A Structural Framework for the Formal Representation of Cooperation

Anthony Finkelstein
Imperial College of Science, Technology & Medicine(University of London)
180 Queens Gate, London SW7.
acwf@doc.ic.ac.uk

0 Introduction

This paper presents a structural framework for the formal representation of cooperation and illustrates
this framework with an outline example. The paper builds upon a basic argument:

that cooperation is a characteristic feature of software development;

that much of the observed complexity of software development results from the operation of the
underlying mechanisms of cooperation.

It follows from this that a prerequisite for modelling software development is a detailed
understanding of cooperation. This understanding must of necessity be backed up by appropriate means
for formally representing that cooperation.

Before discussing how such a formal representation might be organised it is necessary to explain
precisely what we mean by cooperation. Cooperation is the activity through which agents
(autonomous and loosely coupled) contribute to the achievement of a joint understanding on which
action can be based. Cooperation can thus be seen as a form of reasoning.

1 Structural Framework

Cooperation rests on interaction between agents. It follows from this that we need to have some idea of
the structure of that interaction. This problem is closely analogous to that encountered in user interface
specification where it is necessary to separate concerns in the analysis of computer-human interaction
(Moran 1981). The computer-human interaction is divided into levels. At the top level are the tasks
set by the user (eg to draw a specific diagram) and at the lowest level the management of presentation
(eg spatial layout and device handling). Between these levels are:

the semantic level, the conceptual objects and the methods for achieving tasks in terms of these
objects (eg box, Place, Link, Unlink);

the syntactic level, the syntactic rules and structure of conceptual objects and methods (eg Link
connects two specified boxes);

the lexical level, the rules governing the actions associated with syntactic elements (eg
connection causes a line to be drawn between the centres of the two boxes).

61
TH0278-2/90/0000/0061$01.00 © 1990 |IEEE

r

Each level has a representation scheme associated with it. At the semantic level this might be logical
relations, at the syntactic level it might be transition networks or grammars, at the lexical level it
might be a graphical description language.

This structure is directly mirrored in cooperative interaction. In other words we can divide such
interactions into similar levels. At the top level we can place the software development tasks (eg
program validation) and at the bottom the physical details of communication between agents (eg
network protocols). Between these levels are the levels concerned with the mechanisms of cooperation.
In the example we develop below we focus on these intermediate levels.

2 Example

An obvious set of software development tasks which we might want to support are encountered in
configuration management - a classical setting in which cooperation comes into play. Typical of such
tasks is the construction and maintenance of a baseline of software development objects. This involves
the "publication” of objects to the baseline, the removal of objects from the baseline and so on. What
might the levels underlying these tasks look like?

Cooperation, viewed as a form of reasoning, is particularly amenable to logical representation and
analysis. One area of cooperation in which such representation and analysis has been developed is
that of logics of dialogue (or conversation). These provide a powerful repertoire of constructs and rules
which can be used to describe how cooperation works.

Our illustration is based on a dialogue logic, DC, which is fully presented in Finkelstein & Fuks (1989).

A fragment of the scheme is given to assist in understanding the framework. To reduce the scope of our
example we will concern ourselves with the minimal case of two cooperating (configuring) agents.

2.1 Semantic level
The conceptual objects and methods, defined as as follows:

statements - constructed in a propositional language which includes negation, conditional and
conjunction of statements.

acts- basic operations, represented by a statement and a modifier, examples of acts are assertions
represented asserts(statement), withdrawals represented withdraws(statement), questions
represented questions(statement) and challenges represented why(statement);

commitments - public engagements to statements (in effect, holding yourself out as liable for the
consequences of a statement), represented committed(Stage,Agent);

events -a cooperative task consists of a sequence of events each of which is represented by a
triple of the form <Stage, Agent, Act>, Stage marks the progress of the interaction, stage,
stage+1 and so on, Agent indicates the current active agent (speaker).

The task level, in this example, can be mapped onto the semantic level in a relatively
straightforward way:

the statements describe the software development object configuration;

the view each agent has of the baseline is represented in terms of commitments;

tasks are built up from sequences of events, thus publication is simply assertion, the removal of
an inconsistent version might involve a sequence such as challenge-assertion-resolution demand-
withdrawal-withdrawal;

and so on.
2.2 Syntactic level

The syntactic organisation and structure of the conceptual methods and objects, given in rule form, for
example:

After the questioning of a statement (questions(Statement)), the next event must be either the
assertion (confirmation) of that statement, it's withdrawal or it's denial (asserts(Statement),
withdraws(Statement) or denies(Statement)).

No legal interaction of length stage+1 contains an event
<stage—1,hearer,questions(Statement)> unless it also contains an event
<stage,speaker,asserts(Statement)> v <stage, speaker,withdraws(Statement)>

v <stage,speaker,denies(Statement)>.

2.3 Lexical level

The rules governing the actions associated with syntactic elements. The actions at this level are
updates and deletions from the commitment record of an agent. For example:

After a withdrawal the statement is removed from the speaker's commitment record, the
hearer's record remains unchanged.

After <stage,speaker,withdraws(Statement)>
committed(stage+1,speaker)=committed(stage,speaker) - (Statement}
committed(stage+1,hearer)=committed(stage hearer)

3 Conclusion

This paper has outlined a structural framework for the formal representation of cooperation and
illustrated this framework with a small example. The framework can be used to analyse, select and
develop formal descriptions of cooperation. It appears that relatively simple semantic, syntactic and
lexical levels can, in conjunction, support relatively complex cooperative tasks. We are currently
looking at a variety of different sets of rules and constructs, largely drawn from logics of dialogue, to
substantiate this. Our particular interest is in the cooperative underpinning of "multi-party”
specification - more specifically the cooperative mechanisms that underlie requirements elicitation.
We hope to build, around the structural framework, tools and environments to support these tasks.

References

Moran, T. (1981); The Command Language Grammar: a representationof the user interface of
interactive computer systems; International Journal of Man-Machine Studies; 15 pp 3-50.

Finkelstein, A. & Fuks, H. (1989); Multi-party Specification; Proc. 5th International Workshop on
Software Specification & Design; IEEE CS Press.

63

