-catenin binding and the Maf-SKN-1-like
transcription factor domains (see second row in Table 1) are
each represented by 12 paralogous genes in the human
genome (see Figure 7B). Although, the Phylo-Tuner method
significantly reduces the uncertainty in selecting two specific
profiles of functionally related clusters amongst thousands of
possibilities, some uncertainty still remains with respect to
the specific coupling of the 12 pairs of interacting genes from
these human protein clusters.
Therefore, to reduce the remaining uncertainty associated

with the identification of the orthologous genes involved in
the specific functional association for a particular organism,
it would clearly be valuable to combine the Phylo-Tuner
method with other prediction methods, such as those
exploiting the correlation of phylogenetic tree topologies
between superfamilies, i.e., [22,23]. Since, tree comparison
algorithms are often overburdened by the combinatorial
nature of the problem and by all the comparisons between
functionally unrelated clusters, the prior application of the
Phylo-Tuner method could significantly reduce the search
space and improve the performance of these algorithms.

Materials and Methods

Domain annotation of eukaryotic and prokaryotic genomes. ORFs
from 13 complete eukaryotic genomes were structurally annotated by
scanning the protein sequences against representative Hidden
Markov models (HMMs) from the CATH domain structure database
[24]. The 13 annotated eukaryotic species are: Encephalitozoon cuniculi
(Fungus), Schizosaccharomyces pombe (Fungus), Saccharomyces cerevisiae
(Fungus), Danio rerio (Fish), Takifugu rubripes (Fish), Plasmodium
falciparum (Protozoan), Anopheles gambiae (Insect), Drosophila melanogast-
er (Insect), Arabidopsis thaliana (Plant), Caenorhabditis elegans (Nemato-
da), Rattus norvegicus (Mammal), Homo sapiens (Mammal), and Mus
musculus (Mammal). The structural annotation data is available from
release 3 of the Gene3D database [25]. 192,655 domain sequences
were annotated in the eukaryotic sample in Gene3D, with an average

Figure 7. Profile Comparison of the 4.10.900.10 Cluster against the Rest

of the Profiles in the Extended Matrix (See the Section, Prediction

Examples by Phylo-Tuner)

(A) Number of pairs (y-axis) in each Ed bin (x-axis) for the 4.10.900.10
cluster comparisons (blue bars) and the average of five randomised
models together with their standard deviations (red bars and vertical
black lines); the location of the closest profile for bZip transcription factor
(1.10.880.10.2) is indicated with a red arrow, and a closeup of the
extreme left-hand side of the distribution (upper smaller graph) is shown.
(B) Number of domain copies (y-axis) for the 4.10.900.10 cluster (thick
blue line). The cluster profile with the closet Ed (1.10.880.10.2, thick red
line) is also shown together with the number of domain copies in other
subclusters at the same sequence identity level (S35).
(C) Number of cluster pairs (y-axis) in different Bd bins (for presence/
absence profile comparison) (x-axis) for the 4.10.900.10 cluster compar-
isons (blue bars) and the average number of cluster pairs in each bin, for
five randomised models together with their standard deviation (red bars
and vertical black lines, respectively).
doi:10.1371/journal.pcbi.0030237.g007

PLoS Computational Biology | www.ploscompbiol.org November 2007 | Volume 3 | Issue 11 | e2372374

Predicting Protein Function with Profiles



coverage of 36% (S.D. ¼ 13%) of the genes for the 13 complete
genomes.

For generating a comparable prokaryotic dataset, the same domain
annotation procedure was performed on 106 complete prokaryotic
genomes, made up of 16 Archaeal and 90 Eubacterial species (see
Table S2). 276,098 domain sequences were annotated in the
eukaryotic sample in Gene3D, with an average coverage of 45%
(S.D.¼ 6%) of the genes for the 106 complete genomes sample.

Clustering protein domain families into sequence similarity levels.
Sequences are assigned to CATH superfamilies through the
identification of significant matches to the CATH HMM library.
These hits are then resolved to produce a non-overlapping set of
domain assignments. These superfamilies form the root of the
clusters. Every domain sequence in the family is then BLASTed [7]
against each other to produce a similarity matrix based on sequence
identity. This matrix is then used to produce the clusters at 30%,
35%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, and 100% (see Table
S3) by using multi-linkage clustering—whereby every sequence in a
subcluster will exhibit at least that degree of sequence identity to
each other [25].

Building the Gene3D phylogenetic occurrence profile matrices.
Occurrence profiles were calculated for all the protein domain
clusters (superfamilies and subclusters) in the eukaryotic and
prokaryotic samples at different identity levels (see Figure 1).
Occurrence profiles were derived for all the clusters from the
number of domain copies observed in each species (Figure 1).

Sometimes the domain content of clusters did not change when
subsequent levels of identity percentage were applied (e.g., compare
s30 (A) and s35 (A) levels in Figure 1). Therefore, subclusters having
the same domain content and, hence, occurrence profile as their
parental clusters were detected and removed.

Measuring the similarity of occurrence profiles. In contrast to the
prokaryotic sample, the genome sizes of the eukaryotic sample are
not homogeneously distributed, but instead form three heteroge-
neous groups (see Figure S1A and S1B). This heterogeneous
distribution introduces a significant bias if the similarity of a pair
of occurrence profiles is calculated using correlation indexes such as
Pearson and increases the likelihood of a spuriously high correlation
value. To avoid this problem, Ed was selected for measuring the
distance between pairs of profiles. Ed is sensitive to scaling and
differences in average domain numbers in protein clusters, whereas a
correlation index is not [26].

Ed ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i

ðxi � yiÞ
s

When the Ed of the profile pairs are plotted against the mean of
their domain number averages for the eukaryotic and prokaryotic
samples (see Figure S5A and S5C), it can be seen that the data are
heteroscedastic, so that error variance in the Ed values is propor-
tional to the domain number averages. When both variables (Ed and
the mean of profile averages) are transformed with logarithmic
functions, a linear relationship is observed between these variables
(see Figure S5B and S5D).

Therefore, because the distance error is proportional to the
profiles’ average size, to normalise the error and make it comparable
for all profile pairs with different domain number averages, the Ed
was divided by the mean of the cluster sizes (NEd ¼ Ed

x
, where NEd and

Ed are the normalised and original Ed, respectively, and ��x is the mean
of the sizes of the cluster pair). This normalised Euclidean value was
used to measure the distances in the all-against-all comparison of
profiles.

If a cluster was a subset of another cluster, then distance
calculations were not carried out. This is because such profiles are
likely to show similarity simply because the former contains several of
the elements of the latter and not for any evolutionary or functional
reason.

We also studied the statistical impact of homology on the
performance of Phylo-Tuner, arising from the profile comparisons
of separate subclusters in the same superfamily. Homologous pairs
were found to count for only 6% of all pair comparisons, and their
inclusion does not significantly affect the overall performance of the
Phylo-Tuner method (see Figures S6 and S7). However, when
homologous clusters’ profiles show significant similarity, it may be
indicative of true co-evolutionary signals, and therefore we have
included them within our analyses.

Using Z scores to assess the significance of associations. Each
profile has a collection of Ed values resulting from its comparison
with the other profiles. Generally, the distance values for all the

clusters showed a normal distribution. Therefore, the average (x) and
standard deviation (s) were calculated for each collection of distances
from each profile and Zs were calculated for each distance value (NEd)
within each distribution (Zs ¼ NEd�x

s ). Zs is a normalised parameter
that can be used for comparing different pairs of clusters and their
distributions.

Examining the correlation between profiles and genome size.
Pearson’s method was used to measure the correlation coefficients
between the similarity of occurrence profiles and genome sizes.

Measuring information content: Presence–absence information
(Rþ/�) and occurrence information (Ro). It is important to develop
methods to measure the information content of the profiles, since it
has been demonstrated that profiles with low information content
introduce noise into the calculation of the correlation between
similarity in profiles and the prediction of functional relationships
[3]. In our model, we define two kinds of information: one is related
to the presence–absence pattern of the protein clusters throughout
the different species and is similar to that used by other groups, i.e.,
[3]. This presence–absence information will be referred to as Rþ/�.
The other information measure is related to the variation in gene
copy number throughout the species in the profiles and this will be
referred to as Ro or occurrence information.

Rþ/� is calculated using the Shannon formula Rþ/� ¼ Hb � Ha,
where Hb and Ha are entropy measures of the information held by
the receptor before (Hb) and after (Ha) it receives the profile
message. Therefore Rþ/� is a measure of the reduction in uncertainty
of the receptor once the message is received (in this case the message
is the distribution of þ/� in each profile). It can be assumed that the
receptor previously knew the number of species in the reference
sample, and how many presences (þ) and absences (�) there were in
the profile, but has no knowledge of the distribution of these þ/�
across the different species. In this case, the receptor entropy before
receiving the message will be Pj ¼ 1

Tc, where Pj is the probability to
find any single distribution with a determined number ofþ and� in a
profile j amongst the total number of all possible distributions ofþ/�
in the same profile j. The total number of possible combinations (Tc)
is calculated with the formula Tc ¼ N !

n!ðN�nÞ!, where N is the number of
different species (positions) in the profile and n is the number of
elements to combine (e.g., þ or �). Therefore, Pj ¼ 1

Tc since the
receptor can expect to receive the message in any of the possible
combinations. Once the receptor receives the message, the entropy
Ha goes to zero.

Ro is calculated using an interpretation of the Shannon formula
known as the SBI, Shannon Biodiversity Index (also known as
Shannon-Wiener Index) as a measure of entropy. In the original
formula: SBI ¼

P0
kðPk � logðPkÞÞ, where k is the number of different

species in a given ecosystem, and Pk is the proportion of individuals in
the species k amongst all individuals in all the species in the same
ecosystem. In our interpretation, k is the number of eukaryotic
genomes (species) in the profile, and Pk is the proportion of domain
number copies in each genome k amongst all domain copies for a
particular superfamily in all genomes. Ro measures the uncertainty
reduction variation produced in the receptor before and after
receiving the profile occurrence message: Ro ¼ Hb � Ha. In the Ro
estimation, it is assumed that the receptor knows how many species
hold gene domain cluster representatives, and the total number of
copies in the profile, but has no knowledge of how the copy numbers
vary throughout the species. The receptor expects that any domain
has the same probability to occur in any of the genomes, implying
equally probable distribution of domain copies across genomes, then
Hb ¼ logN , where N is the number of species that hold domain copies.
Once the receptor receives the profile, the proportion of domain
copies in each species will be known k (Pk), and the new information
reduces its uncertainty Ro ¼ Hb�Ha ¼ LogN � ð�

P0
kðPk � logPkÞÞ.

Construction of null models. Two random models were built for
comparison: (1) genome shuffling (GS) and (2) profile shuffling (PS).
These two random models were compared against the occurrence
profiles matrix for the real protein clusters to estimate the statistical
significance of the similarity distances between cluster profiles.

(1) Genome shuffling:
Purpose. To estimate of the effect that genome size has on the Eds

between profiles.
Method. All known domains for the 120 genomes were put into a

single array and shuffled randomly. Then the array was split
according to the known genome sizes to create a set of pseudo-
genomes. These were used to construct the family profiles as before.

Outcome. These pseudo-genomes have the same sizes as the real set
but have a randomly chosen set of domains allowing us to estimate
the effect that genome size has on correlation values.
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(2) Profile shuffling:
Purpose. To estimate the effect that domain family size has on the

Eds between profiles.
Method. Each S100 profile was shuffled, so that the values were

assigned to a genome at random. This was done independently for
each profile at the S100 level. Then each profile at the higher levels
was regenerated using these values.

Outcome. This effectively makes every genome approximately the
same size and with a generic domain set thus allowing us to estimate
the effect of domain family size on correlation values.

Selection of profiles with a statistically significant species repre-
sentation. There are no absolute criteria to choose an optimum
minimum number of species for profile selection. If the threshold is
very restrictive, there is likely to be an increase in precision (i.e., less
FP predictions) and a decrease in sensitivity (more false negative
predictions), and vice-versa. Analogous microarray data analyses use
Ed to measure gene expression profile similarity, and in this
application evidence suggests that five biological cases (species) is
the minimum to analyse microarray data with some guarantee of
statistical robustness; however, this minimum is not necessarily an
optimum [27].

We decided to use six species with positive gene presences as the
minimum number for selecting profiles since it is above the five
species mark, which clearly increases the precision of the approach
(from 85% to 95%; see Figure S8). Furthermore, since in our species
dataset there are no more than three species in any phyla, any profile
with gene representation in six organisms has a guaranteed species
representation in at least two out of the six possible phyla (mammals,
fish, insect, nematode, fungi, plant). This decreases the possible error
arising from the comparison of profiles with monophyletic origin [5].
Applying this threshold, a matrix with 10,005 protein domain cluster
profiles, with representation in six or more species, was selected for
the eukaryotic sample, and a matrix with 28,080 cluster profiles was
selected for the prokaryotic sample.

Measuring GO semantic similarity. To validate the method, we
chose to analyse our predictions with the Gene Ontology (GO)
database [28], which allowed us to implement a consistent measure of
the functional relationships between protein clusters.

A semantic similarity (SS) score was calculated for each pair of GO
terms in an all-against-all comparison of GO terms annotated in all
human domain sequences in the Gene3D database. This was done
using an implementation of the method described in [29], an
approach which measures the ‘‘information content’’ of GO terms
based on their relative frequency of appearance in a given context (in
this case the whole pool of protein sequences in the human genome).
For example, thousands of sequences are annotated with the term
‘‘kinase activity’’ (GO:0016301) in human, while the term ‘‘recombi-
nase activity’’ (GO:0000150) only appears about six times. Therefore,
the probability that two sequences will share the ‘‘recombinase
activity’’ annotation by chance is much less likely than if they shared

the ‘‘kinase activity’’ one. Furthermore, the information content of
the ‘‘recombinase activity’’ term is much higher than the ‘‘kinase
activity’’, since in contrast to the ‘‘recombinase activity’’, the ‘‘kinase
activity’’ can be linked to hundreds of different biological processes
and cellular components in human.

The frequencies of all the GO terms in each of the three GO
categories were calculated using the human domain sequences GO
annotations file and the hierarchical parent/child relationship
information obtained from the OBO flat file downloaded from the
GO database (30 December 2005 release). These frequencies were
converted into probabilities by dividing them by the maximum
frequency value in each independent GO category. An SS was then
calculated for each pair of GO terms in the all-against-all comparison
by taking the minimum probability (pms) amongst the probabilities
of all the parental GO terms shared by every possible pair (c1 and c2).
SS values were calculated using the Resnik formula (1990) as
explained in [29].

SSðc1; c2Þ ¼ �ln pmsðc1; c2Þ

Validation of associated profiles with GO annotations and SS
scores. The identification of functionally related cluster pairs was
performed in four stages. 1) Calculation of the SS scores of all pairs of
GO terms annotated in the complete set of human domain sequences
present in Gene3D and estimation of statistically significant thresh-
olds for the selection of highly informative SS scores. 2) Selection of
functionally related domain sequence pairs by using highly informa-
tive GO SS scores. 3) Validation of functionally related protein
clusters based on the functionally related domain pairs identified in
2) (details given below). 4) Assessment of significance by random-
isation of the datasets to enable estimation of the FP rates. (Note: We
attempted the above calculations with all genomes in the complete
eukaryotic sample and not just human, but the huge CPU time
required made the analysis impractical, and thus all calculations were
subsequently performed just using the human subset.)

Step 1. 56% of the 32,757 human CATH protein domains found in
Gene3D, (18,253 domains) were found to have functional annotation
in at least one of the three categories of the GO database: molecular
function; biological process; and cellular component. SS scores were
calculated for all pairs of GO terms, and the complete SS value
distributions were plotted for the three different GO categories (see
Figure 8). These SS distributions were used to establish SS value
boundaries for selecting GO pairs with high SS scores and therefore
with highly informative functional relationships.

1,000 GO pairs with SS values �5.0 were selected for the cellular
component category, since this highly informative set accounted for
only 1.9% of all pairs in the distribution (precision ¼ 98.1%; see
Figure 8). A set of 4,391 GO pairs (0.85%, precision ¼ 99.15%; see
Figure 8) with an SS score �6.0 were selected for the molecular
function category, and 4,453 GO pairs (0.65%; precision¼ 99.35; see
Figure 8) with SS scores �6.0 were selected for the biological process
category. These data will be referred as the highly informative GO
pair sets.

Step 2. A dataset of domain pairs predicted to have a significant
functional relationship, was generated by selecting domain pairs
sharing any of the highly informative GO pairs identified in Step 1
above. This gave 135,936 highly informative domain pairs for the
cellular component category, 176,606 domain pairs for molecular
function, and 243,383 for biological process. These data will be
referred to as the highly informative domain pairs.

Step 3. To identify functionally related protein clusters, all the
domain sequences from a given cluster were compared against all the
domain sequences from another, and clusters pairs sharing at least
one highly informative domain sequence pair were selected. To
increase statistical confidence in these selected, functionally related
clusters, the following thresholds were applied: a) all protein clusters
compared had to have at least two human sequences annotated in
GO; b) if each of the clusters compared had only two human
sequences annotated in GO, they had to possess at least two highly
informative domain pairs out of the four possible domain pair
combinations (232); and c) any remaining cluster pairs were selected
if at least 25% of the domain pairs, out of all possible combinations,
were highly informative.

Using these selection criteria, three datasets of functionally related
clusters were identified: 22,968 functionally related cluster pairs
comprising 1,175 different domain clusters were selected for the
cellular component set; 25,032 functionally related clusters pairs
comprising 1,951 different domain clusters for the molecular
function set; and 55,912 cluster pairs comprising 2,156 different
domain clusters for the biological process set. An extra set of

Figure 8. Analysis of the SS of GO Terms in the Human Genome for the

Three GO Functional Classes

Percentage of SS scores for GO pairs (bars) in each SS bin (x-axis).
Statistical confidence (lines), expressed as a percentage, for distinguish-
ing TP SS relationships from random is also shown for different SS score
bins (x-axis) and for different GO functional groups—cellular compo-
nents (blue); molecular function (red); biological processes (green). To
assess the statistical confidence, random GO pair frequencies are
calculated in each SS bin for the human genome (Perror), and thus the
statistical confidence can be then expressed (as a percentage) as the
complementary probability: (1 � Perror)*100.
doi:10.1371/journal.pcbi.0030237.g008
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functionally related clusters was obtained by combining all data in
these three sets. Redundant cluster pairs shared by the different sets
were only included once in this combined set. In general, the three
different sets of functionally related clusters showed small inter-
sections amongst their data. 31,604 cluster pairs were finally
combined, after removing redundancy between the sets (4,652 pairs
or 12.8% of total pairs; see Table S4).

Step 4. To estimate the FP rate expected at random in each
different set of functionally related clusters, every cluster was
randomly paired with another cluster ten times and the average Z-
score distributions recalculated.

Supporting Information

Figure S1. Species Ordered by Their Genome Sizes in the Eukaryotic
and Prokaryotic Samples

Species (x-axis) ordered by their genome sizes (y-axis) in the
eukaryotic a) and prokaryotic b) samples. Genome size is measured
as the number of sequence domains found in the Gene3D database.
Whilst the prokaryotic sample shows an almost continuous repre-
sentation of genome size values, the eukaryotic sample shows a
heterogeneous distribution with at least three different groups:
groups 1, 2, and 3 in the a) plot.

Found at doi:10.1371/journal.pcbi.0030237.sg001 (53 KB PPT).

Figure S2. Comparison of Euclidean and Bit Values

Comparison of Ed and Bd values. Comparison for the sample of
significant predictions (Zs � �3.0) provided by the Phylo-Tuner
method.
(A) Ed (y-axis) versus Bd (x-axis), and (B) Zs values based on Ed (y-axis)
and Bd (x-axis) distributions. Trend line equations, R-squared values,
and correlation coefficients are also indicated.

Found at doi:10.1371/journal.pcbi.0030237.sg002 (712 KB PPT).

Figure S3. Profile Comparison of the 3.50.7.10 Domain Cluster
against the Rest of Profiles in the Extended Matrix

Profile comparison of the 3.50.7.10 domain cluster against the rest of
profiles in the extended matrix (see Example Predictions by Phylo-
Tuner section).
(A) Number of domain copies (y-axis) for the 3.90.640.10 cluster (thick
blue line) is shown and for the cluster with the closest Ed (3.50.7.10—
CCT—thick red line). The number of domain copies in the different
subclusters (S35) of the 3.50.7.10 CCT cluster are also shown.
(B) Ed (y-axis) versus the corresponding Bd (x-axis) for the
comparison of 3.50.7.10 cluster against all other clusters.

Found at doi:10.1371/journal.pcbi.0030237.sg003 (339 KB PPT).

Figure S4. Profile Comparison for the 4.10.900.10 Cluster against the
Rest of the Profiles in the Extended Matrix

Profile comparison for the 4.10.900.10 cluster against the rest of the
profiles in the extended matrix (see Example Predictions by Phylo-
Tuner section).
(A) Number of domain copies (y-axis) for the 1.10.880.10.2 cluster
(thick blue line), for the cluster with the closest Ed (4.10.900.10, thick
red line). The number of domain copies in different subclusters (S35)
of the 4.10.900.10 Nt b-catenin binding subunit cluster are also shown.
(B) Ed (y-axis) versus Bd (x-axis) for the comparison of 4.10.900.10
cluster against all other clusters.

Found at doi:10.1371/journal.pcbi.0030237.sg004 (230 KB PPT).

Figure S5. Profile Similarity Score Analysis

For eukaryotic (A) and (B) and prokaryotic (C) and (D) profiles.
(A,C) Eds for profile pairs (y-axis) versus the average sizes of the
profiles (x-axis).
(B,D) Logarithm of the Eds for the profile pairs (y-axis) versus
logarithm of the average profile sizes (x-axis).
Found at doi:10.1371/journal.pcbi.0030237.sg005 (484 KB PPT).

Figure S6. Comparison of the Analysis with Homologous Pairs against
the Analysis without Homologous Pairs

The frequency distribution (left-hand y-axis) of TPs and FPs is plotted
for the original analysis with homologous pairs (blue and light blue,
respectively) and without (red and pink, respectively). The percent
precision distribution (right-hand, y-axis) is shown for the analysis
with homologous pairs (blue line) and without (red line) for all Zs
value bins (x-axis for both distributions). Standard deviations are also
indicated for the FP rates (vertical lines). Precision percentages were

calculated based on the TP and FP frequencies for every Zs bin in the
‘‘no homologous pairs’’ sample, using for this new analysis the same
profile matrix (with 3,721 protein clusters) and following the same
procedure as described in the section Validation of Associated
Profiles With GO Annotations and SS Scores (Material and Methods)
and the section Assessment of Profile Similarity and Predicting
Functionally Related Clusters (Results/Discussion). It can be seen in
this plot that the TP rate in the ‘‘no homologous pairs’’ sample drops
slightly from 0.041% to 0.035% in the highest Zs class (��3.5),
compensated by a proportional decrease of the FP rate in the same Zs
bin, giving virtually no variation in the precision ratio compared to
the original analysis. For the remaining Zs bins, no significant
differences are observed in the TP rate, the FP rate, or the precision
values, demonstrating that no significant upward bias of the precision
ratio is caused by the inclusion of homologous pairs in the analysis.

Found at doi:10.1371/journal.pcbi.0030237.sg006 (60 KB PPT).

Figure S7. Pairwise Ed Distributions by Percentage

Pairwise Ed (x-axis) distributions by percentage (y-axis).
(A) The homologous (blue line) and the nonhomologous (red line)
pairs.
(B) Distributions for the clusters in the homologous 3.40.50.300
superfamily (blue line) against the rest of clusters in the matrix (red
line). Using the same matrix of 3,721 protein clusters referenced
above, the Ed distributions of homologous and nonhomologous pairs
were calculated independently and compared between both sets (A).
Homologous pairs count for only 6% of all pair comparisons, and
these pairs therefore have a low statistical weight in the whole
statistical analysis. From this comparison it can be seen that the
homologous pairs show a very slight bias toward lower Eds. However,
if the Ed distribution of homologous pairs from the superfamily
3.40.50.300 (a superfamily which is large enough for significant
statistical comparison) is compared with the distance distribution for
all the remaining 3.40.50.300 nonhomologous clusters (B), no
significant difference is seen. Therefore, the likelihood of finding
significant partners within or outside the superfamily are practically
the same. These results indicate the possibility that homologous
clusters could be co-evolving in a similar manner to nonhomologous
pairs when a functional association between them is retained in
evolution. For this reason, the co-evolution signal arising from the
comparison of homologous profiles is retained within the Phylo-
Tuner analysis.

Found at doi:10.1371/journal.pcbi.0030237.sg007 (61 KB PPT).

Figure S8. Percentage of Profile Pairs in Each Ed Bin for Eukaryotic
Profiles with Gene Representation in Six or More Organisms

Percentage of profile pairs (y-axis) in each Ed bin (x-axis) for
eukaryotic profiles with gene representation in six or more organisms
(A) and in five or more organisms (B), for the real matrix (blue), the
GS model (pink, GS), and for the PS model (yellow, PS).
(C) Analysis of the increase in precision obtained by having at least
six species in the profile. The plot on the right hand of (C) shows, for
the smallest Ed bin, the percentage of profile pairs from the real
matrix as TPs (TP5), and the percentage of profile pairs from the
random models as FPs (FPps5 and FPgs5). In the left-hand plot of (C),
the same is shown but for the six species matrix.
(D) Precision values are estimated for the two different sources of FPs
(PS and GS random models) and for the two different real matrices:
five and six species.

Found at doi:10.1371/journal.pcbi.0030237.sg008 (64 KB PPT).

Table S1. Ten Examples of Predicted Cluster Pairs with Novel
Functional Relationships

Found at doi:10.1371/journal.pcbi.0030237.st001 (36 KB DOC).

Table S2. The 106 Prokaryotic Species Used in the Analysis

Found at doi:10.1371/journal.pcbi.0030237.st002 (118 KB DOC).

Table S3. Clustering of the 192,635 Domain Sequences

Found at doi:10.1371/journal.pcbi.0030237.st003 (29 KB DOC).

Table S4. Number of Functional Clusters Pairs Selected in Each
Functional Group Dataset

Found at doi:10.1371/journal.pcbi.0030237.st004 (25 KB DOC).

Text S1. Detailed Bibliographic Analysis of the Ten Pairs Selected for
Table S1

Found at doi:10.1371/journal.pcbi.0030237.sd001 (52 KB DOC).
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