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Context: Nonclassic congenital lipoid adrenal hyperplasia (lipoid CAH) is a recently recognized
disorder caused by mutations in the steroidogenic acute regulatory protein (StAR) that retain
partial function. Affected individuals can present with a phenotype of late onset adrenal insuffi-
ciency with only mild or minimally disordered sexual development.

Objectives: The aim was to delineate the clinical spectrum of StAR mutations and correlate phe-
notype with StAR activity.

Patients: Four patients had nonclassic/atypical lipoid CAH. Adrenal insufficiency was manifested at
birth in two patients and at 11 months and 4 yr in the other two. Three were 46,XY with under-
developed genitalia.

Methods: The StAR gene was sequenced, mutations were recreated in expression vectors, and StAR
activity was measured as pregnenolone production in COS-1 cells cotransfected with the choles-
terol side-chain cleavage system. StAR mutants were expressed as N-62 StAR in bacteria, and
purified proteins were tested for activity with isolated steroidogenic mitochondria and for cho-
lesterol-binding capacity.

Results: DNA sequencing identified mutations on all alleles. Missense mutations were R188C,
G221D, L260P, and F267S; we also tested R192C described by others. The respective activities of
R188C, R192C, G221D, L260P, and F267S were 8.0, 39.4, 2.4, 3.1, and 6.1% of wild-type in trans-
fected cells, and 12.8, 54.8, 6.3, 1.8, and 9.5% with isolated mitochondria. Cholesterol binding
capacities of R188C, R192C, G221D, L260P, and F267S were 6.7, 55.3, 10.2, 4.6, and 20.9%. These
data are correlated to the three-dimensional structure of StAR.

Conclusions: There is a broad clinical spectrum of StAR mutations; StAR activities in vitro correlate
well with clinical phenotypes. (J Clin Endocrinol Metab 95: 3352-3359, 2010)
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dominal ultrasound showed a normal-size right adrenal, but the
left adrenal was not seen. The patient was treated with pred-
nisone in doses equivalent to hydrocortisone 11-14 mg/m?/d and
remained well with normal electrolytes. Sequencing of the
ACTH receptor (MC2R), DAX1, and HSD3B2 genes was
normal.

Patient 2

A 27-yr-old 46,XY male was born at term with micropentis,
third-degree hypospadias, severe chordee, a hypoplastic scro-
tum, and palpable testes. A human chorionic gonadotropin stim-
ulation test at 3-7 d of life failed to increase progesterone, 17-
hydroxyprogesterone (170HP), DHEA, androstenedione, and
testosterone. His electrolytes were normal, and he did not require
supplemental steroids during the neonatal period. At age 10 wk,
cortisol was 8.5 pg/dl, but his ACTH was 560 pg/ml (normal,
10-50), indicating partially compensated adrenal insufficiency.
His aldosterone was 14 ng/dl (normal, 5-90), and his PRA was
95 ng/ml/h (normal, 2.3-37). During an insulin tolerance test, his
basal cortisol was 21 ug/dl, but it failed to rise further; an ACTH
stimulation test failed to increase urinary 17-ketosteroids or se-
rum levels of progesterone, 170OHP, cortisol, and DHEA. An
abdominal computed tomography scan at age 12 wk did not
show adrenal enlargement. The patient was diagnosed with
“partial 20,22 desmolase deficiency” and started on lifelong glu-
cocorticoid and mineralocorticoid replacement therapy. During
his first 2 yr, he had several adrenal crises, including at least one
with documented salt-wasting (Na, 124 mEq/liter; and K, 6.1
mEq/liter), associated with respiratory, gastrointestinal, or skin
infections and requiring brief hospitalizations for parenteral glu-
cocorticoids. He had normal growth and development and un-
derwent a two-stage genital repair at age 2. He did not undergo
puberty, and testosterone treatment was initiated during ado-
lescence. When seen at the University of Pennsylvania at age 235,
he was 185 c¢m tall, weighed 157 kg, and had hyperpigmented
skin, 5-ml testes bilaterally, and a penile length of 4 cm. His
0800 h cortisol before taking hydrocortisone was less than 5
pg/dl, with ACTH 5911 pg/ml, total testosterone 78 ng/dl, LH
15.2 TU/liter, and FH 16.7 TU/liter. The parents declined genetic
testing. His sister is unaffected, and her carrier status is
unknown.

Patient 3

A 46,XY Serbian male infant presented at age 3.5 months
having had prolonged neonatal jaundice. He had severe gener-
alized hyperpigmentation, cryptorchidism, micropenis, but no
hypospadias. When evaluated at University Children’s Hospital,
Zurich, Switzerland, his sodium and potassium were normal,
cortisol was 5.3 pg/dl, and ACTH was 5497 pg/ml. Aldosterone
and PRA were not measured; testosterone was 29 ng/dl (normal
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up to 232 ng/dl). He was treated with hydrocortisone and fludro-
cortisone and received three testosterone injections (25 mg) be-
tween 4 and 6 months of age with good penile response to 3.5 cm.
He underwent right orchiopexy at 2 yr. When he was 8.5 yr old,
his height was 134.5 cm (50th-75th percentile), and weight was
39.8 kg (>97th percentile) while receiving hydrocortisone 20.8
mg/m?/d and fludrocortisone 0.1 mg/d. He remained well with
normal electrolytes but had a history of salt-craving. Sequencing
of DAX1 and SF1 was normal.

Patient 4

A 15-yr-old, 46,XX Nepalese girl had recently moved to the
United Kingdom and was referred to the Portsmouth Hospital
with a diagnosis of “CAH”. She had first presented at 11 months
of age with adrenal crisis including vomiting and dehydration
and had subsequently been treated with hydrocortisone and
fludrocortisone, but no hormonal data are available. She re-
ported menarche at 12 yr of age and regular menstruation, but
progesterone at d 22 of the cycle was low at 0.2 nmol/liter, in-
dicating anovulatory cycles. Her ACTH was 2070 pg/ml, and she
had unmeasurable cortisol (<1 ug/dl), aldosterone (<2.5 ng/dl),
testosterone (<10 ng/dl), 177OHP (<60 ng/dl), androstenedione
(<30 ng/dl), and DHEA sulfate (<15 pg/dl) (Table 1). Her
plasma and urine steroid profiles were compatible with complete
adrenal insufficiency. A magnetic resonance imaging scan
showed normal-sized adrenals.

Mutation analysis, mutagenesis, and transfection
With informed consent, leukocyte genomic DNA was ex-
tracted, and the seven exons of the StAR gene were amplified by
PCR and sequenced using previously described oligonucleotides
and amplification conditions (12). Mutant full-length StAR
c¢DNA expression vectors (13) were generated by PCR-based,
site-directed mutagenesis (primers are shown in Table 2) and
verified by direct sequencing. The PCR conditions were: 95 C for
30 sec, 16 cycles of 95 C for 30 sec, 55 C for 1 min, and 68 C for
18 min. Nonsteroidogenic monkey kidney COS-1 cells were
grown in DMEM supplemented with 10% fetal calf serum and
antibiotics at 37 Cin a humidified 5% CO, incubator. Cells were
divided into 12-well plates (Falcon; BD Biosciences, Lincoln
Park, NJ) and cotransfected using Effectene (QIAGEN,
Valencia, CA) at approximately 50% confluence. Cotransfec-
tions were done with a pCMV-StAR expression vector and the F2
plasmid expressing a fusion protein of the cholesterol side-chain
cleavage system (H,N-P450scc-adrenodoxin reductase-adreno-
doxin-COOH) (14). To monitor transfection efficiency, cells
were also cotransfected with 5 ng of Renilla luciferase reporter
plasmid (pRL-CMV) (Promega, Madison, WI) per well. Culture
media were collected 48 h later, and pregnenolone production
was measured by enzyme immunoassay (ALPCO Diagnostics,

TABLE 2. Oligonucleotide sequences for site-directed mutagenesis

Name Sequence NCBI accession no.; location
R188C TTTGTGAGCGTGTGCTGTGCCAAGC NM_000349; 826
R192C GCGCTGTGCCAAGTGCCGAGGCTCCAC NM_000349; 838
G221D AGGGCGGAGCACGATCCCACTTGCATG NM_000349; 926

L260P ATCAACCAGGTCCCGTCCCAGACCCAG NM_000349; 1043
F267S ACCCAGGTGGATTCTGCCAACCACCTG NM_000349; 1064

Boldface and underlined bases indicate a nucleotide change. The numbering of nucleotides is based on the NCBI human StAR cDNA sequence
NM_000349. The numbering of the amino acid residues is based on the NCBI human StAR protein reference sequence NP_000340.2.
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Salem, NH). The sensitivity of this assay is 5.4 ng/dl. Data are
presented as the mean * SEM for at least three independent ex-
periments, each performed in triplicate.

Preparation of vectors and proteins and in vitro
biochemical assays

Each StAR mutation was inserted into the sequence of N-62
StAR in the modified pTWINT intein expression plasmid (15).
The plasmids were individually transformed into Escherichia
coli BL21DE3. StAR expression was induced with 0.5 mMm iso-
propyl-B-D-thiogalactopyranoside at 28 C for 6—8 h. Bacteria
were lysed by sonication and cleared of debris; the supernatant
was loaded onto chitin-binding columns (New England Biolabs,
Ipswich, MA), washed, and eluted according to the manufac-
turer’s recommendations. The N-62 StAR was collected and di-
alyzed against 300 mm NaCl, 20 mm Tris (pH 7.5) (15, 16).
Wild-type N-62 StAR was quantitated by the Bradford method,
and mutant proteins were quantitated with a standard curve of
wild-type N-62 StAR (Fig. 1). Mitochondria were prepared from
mouse MA-10 Leydig cells as described (13). Purified N-62 StAR
proteins (5 uM) were added to mitochondria (5 pg of Bradford
protein) in 50 ul of 125 mm KCI, 5 mm MgCl,, 10 mm KH,PO,,
25 mMm HEPES (pH 7.4), 250 ng/ml trilostane, 100 um GTP, and
10 mM isocitrate, and incubated for 1 h; conversion of mito-
chondrial cholesterol to pregnenolone was measured by enzyme
immunoassay, as above.

Cholesterol binding assay

Cholesterol binding capacity was measured by mixing purified
N-62 StAR proteins (1 um) in PBS with various amounts of fluo-
rescent 22-(n-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino-23,24-
bisnor-5-cholen-3-ol) (NBD-cholesterol) (Invitrogen, Carlsbad,
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FIG. 1. Quantification of StAR protein. Top panel, The indicated
amounts of purified wild-type N-62 StAR protein and mutant purified
N-62 StAR proteins were separated by 12% SDS-PAGE. The band
intensity was measured by Scion Image software. Bottom panel, The
standard curve of StAR protein. The amount of mutant N-62 StAR
proteins was plotted against its band intensity.
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CA) in 96-well plates (final volume, 100 ul). The samples were
incubated 1 h at 37 C and excited at 480 nm, and steady-state
fluorescence emission at 540 nm (cutoff, 515 nm) was monitored
with a SpectraMax M2 microplate reader (Molecular Devices Inc.,
Sunnyvale, CA) (16).

Results

StAR mutations

Patient 1 was homozygous for the mutation 5033C>T,
changing arginine 188 to cysteine (R188C) (NCBI genomic
DNA reference sequence NG_011827.1, and StAR protein
reference sequence NP_000340.2) (17, 18). Homozygous
R188C was found in one of the initial patients with non-
classic lipoid CAH (9) and in four families reported in Ref.
10. Patient 2 was a compound heterozygote for
6732T>C, changing leucine 260 to proline (L260P); and
6753T>C, changing phenylalanine 267 to serine (F267S).
L260P was described in Swiss patients with classic lipoid
CAH (19); F267S is a novel mutation. Patient 3 was
compound heterozygous for R188C and tryptophan
250 stop mutation (W250X). Homozygous W250X
was previously found in a Serbian 46,XY phenotypic fe-
male with classic lipoid CAH (20). Patient 4 was homozy-
gous for the novel mutation 5780G>A, changing glycine
to aspartic acid (G221D).

Functional studies of the StAR mutants in
transfected cells

We studied the functional consequences of the four mis-
sense StAR mutants identified here and the mutation
R192C recently found in a family with nonclassic lipoid
CAH, but which had not been characterized functionally
(10). We cotransfected nonsteroidogenic COS-1 cells with
either wild-type or mutant StAR and a vector expressing
the F2 fusion of the cholesterol side chain cleavage system
(14) and compared the amount of pregnenolone pro-
duced. An empty vector was used as a negative control,
and 22R-hydroxycholesterol, which bypasses the action
of StAR and thus indicates the maximal enzymatic capac-
ity of the P450scc system (4, 7, 13) was added as a positive
control. Using endogenous cellular cholesterol and cho-
lesterol in the serum in the culture media as substrate,
COS-1 cells expressing F2 and wild-type StAR made
1917 + 422 ng/dl of pregnenolone, whereas cells trans-
fected with the empty vector produced a low level of
pregnenolone (23 = 11 ng/dl), indicating the presence of
StAR-independent steroidogenesis. The R188C mutant
produced 175 = 8 ng/dl of pregnenolone, whereas the
G221D, L260P, and F267S mutants generated 68 = 17,
82 + 23, and 138 * 16 ng/dl, respectively. By contrast,
R192C produced substantially more pregnenolone at
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769 = 169 ng/dl. When the background of StAR-inde-
pendent steroidogenesis is subtracted, the R188C,
R192C, G221D, L260P, and F267S mutants had 8.0,
39.4,2.4,3.1,and 6.1% of wild-type activity, respectively
(Fig. 2A). In this assay, pregnenolone production in all five
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FIG. 2. Activities of StAR mutants. A, Activity of full-length StAR in
whole cells. COS-1 cells were cotransfected with expression vectors for
the cholesterol side-chain cleavage system (F2) and either wild-type
(WT) or mutant StAR, and pregnenolone was measured 48 h later by
immunoassay. The StAR-independent substrate 22(R)-hydroxycholes-
terol (22R-OH) was added to the cell culture media to determine the
maximum steroidogenic capacity of the cells. Data are expressed as
the mean = sem from at least three independent experiments,

each performed in triplicate. B, Activity of isolated N-62 StAR on
mitochondria in vitro. Purified proteins were added to mitochondria
from steroidogenic mouse MA-10 Leydig cells, and pregnenolone
production from endogenous mitochondrial cholesterol was measured.
Data are expressed as mean = sem from four experiments, each
performed in duplicate. C, Cholesterol binding assay. Binding of
various concentrations of NBD-cholesterol by wild-type and mutant
StAR was measured by fluorescence; control is buffer without protein.
Data are expressed as mean = sem for three experiments, each
performed in triplicate.
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StAR mutations was significantly higher than vector con-
trol (P < 0.05).

Activities of purified StAR proteins with
steroidogenic mitochondria

To assess the activities of StAR mutants in a cell-free
system, we expressed N-62 StAR protein using a self-splic-
ing bacterial intein system. Purified N-62 StAR protein
(Fig. 1) was added to mitochondria isolated from mouse
Leydig MA-10 cells, and StAR activity was measured as
pregnenolone produced from endogenous mitochondrial
cholesterol. In this assay, wild-type N-62 StAR elicited
1816 * 293 ng/dl pregnenolone, and the buffer control
lacking StAR produced 263.3 * 37.7 ng/dl pregnenolone,
indicating a level of StAR-independent steroidogenesis ap-
proximately 14% of the StAR-induced level. After sub-
tracting the buffer control, the R188C, R192C, G221D,
L260P, and F267S mutants elicited 12.8, 54.8, 6.3, 1.8,
and 9.5% of wild-type activity, respectively (Fig. 2B). In
comparison to the buffer control, R188C (P < 0.0001),
R192C (P < 0.0001), G221D (P = 0.02), and F267S (P =
0.002) elicited significantly more pregnenolone, whereas
the activity of L260P was not different from the buffer
paired (two-tailed Student’s ¢ test; P = 0.57).

Cholesterol-binding capacity of the mutant StAR
proteins

Purified recombinant proteins were combined with
various concentrations of NBD-cholesterol, and choles-
terol binding was measured fluorometrically. The binding
of fluorescent NBD-cholesterol to StAR is very similar to
that of ['*C]cholesterol; hence, this readily measured form
of cholesterol is appropriate for measuring the cholesterol
binding capacity of StAR (16). After subtracting the buffer
control, the maximal cholesterol binding capacity of the
R188C, R192C, G221D, L260P, and F267S mutants
was 6.7, 55.3, 10.2, 4.6, and 20.9% of the wild-type
value (Fig. 2C). Thus, the impaired activity of the mu-
tants generally correlated with their impaired capacities
to bind cholesterol.

Discussion

StAR moves cholesterol from the outer mitochondrial
membrane (OMM) to the inner mitochondrial membrane,
thus providing the cholesterol substrate for steroidogen-
esis (4,21). StAR exerts this action on the OMM (13,22),
where it must undergo a conformational change that re-
sults from its interaction with protonated OMM phos-
pholipids (15, 23-25). The essential role of StAR in ad-
renal and gonadal steroidogenesis was established by
finding recessive, loss-of-function mutations of StAR in
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lipoid CAH (4, 5, 7, 8). Until recently, lipoid CAH was
known exclusively as a very severe disorder of steroido-
genesis characterized by greatly diminished or absent syn-
thesis of all adrenal and gonadal steroids (26). Affected
individuals with classic lipoid CAH are phenotypically
female and have severe salt loss in early infancy. None-
theless, affected 46,XX females spontaneously develop
secondary sex characteristics and experience cyclical vag-
inal bleeding, but the cycles are anovulatory, and the pa-
tients have progressive hypergonadotropic hypogonadism
later in life (12, 27). These unusual findings were ex-
plained by the two-hit model (7). In early lipoid CAH,
StAR-independent mechanisms can still move some cho-
lesterol into mitochondria, resulting in a low level of ste-
roidogenesis, and increased corticotropin secretion (first
hit). Over time, lipid droplets accumulate, damage the cell,
and eventually destroy steroidogenic capacity (second
hit). In the ovary, follicular cells remain unstimulated and
thus undamaged until they are sequentially recruited in
monthly cycles beginning at puberty. By contrast, the fetal
testicular Leydig cells are affected early in gestation due to
stimulation by chorionic gonadotropin.

In 2006, Baker et al. described three children from two
families who presented with adrenal insufficiency at 2—4
yr of age; the males had normal genitalia. These patients
were homozygous for StAR mutations V187M and R188C;
functional studies of these mutants showed that they re-
tained approximately 20% of wild-type activity (9). These
data delineated a new disorder, nonclassic lipoid CAH.
Later, Metherell ez al. (10) reported five families with non-
classic lipoid CAH who had initially been misdiagnosed as
having familial glucocorticoid deficiency. Four families
carried R188C, and one carried R192C. All affected pro-
bands presented with Addisonian phenotypes at 2-7 yr of
age, but one affected male remained undiagnosed and
untreated until 58 yr of age (10). Several patients with
nonclassic StAR mutations have progressive hypergona-
dotropic hypogonadism and azoospermia, potentially
compromising fertility (10). Thus, identifying patients
with nonclassic lipoid CAH is important because, unlike
patients with familial glucocorticoid deficiency, they may
have compromised fertility and mild salt loss.

Although massive adrenal enlargement is a classic hall-
mark of lipoid CAH (26), this sign is not pathognomonic.
Small adrenals have been reported in patients with classic
lipoid CAH (11), and such enlargement has not been re-
ported in patients with nonclassic phenotypes (9, 10), al-
though hypoplastic adrenals with calcifications, suggest-
ing cirrhotic, end stage fat deposition, have been reported
(10). None of the patients in our study had evidence of
adrenal enlargement by abdominal imaging. Similarly, pa-
tients with CYP11A1 mutations causing P450scc defi-
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ciency, who have clinical manifestations that are indistin-
guishable from StAR mutations, have not been reported
with enlarged adrenals (28). Thus, in the setting of adrenal
insufficiency, massively enlarged adrenals indicate classic
lipoid CAH; normal-sized adrenals cannot exclude it but
instead suggest P450scc deficiency or nonclassic lipoid
CAH.

StAR mutations have been described in many ethnic
groups but are common in Japan, Korea, and some iso-
lated populations (1, 7, 8, 19). The R188C mutation
found in our Thai patient has also been reported in pa-
tients from Canada, Jordan, India, and Pakistan (9, 10),
suggesting a recurrent mutation. StAR mutations in in-
tronic regions can also cause lipoid CAH (5, 29). Most
StAR missense mutations are found in the carboxy-termi-
nal 40% of the 285-amino acid StAR protein (1) and to-
tally eliminate StAR activity. Only five previously de-
scribed mutations were associated with residual StAR
activity in transfected COS-1 cells: V187M (22%) (9),
R188C (14%) (9), A218V (6%) (7), M225T (29%) (8),
and L275P (10%) (7). A gain-of-function StAR mutation,
Q128R, has been reported recently in a 46,XX phenotypic
female infant who had salt loss at 4 months, but the co-
existence of homozygous frameshift null mutation ablated
all StAR activities, so the potential effect of the Q128R
mutation was not evidenced in the patient (30). The mech-
anism by which this mutant gains function is unknown.

The manifestations and severity of disease differed sub-
stantially in our patients. Patient 1, who had the mildest
phenotype, was homozygous for R188C. In our assays of
intracellular activity, mitochondrial activity, and choles-
terol-binding capacity, R188C retained 8,12.8, and 6.7 %
of wild-type activity, respectively; when we studied this
mutant previously, the values for these assays were 13.6,
17.7, and 21.0% (9). Hence, whereas there is some vari-
ability in these biochemical assays, it seems that 10-20%
of activity will dramatically alter the classic phenotype.
The report of the patient carrying R192C, which retained
about 50% of wild-type activity, indicated even milder
disease (10). By contrast, patient 2, carrying both F267S
(~10% activity) and L260P (~3% activity) had fairly se-
vere disease, as did patient 4, who was homozygous for
G221D (~6% activity). Among the three assays we used,
the direct assays of StAR activity, rather than the choles-
terol-binding assay, appear to provide the best correlation
with the clinical phenotype. A disparity between the ac-
tivity assays and the binding assay is not surprising, be-
cause StAR mutation R182L was homozygous in patients
with classic lipoid CAH and lacked activity in functional
assays (7, 11) but retained normal capacity to bind cho-
lesterol, indicating that cholesterol binding is necessary
but not sufficient for StAR activity (16). Thus, there is a
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fairly good correlation between StAR activity iz vitro and
the clinical phenotypes.

The crystal structures of three proteins closely related
to StAR have been determined (31-33), permitting the
construction of reliable computational models of human
StAR (25, 34). StAR’s structure features a hydrophobic
pocket of the size and shape needed to bind cholesterol; the
amphipathic C-terminal a-helix (C-helix) forms the
“floor” of the pocket, with hydrophobic residues pointing
inward and hydrophilic residues pointing outward. The
structure shows no direct access to this pocket. Liposome
protection experiments show that only the C-terminal
a-helix (C-helix) interacts with the OMM (25), and the
position of the C-helix is stabilized by a network of hy-
drogen bonds with the adjacent structures (25, 34). Mo-
lecular dynamics simulations indicate that interaction of
StAR with protonated phospholipids on the OMM dis-
rupts these hydrogen bonds, inducing a conformational
change (molten globule transition), permitting the C-helix
to swing open to allow the binding of cholesterol into the
sterol binding pocket of StAR; consistent with this model,
disulfide mutants that immobilize the C-helix but that do
not alter StAR’s conformation interfere with StAR activity
and cholesterol binding (15, 35).

Many mutations that cause lipoid CAH, including
those identified in this study, are located in the C-terminal
helix or elsewhere in the sterol-binding pocket. Leu260
and Phe267 are conserved hydrophobic residues in the
C-helix, forming part of the cholesterol-binding site.
Arg188 and Arg192 lie in sheet 86, and G221 is in the loop
joining sheets B8 and B9, which contribute to the sterol-
binding pocket. Consistent with this, the reduced activity
of these mutants was associated with reduced cholesterol-
binding capacity. The mechanism by which StAR facili-
tates the movement of cholesterol into the mitochondrion
is incompletely understood, but it appears to involve sev-
eral other proteins on the OMM. Functional data indicate
that the 18-kDa peripheral benzodiazepine receptor (PBR;
also called the mitochondrial translocator protein) must
be present for StAR to act (36), and homo-bifunctional
protein cross-linking data show that StAR comes into
close contact with the voltage-dependent anion channel-1
and with a phosphate-carrier protein on the OMM (37).
Additional data suggest that StAR participates in a large
macromolecular complex, which, in addition to StAR,
PBR, and voltage-dependent anion channel, includes PBR-
associated protein 7, protein kinase A regulatory subunit
I, and adenine nucleotide transporter (38, 39). Substan-
tial additional work is needed to delineate the role of each
of these proteins in mitochondrial cholesterol import; the
potential discovery of patients carrying mutations in any
of these could be most informative.

Partial Loss-of-Function StAR Mutations
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