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We have recently proposed a new concept for deployable reflectors consisting of a
thin parabolic carbon-fibre-reinforced-plastic (CFRP) shell stiffened along the edge by
an elastically collapsible stiffener. Here we show that a stiffener accounting for less than
10% of the total mass of the reflector increases the stiffness of the softest deformation
mode of the deployed reflector by 48 times, and its fundamental natural frequency of
vibration by 6.8 times. These values are based on an optimized design of the stiffener, for
a 4.6 m diameter paraboloidal reflector with focal length-to-diameter ratio of 0.28, which
is detailed in the paper. Residual cooling stresses from the manufacturing process often
induce relatively large distortions in thin CFRP structures – potentially reducing their
surface accuracy. It is shown by analysis that these distortions are reduced by a factor of
100 in the proposed stiffened reflector.

Nomenclature
Ai surface area associated with the ith node

D plan diameter

E Elastic modulus

F focal length

f frequency of fundamental natural mode

Fmax maximum force during folding

g1, g2 dimensionless parameters in calculation of nat-
ural frequency of spherical shells

h0 rim height

k initial stiffness of reflector

m reflector mass

rm radius to mid surface

rs spherical radius

trein reinforcement thickness

ts stiffener thickness

tsurf surface thickness

w stiffener width

ẑi z coordinate of ith node on the best fit
paraboloid

α co latitude angle

β longitude angle

βc longitudinal location of reinforcing curves

δe effective rms error

δz axial rms error

η hinge slit angle

γ load slit angle
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λ dimensionless parameter in calculation of nat-
ural frequency of spherical shells

φ subtended angle of spherical cap
ψ curvature of reinforcing curve
ρ density
σy ultimate stress
σlimit limit stress
σmax maximum stress in the reflector, excluding slit

elements
θ stiffener angle from vertical axis
CFRP carbon fibre reinforced plastic
rms root mean square

Introduction
This paper is concerned with deployable reflectors

that consist of a thin-walled, parabolic dish made of
carbon fibre reinforced plastic (CFRP), which are then
elastically folded for launch on a spacecraft. These re-
flectors are constructed as a single piece, without any
joints or hinges, and hence are relatively inexpensive
to manufacture. The folding concept, first proposed by
Robinson6 is both simple and effective: opposite edges
of the reflector are pulled towards each other by about
half their original distance and are held by tie cables,
see Figure 2. The antenna is designed to fit in the nor-
mally unused space at the top of the rocket fairing or
around the payload, its largest stowed dimension be-
ing slightly larger than the deployed diameter. Once in
orbit, the tie cables that hold the reflector in its pack-
aged configuration are released by pyrotechnic charges
and the reflector deploys dynamically by releasing its
stored elastic strain energy.

In order to be folded elastically, a parabolic dish
needs to have low stiffness, however in general low
stiffness in a structure is accompanied by low shape
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Fig. 1 Spring-Back Reflector in deployed and
packaged configurations (Courtesy of the Canadian
Space Agency http://www.space.gc.ca.)

accuracy. Furthermore, the manufacturing process
of CFRP structures leaves behind residual strains
that generate relatively large shape distortions in
such highly flexible structures. These distortions are
typically of the order of D/100 in an unstiffened thin
parabolic dish. We have recently proposed10,11 a
new concept for this type of reflector structures. Our
approach is to stiffen the parabolic dish by attaching
a collapsible stiffener around its edge. This stiffener
significantly increases the overall stiffness of the dish
in the deployed configuration and yet during folding
the stiffener “pops” or buckles and thus the structure
can still be folded elastically. In our previous paper we
demonstrated this approach for small-scale reflectors,
and we showed – both by finite-element simulation
and on physical models – that order-of-magnitude
increases in stiffness could be achieved.

The present paper extends this approach to a full-
scale reflector structure. The method for increasing
the stiffness of a given reflector while also avoiding ex-
cessive strains in the material during folding is briefly
reiterated, a reference reflector design is presented and
a simple method is used to obtain an estimate of its
fundamental natural frequency of vibration. Following
this, the reflector design is characterized with exten-
sive FE simulations and the design parameters of the
stiffener are optimized. The effects of cooling stresses

Fig. 2 Small scale model reflector, deployed and
folded.

a) Spherical cap

b) Stiffener

Fig. 3 Lowest stiffness, incompatible eigenmodes
of a spherical cap and a conical stiffening ring.

on the shape of a stiffened reflector are also investi-
gated and it is shown that a particular stiffener design
is capable of reducing manufacturing distortions by
two orders of magnitude. The optimization study of
the full-scale reflector produced optimal designs which
have increases in the stiffness (of the softest mode)
of the reflector by 8.5 up to 163.4-fold, and funda-
mental natural frequency increases of between 2.6 and
13.6-fold. In all cases a safety margin of at least 2 is
maintained on the breaking strength of the material.

Review of Stiffening Scheme
The stiffening scheme is based on the idea of pre-

venting the unstiffened dish from deforming in its low-
est stiffness eigenmode. In the case of an “open cap”
shell this eigenmode is the inextensional or first bend-
ing mode sketched in Figure 3 (a). Connecting on a
second shell in the form of a planar ring, Figure 3 (b),
whose lowest stiffness eigenmode is incompatible with
that of the first shell has the effect of substantially
increasing the stiffness of the open cap shell. It is
therefore, a very efficient way of increasing the stiff-
ness of the structure. The exact shape of the second
shell is not crucial, hence variations of this method
of stiffening would be to connect a torus, part of a
conical shell, or just a straight horizontal stiffener. A
conical shell will be chosen, for simplicity. However,
the problem of attaching a continuous stiffener to a re-
flector dish, is that it makes the reflector so stiff that
it can no longer be folded elastically. In our previ-
ous paper11 this problem was addressed by introducing
four circumferential slits between the stiffener and the
rim of the dish, resulting in a structure whose stiff-
ness can be tuned as required. A particular feature
that is obtained for sufficiently long slits is that the
unsupported lengths of the stiffener are able to buckle
while the reflector is being folded, thus decreasing the
force required to fold the reflector. A potentially neg-
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clockwise reinforcing curve

rib

anticlockwise reinforcing curve

Fig. 4 Reflector geometry.

ative effect of introducing cuts in any structure is that
they may result in high stress concentrations. How-
ever these can be eliminated by designing out sharp
edges and/or by controlling the stiffness distribution
near the cuts, see the Stress Concentrations section.

Properties of the Reflector
The particular structure that will be studied has an

aperture diameter of 4.6 m and a focus to diameter
ratio, F/D = 0.28 . It will be assumed that the dish
is formed by laying up one or more layers of 0.3 mm
thick triaxially woven CFRP on a paraboloidal mould,
thus forming an ultra thin shell (surface thickness,
tsurf = 0.3 mm) with a series of reinforcements, with a
thickness, trein = 2.4 mm. The reinforcements consist
of a circular edge beam, 36 radial ribs, 18 reinforcing
curves spiraling clockwise and 18 more spiralling an-
ticlockwise from the center of the reflector, Figure 4
and Figure 8. All these reinforcements form a sys-
tem of triangulated segments, similar to those of the
Spring-Back Reflector shown in Figure 1.

Material

The most common triaxial fabric has yarn orienta-
tions at 0◦,+60◦,−60◦. CFRP made from this fabric
has nearly isotropic elastic modulus3,8, 12 and high
in plane shear rigidity. Fujita3 provides the follow-
ing data for CFRP made from SK-802 fabric, man-
ufactured by Sakase Adtech Co. Ltd., Japan, and
EPIKOTE 828 epoxy matrix, manufactured by Res-
olution Performance Products LLC. SK-802 consists
of T-300 fibres (Efibre = 230 GPa) with a fibre vol-
ume fraction of 40%. This triaxially woven fabric has
an areal density of 75 g/m2 and a ply thickness of
0.13 mm, from which we can deduce a fabric density
of 0.578 g/cm3. If we then assume that the epoxy
(ρepoxy = 1.25 g/cm3) occupies the remaining vol-
ume, using the rule of mixtures we obtain ρcomposite =
0.98 g/cm3. The elastic modulus of this composite was
assumed to be 40 GPa, and the ultimate stress to be
300 MPa.

Simple Frequency Estimates
An analytical estimate of the fundamental natural

frequency of a parabolic dish can be obtained by ap-

z

x

rs
φ

D/2

a

b

D

h0

φ/2 paraboloid

sphere

c

Fig. 5 Approximation of paraboloid with spherical
cap.

proximating the dish with a spherical cap of uniform
thickness, Figure 5. The spherical equivalent of the re-
flector described above is found as follows. First, the
radius of the sphere and the angle subtended need to
be determined. For a parabola with focal length F ,
the height of the rim, h0 = D2

16F . From triangle a in
Figure 5,

sin
φ

2
=

√(
D
2

)2
+ h2

0

2rs
(1)

and from triangle b,

sin
φ

2
=

h0√(
D
2

)2
+ h2

0

(2)

Eliminating sin φ
2 from Equations (1) and (2) and sub-

stituting for h0 yields the radius of the sphere

rs = 2F +
D2

32F
(3)

Next the subtended angle φ, of the spherical cap needs
to be determined. From triangle c in Figure 5, sinφ =
D/2
rs

. Therefore substituting for rs gives the subtended
angle of the spherical cap

φ = sin−1

(
D

4F + D2

16F

)
(4)

In the present case, with F = 1.28 m and D = 4.57 m,
the radius of the equivalent sphere is rs = 3.07 m and
the subtended angle is φ = 48.11◦. An analytical
expression for the fundamental natural frequency of
vibration of a deep (h0 ≥ D/8), open spherical shell
was originally obtained by Rayleigh and is available in
Blevins1

f =
λ

2πrm

√
E

ρ
(5)

where

λ =

√
12

3(1 + ν)

(
t

rm

)2
g1

g2
(6)
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where

g1 =
1

8

[(
tan

φ

2

)2

+

(
tan

φ

2

)4

+

(
tan φ

2

)6

3

]

g2 =

∫ φ

0

[
(2 + cos φ)2 + 2 (sin φ)2

] (
tan

φ

2

)4

sin φ dφ

Here, t is the thickness of the shell, E and ρ are the elastic
modulus and the density of the shell. Note that this is the
frequency estimate for a spherical cap with uniform thick-
ness. A CFRP spherical cap with an equal mass to the
reflector∗ described earlier would have to have a uniform
thickness of t = 0.76 mm. Resulting in λ = 7.11 × 10−4

and a corresponding fundamental natural frequency of
0.24 Hz.†

Modelling Details
Geometry

The parabolic geometry of the reflector (including the
complex layout of the triangular reinforcements) was math-
ematically described by altering a spherical coordinate sys-
tem with a constant radius into one which has a radius that
varies with the co-latitude angle. In order to achieve this,
the paraboloid was inverted and translated vertically so
that the rim of the reflector lies on the x-y plane, Figure 6.
This results in the following equation for the paraboloid

z = −
(
x2 + y2

)
4F

+ h0 (7)

where the rim height h0 = 1.02 m, occurs at the co-latitude
α = 90◦. The variation of the paraboloidal radius as a
function of the co-latitude, α, can be determined by noting
that for points on the x-z plane, z = x/ tan α. Equating
this to Equation (7), and noting that y = 0 in the x-z plane
gives,

x

tan α
=

−x2

4F
+ h0 (8)

Solving for x results in

x(α) =
−2F + 2

√
F 2 + h0F tan2 α

tan α
(9)

Then from the geometry in Figure 6

r(α) =
√

x2(α) + z2(α)

= x(α)

√
1 +

1

tan2 α

Hence the x,y,z coordinates of the paraboloid can be de-
scribed by r(α) sin α cos β, r(α) sin α sin β, and r(α) cos α
respectively. In order to mathematically describe the ge-
ometry of the spiralling curves, it is first assumed that they
have a constant curvature, ψ, with respect to the longitude,
β and the co-latitude, α. Hence, in a plot of β versus α,
these curves would be represented by straight lines with a
gradient of tan ψ, or mathematically by

β(α) = α tan ψ − α0 tan ψ (10)

∗this is the reflector with reinforcements described in the
Properties of Reflector section.

†a spherical shell with uniform thickness, t = trein = 2.4 mm
would have a fundamental natural frequency of 0.74 Hz

αh

x

z

y

α

β

rs
r(α)

rs

h0

R

ψ

spherical 

surface

paraboloid

reinforcement

Fig. 6 Spherical coordinate system with
paraboloid and reinforcement.

again ψ is the angle the reinforcing curve makes with any
latitude of the surface and is representative of the curva-
ture of the curve, while the term α0 tan ψ is the β-axis
intercept. α0 represents a point near the apex of the sur-
face, at which the reinforcements start and is chosen by
the designer, subject to the condition that α0 �= 0. For the
purposes of the current reflector, the reinforcements were
assumed to start at about 2% of the diameter, i.e. at a
horizontal distance of x ≈ 90 mm from the center of the
dish. Substituting this value into Equation (7), we obtain
a value of z = 1018 mm and then noting that tan α0 = x

z
,

α0 becomes 5.1◦. Once the value of α0 has been defined,
the curvature ψ can be determined by observing that the
reinforcing curve will intersect alternate ribs at the rim of
the dish, Figure 4. If we consider the x − z plane which
only has ribs at β = 0◦ and 180◦or π and then impose
the boundary condition that at the rim, α = 90◦ or π

2
,

Equation (10) results in

π =
π

2
tan ψ − α0 tan ψ

ψ = arctan

(
2π

π − 2α0

)

which gives ψ = 64.75◦. Therefore the governing equations
for the two families of curves (spiralling clockwise and an-
ticlockwise, i.e. ±ψ) are

β(α, βc) = α tan(±ψ) + α0 tan(±ψ) + βc (11)

βc is indicative of the longitudinal starting point of each
curve – there are 18 curves in each family and hence βc =
n × 20◦ where n = 1, 2, ...18.

Equation (11) results in the following cartesian coordi-
nates for the reinforcing curves:

xc = r(α) sin α cos(β(α, βc))

yc = r(α) sin α sin(β(α, βc))

zc = r(α) cos α

Computational Details

All reinforcements i.e. the reinforcing curves, ribs and
edge beam were modelled by means of 3-noded beam el-
ements (element B32), whereas all other surface elements
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were shell elements (element S3R). The beam normals were
defined by specifying the directional cosines for all the
nodes. All simulations were performed with the ABAQUS
finite element package4 and consisted of two main steps,
the first being an eigenvalue extraction to establish the
fundamental frequency of the deployed configuration, and
the second step models the packaging process. This sec-
ond step is a geometrically non-linear static analysis which
imposes a prescribed displacement between two diametri-
cally opposite nodes on the rim of the dish, i.e. the edges
of the reflector are brought together by a distance D/2.
The force-displacement behaviour during packaging is then
analysed to give the initial stiffness of the reflector, k and
the maximum packaging force, Fmax.

Optimization
An automatic optimization scheme was devised to find

designs that maximize the deployed stiffness of the reflector
– assumed to be proportional to the fundamental natural
frequency of the deployed configuration, f – subject to a
limit on the maximum stress in the packaged configuration,
σmax. The objective function which was minimized is

if σmax ≤ σlimit

Fobj = −f

else

Fobj = −f + (σmax − σlimit)
2

This is to penalise solutions which exceed the limit stress,
σlimit. Limits on the maximum stress were set at 75 MPa,
100 MPa, 125 MPa and 150 MPa, for different optimiza-
tion runs, corresponding to safety factors of roughly 4, 3,
2.5 and 2 on the material failure strength. It needs to be
noted that σmax represents the highest stress in the re-
flector, excluding the elements at the end of the slits. This
omission will be justified in the next section. The optimiza-
tion procedure was implemented via a C-subroutine that
implements the Hooke and Jeeves method5 and links this
to the ABAQUS finite element package for each evaluation
of the objective function. The optimization process also
requires the automatic creation and meshing of the stiff-
ening system as the different parameters are varied. The
parameters to be optimized, see Figure 7, are:

• θ - stiffener angle from the vertical

• w - stiffener width

• ts - stiffener thickness

• η - hinge slit angle

• γ - load slit angle

Knowledge and experience gained from the small scale
reflector optimization studies,10 allowed us to set tighter
limits on the variables and hence, reduce the search space.
The limits are:

80◦ ≤ θ ≤ 100◦

0.005D ≤ w ≤ 0.05D

2◦ ≤ γ, η ≤ 20◦

0.5 mm ≤ ts ≤ 2 mm

The slits are modelled by generating a ring of narrow rect-
angular slit elements between the inner edge of the stiffener

X
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s t i f f e
n

e
r

γγ

η

η

hinge slit

a) Plan view

w

θ

XY

Z

ts

b) Side view

Fig. 7 Parameters to be optimized.

and the rim of the parabolic reflector, Figure 8. The rect-
angular elements immediately adjacent to the slit (end of
slit elements) are allowed to vary in width, the end of slit
nodes are then linearly constrained to the rest of the struc-
ture. This capability, coupled with a simple routine which
calculates the coordinates of the end of the slit, then al-
lows the slit length to be altered continuously. Hence, in
reality the slit is actually the void which is not filled up
with elements.
This method of modelling the slits (Model SE) was com-
pared to model where the slits were formed by leaving the
relevant edge nodes of the stiffener and the dish uncon-
nected (Model SU). The respective masses, m, frequencies,
f , and initial stiffnesses, k, are given in Table 1. These
models have identical configurations of θ = 90◦, γ = 2◦, η =
12◦ and a stiffener thickness, ts = 1.524 mm. The differ-
ence between the two models is that in Model SE, the slits
are modelled as voids and hence, both the mass and the
stiffness are lower. The fundamental natural frequency, f ,
is also affected. A model with lower stiffness will also re-
quire less force, Fmax, to fold it and will undergo a lower
maximum stress, σmax, when fully packaged. As expected,
the larger differences occur during packaging (k, Fmax and
σmax), with the largest difference of 6.64% occurring at
Fmax, the force at which the snap occurs i.e. the stiffener
starts to buckle. In practice, however, the slits would have
to be of finite width. This also avoids interference during
folding. Hence the technique of modelling the slits as voids
is the more realistic one.
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Fig. 8 Schematic of automatically generated mesh.

SE SU % difference

m (kg) 17.89 17.90 0.05
k(N/mm) 4.56 4.86 6.19
f (Hz) 6.45 6.53 1.23
Fmax (N) 19.55 20.94 6.64
σmax (MPa) 196.0 204.9 4.34

Table 1 Comparison of two slit models, SE has
rectangular slit elements, SU has unconnected dish
and stiffener nodes. Both models have identical slit
angles, and stiffener width and angle.

Stress Concentrations
The tip of the slit presents one of the biggest problems

for the design of the stiffening system as it induces a sig-
nificant stress concentration. This concentration can be
reduced by drilling a hole at both ends of the slits – thus
rounding off any sharp corners, and consequently reducing
any stress concentrations. However the edge beam that
forms the edge of the dish should not be drilled through.
A method of preventing crack growth in solids is to build in
softer, tougher material near the crack tip, i.e. a material
with a lower Young’s Modulus and/or reduced thickness.
In order to implement this change, the mesh of the region
surrounding the stress concentration had to be refined.

Refined Mesh and Submodelling

The mesh near the tip of the slit was refined to an aver-
age density of 27 elements/cm2, i.e. around 770 elements in
a 30 mm radius, made up of concentric circles of elements
centered at the tip of the slit, Figure 9(b) and Figure 10.
The rest of the reflector mesh remained unaltered. The
area of mesh refinement is less than 0.07% of the total
area of the reflector, hence rather than running a simula-
tion of the entire reflector to capture the behaviour of the
small region around the slit, the submodelling procedure
in ABAQUS was used. This procedure allows the user to
model only a certain part of the larger global model. The
user defines the submodel in a separate input file and de-
cides which nodes of the submodel are to be driven by
results from the global model. ABAQUS then searches
the global model for these nodes or interpolates results for
these nodes based on a set of user-defined nodes or ele-

ments. ABAQUS also provides the capability of selecting
the variables which are used to drive the analysis – for our
purposes the displacement variables were selected in order
to model the packaging of the reflector. By selecting a
large enough submodel, Figure 9(a), the overall effect of
changing the thickness and material properties of the end
of slit region, inset of Figure 9(a), is minimized. Another
considerable advantage of the submodelling routine is the
reduced run times (by a factor of 10). To maintain the
generality of this study, a general non-optimal configura-
tion with θ = 90◦, w = 120 mm, η = 16◦, γ = 12◦, was
chosen, resulting in a total mass of 17.98 kg and a fun-
damental frequency of 5.53 Hz. The maximum Von Mises
stress in this model is 175 MPa, occurring in the rectan-
gular slit element at the end of the hinge slit. Neglecting
this element, the next highest stress is 120 MPa and occurs
in one of the triangular stiffener elements near the edge of
the hinge slit. Once the submodel mesh is refined (for gen-
erality the slits were modelled as unconnected portions of
the stiffener and rim, resulting in the worst case scenario
of an infinitesimal slit tip radius), the stress at the slit tip
increases to 432 MPa.

Stress Reduction

The stress concentrations at the slit tips were lowered
by reducing the stiffness and thickness of the stiffener ele-
ments immediately surrounding the tip and then gradually
ramping these values back up towards the original stiffener
thickness. Figure 10(a) shows the thickness of the vari-
ous elements and their respective material properties. Two
flexible materials were chosen, one with the same density of
the CFRP used in the rest of the reflector, but three quar-
ters the stiffness, E = 30 GPa, which we will call epoxy
2, while the other is just the epoxy by itself (epoxy 1). It
is worth noting that the ‘dish’ part of the reflector does
not experience very high stresses, as the edge beam acts
to redistribute the stresses to the rest of the dish, hence
most of the high stresses are concentrated in the stiffener
region. As a result, the thickness and Young’s Modulus
of only one element on the dish portion had to be altered.
This is a great advantage, as if any permanent deformation
were to occur, it would be in the stiffener, and thus, the ac-
tual working part of the reflector would be left undamaged.
By surrounding the slit with these more flexible materials,
the maximum stress in the reflector can be reduced by 3.3

6 of 10

American Institute of Aeronautics and Astronautics Paper 2004-1730



1

23

a) Boundary conditions of the submodel

1

2
3

b) Refined mesh region around slit tip

Fig. 9 Submodel mesh.

times from 432 MPa to 132.6 MPa. This value is only 10%
higher than the highest stress present in the reflector, af-
ter the stresses in the slit elements have been neglected,
i.e. 120 MPa. Some simple further redesign would reduce
this value even more. Even further reduction could also be
gained from rounding off the sharp edge at the tip of the
slit. It is worth noting that the models considered for this
stress reduction process do not have the rectangular slit
elements, in Figure 8, which were used in the optimization
process, but instead the slits were modelled as unconnected
portions of the stiffener and dish. In practice, having a fi-
nite slit width is advantageous as the slit tip would then
have a finite radius – resulting in lower stresses at the tip.
As it currently stands, the total region of altered material
properties, i.e. 8 slit tip regions, is less than 0.55% of the
total area of the reflector. Hence, by altering a negligible
amount of the reflector surface, the stresses at the tip of
the slits can be reduced to a level close to that experienced
by the rest of the reflector. It has been shown that the
stress in the tip region can be reduced by a factor of nearly
3.3 compared to a model with a similar mesh, or a factor of
nearly 1.3 when compared to the coarser mesh model used
in the optimization runs. Therefore justifying the proce-
dure adopted in the optimization study, of neglecting the
high stresses occurring in the slit elements.

Distortion and Shape Accuracy
The manufacturing process of ultra thin CFRP struc-

tures leaves behind residual stresses that can produce large
shape distortions. To capture the effect of the stiffener,
a comparison is made with a reflector without the stiff-
ener (unstiffened reflector). Based on the assumption that
the stiffened and unstiffened reflectors will experience sim-
ilar amounts of residual cooling stresses, these distortions
were modelled by applying the equivalent forces required
to cause the magnitudes of distortion that are typically ob-
served in practice. A distortion amplitude of 5.9 mm was
assumed (for a dish without a stiffener), which manifests as

1

2

3

1.676    CFRP

0.3048  CFRP

0.6        epoxy 1
0.7        epoxy 2
0.8        CFRP

Shell Thickness
(mm)

0.8        epoxy 2

a) Shell element thicknesses of the slit tip region.

Multiple section points
Von Mises Stress (MPa)

+5.970e-01
+1.160e+01
+2.260e+01
+3.361e+01
+4.461e+01
+5.561e+01
+6.661e+01
+7.762e+01
+8.862e+01
+9.962e+01
+1.106e+02
+1.216e+02
+1.326e+02

1

2

3

b) Von Mises stress distribution of this modified slit tip re-
gion. The maximum stress has been reduced from 432 MPa to
132.6 MPa

Fig. 10 Stress reduction of slit tip region.

an ovalization of the dish, Figure 11. This deformation can
be produced in the unstiffened dish by means of two equal
and diametrically opposite forces of only 0.06 N. Consid-
ering the aperture of the reflector, D = 4.6 m, these forces
which are equivalent to masses of 6 grammes are minuscule.
These forces were then imposed on a stiffened reflector with
a configuration of w = 120 mm, θ = 90◦, η = 16◦, γ = 12◦

and ts = 1.676 mm. This resulted in a maximum distortion
of 0.057 mm, Figure 12, while the maximum distortion in
the z-direction is 0.046 mm – roughly 1/100th and 1/120th

of the distortions experienced by the unstiffened reflector.

Shape Accuracy

The root mean square (rms) surface accuracy of the dis-
torted reflectors was determined by using the least squares
method9 to solve for the best fit paraboloid, hence mini-
mizing the distance between the surface of the paraboloid
and the nodes of the distorted reflector. The axial rms
error is then

δz =

√√√√√√√
n∑

i=1

Ai(ẑi − zi)2

n∑
i=1

Ai

(12)

where Ai is the surface area associated with the ith node,
ẑi is the z coordinate of the best fit paraboloid and n the
total number of nodes, for this case 5323.

The effective rms error7 is related to the axial rms error,
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a) Plan view
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5.9 mm

b) Side elevation

Fig. 11 Distortion of reflector without stiffener (magnified by 20). The deformed shape is drawn in
black.

1

2

3

0.057 mm

a) Plan view

12

3

0.057 mm

b) Side elevation

Fig. 12 Distortion of reflector with stiffener (magnified by 1000). The deformed shape is drawn in black.

by δe = δz/(1 + (D/4F )2), resulting in an effective rms
error of

δe =
1

1 +
(

D
4F

)2

√√√√√√√
n∑

i=1

Ai(ẑi − zi)2

n∑
i=1

Ai

(13)

The rms error of the unstiffened reflector with its distor-
tions due to residual strains was found to be 1.84 mm. The
addition of the stiffener reduces this error to 0.29 mm. A
reduction by a factor of 6.4 compared to the original re-
flector. However, it needs to be noted that the surface
accuracy of the “perfect” reflector i.e. the undistorted FE
mesh, is already 0.27 mm. This is basically a measure
of how well the triangular shell elements approximate the
given parabolic shape. The geometry was created by im-
porting the coordinates of 200 points along a rib and a
reinforcing curve into the PATRAN2 preprocessor. Each
triangulated segment was then created by using the rel-
evant parts of the ribs and reinforcing curves as edges.
These triangular surfaces were then automatically meshed
using the “paver” option. This is an automatic technique
and the user has no control over the shape functions. The
maximum z deviation of the nodes in the undistorted FE
mesh from the original paraboloid was found to occur in

the middle of the largest triangulated segments i.e. the seg-
ments nearest the rim and hence the ones with the highest
curvature. Hence the most probable source of this error is

1

2

3 1

2

3

VALUE
   (mm)

-2.28E+00
-2.10E+00
-1.92E+00
-1.74E+00
-1.56E+00
-1.38E+00
-1.20E+00
-1.02E+00
-8.38E-01
-6.58E-01
-4.77E-01
-2.96E-01
-1.16E-01
+6.48E-02

∆z

Fig. 13 Contour plot of z deviation between un-
deformed FE mesh and actual paraboloid, showing
regions of maximum deviation.
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Config θ η γ w ts f f/fo σmax σy/σmax k/ko m/mo

(deg) (deg) (deg) (mm) (mm)

O - - - - - 0.53 1.0 46 6.5 1.0 1.00
I 90 18 12 55 0.5 1.4 2.6 75 4.0 8.5 1.02
II 91 16 8 80 1.4 3.6 6.8 100 3.0 47.5 1.10
III 90 14 7 100 1.5 4.8 9.1 124 2.4 86.7 1.14
IV 90 12 8 156 1.5 7.2 13.6 151 2.0 163.7 1.23

Table 2 Results of optimization runs. Config O is a dish without stiffening skirt and has fo = 0.529 Hz,
mass, mo = 14.66 kg and an initial stiffness, ko = 0.05N/mm.

the inaccuracies caused by creating and meshing the model
in PATRAN. The simplest way of accounting for this mod-
elling error and thus determine the absolute value of the
rms error in the distorted reflectors, is to subtract the rms
value of the undeformed mesh from any subsequent values.
Hence, it is concluded that the distorted reflector without
the stiffener has an absolute rms error of 1.57 mm while
the addition of the stiffener reduces this to 0.02 mm.

Results and Discussion
It is again useful to compare the reflector with a dish

without the collapsible stiffener, Configuration O. Depend-
ing on the stress limit set, optimized designs were found
to have initial stiffnesses of up to 164 times higher, and
deployed frequencies up to 14 times higher than the un-
stiffened dish. A set of key results are listed in Table 2.
The extra mass associated with the stiffener varies from
as little as 2% up to 23%. Although pointing the stiffener
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Fig. 14 Force-displacement behaviour of Configu-
rations I-IV and O.

below the level of the rim of the dish is a more efficient
way of increasing the stiffness against first-mode deforma-
tion, it also produces higher stress levels during folding,
hence all the optimized configurations have stiffener an-
gles, θ ≈ 90◦ as this tends to be the best trade off between
high stiffness and lower stress levels. It is worth noting
that all the stiffness increases have been achieved within
acceptable stress limits e.g. even the configuration with the
highest stiffness, Configuration IV has a safety factor of 2
on the material failure strength. Figure 14 shows graphs
of the force-displacement behaviour during the packaging

process of the configurations presented in Table 2. The
majority of the optimized configurations show a snapping
behaviour, wherein a large force increment is required ini-
tially to fold the reflector, but this suddenly reduces to
magnitudes which are comparable to that of the unstiff-
ened reflector. This snapping behaviour corresponds to
the initiation of buckling of the unsupported lengths of
stiffener, which has the effect of significantly lowering the
forces needed to package the reflector. It should be noted
that non-optimized structures tend not to show this type
of behaviour. Furthermore, the addition of the stiffen-
ing scheme was found to reduce manufacturing distortions
from 5.9 mm for the unstiffened reflector to 0.057 mm,
nearly 1/100th the magnitude, resulting in an estimated
rms surface accuracy of about 0.02 mm.

Conclusion
It has been shown that an ultra-thin CFRP reflector

with an aperture of 4.6 m and focal length of 1.28 m,
which has a mass of 14.66 kg, can be stiffened by the ad-
dition of a collapsible edge stiffener. Several designs for
this stiffener have been presented in Table 2. The lightest
of these designs would increase the mass of the reflector
by 2%, and would increase the deployed softest-mode stiff-
ness by a factor 8.5 and the fundamental natural frequency
by a factor of 2.6. The heaviest design would increase
the mass by 23%, and increase the stiffness 164 times and
the fundamental frequency 13.6 times. These increases in
stiffness can be achieved within a safety factor of 4 and 2
respectively on the breaking strength of the material. Fur-
thermore, the manufacturing distortions are now nearly
insignificant, resulting in a much more accurate reflector
and hence potentially an increased operating range.
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