Software Engineering: A Roadmap

Anthony Finkelstein
Department of Computer Science
University College London
Gower St.

London WCI1E 6BT, UK
+44 020 7380 7293
a.finkelstein@cs.ucl.ac.uk

ABSTRACT

This paper provides a roadmap for software engineering. It
identifies the principal research challenges being faced by
the discipline and brings together the threads derived from
the key research specialisations within software
engineering. The paper draws heavily on the roadmaps
covering specific areas of software engineering research
collected in this volume.

Keywords
software engineering, research, discipline, future, strategy

1 INTRODUCTION

This paper attempts to construct a roadmap for software
engineering research. It seeks to identify the principal
research challenges being faced by the discipline and to
bring together the threads derived from the key research
specialisations within software engineering. In doing so it
draws heavily on the roadmaps covering specific areas of
software engineering research collected in this volume.

Definitions are notoriously difficult but for working
purposes and those of this volume - software engineering is
the branch of systems engineering concerned with the
development of large and complex software intensive
systems. It focuses on: the real-world goals for, services
provided by, and constraints on such systems; the precise
specification of system structure and behaviour, and the
implementation of these specifications; the activities
required in order to develop an assurance that the
specifications and real-world goals have been met; the
evolution of such systems over time and across system
families. It is also concerned with the processes, methods
and tools for the development of software intensive systems
in an economic and timely manner.

Jeff Kramer
Department of Computing
Imperial College
180 Queens Gate
London SW7 2BZ
+44 020 7594 8271
jk@doc.ic.ac.uk

We do not aim to provide a summary of the overall state-
of-the-art in software engineering. The reader interested in
a general introduction should refer to the many excellent
textbooks that are available. Best known, and a good
starting point, are [5], [3] and [2], all of which are
reasonably up to date. [1] affords a good start to the broader
literature. The research literature on software engineering is
readily available. IEEE Transactions on Software
Engineering (IEEE-TSE) and ACM Transactions on
Software Engineering and Methodology (ACM-TOSEM)
are the principal archival journals. There are a large number
of specialised journals including for example Automated
Software Engineering (ASE), Requirements Engineering
Journal (REJ), Software Process Journal (SPJ). IEEE
Software plays an important role in bridging between the
‘pure’ research literature and practitioner-oriented articles.
The International Conference on Software Engineering
(ICSE) is the flagship conference of the software
engineering community; papers in this conference are
generally of a high standard and the proceedings reflect a
broad view of research across software engineering. The
European Software Engineering Conferences (ESEC) and
the Foundations of Software Engineering Conferences
(FSE), which are held jointly in alternate years, are similar
to ICSE though have tended historically to have a slightly
more ‘theoretical’ orientation. There are a large number of
specialised conferences and workshops ranging from
established meetings such as the International Workshop on
Software Specification and Design, International Software
Architecture Workshop, International Symposium on
Software Testing and Analysis to the ‘hot-topic’ workshops
held in conjunction with ICSE. There are excellent
resources on the web (links are provided on the web site
associated with this volume). General software engineering
announcements are distributed through the community-
wide “seworld” mailing list.

The structure of the paper is approximately as follows. In
sections 2 and 3 we discuss the changing context of
software system development and the changing orientation
of software engineering research. In section 4 we make
some broad observations about the evolution of the
discipline. Then, in section 5, we analyse the key research

challenges and show how these challenges are reflected in
the specialised roadmaps that comprise the volume. We
finish by drawing some broad and necessarily speculative
and personal conclusions about the future of software
engineering.

2 CONTEXT

The context of software system development is changing.
Systems are rarely developed from scratch; most system
development involves extension of preexisting systems and
integration with ‘legacy’ infrastructure. These systems are
embedded in complex, highly dynamic, decentralised
organisations; they are required to support business and
industrial processes which are continually reorganised to
meet changing consumer demands. The services that such a
system provides must, for the life of the system, satisfy the
requirements of a diverse and shifting group of
stakeholders. There is a shift towards client and user
centered approaches to development and an accompanying
shift from a concern with whether a system will work
towards how well it will work. Overall, fewer ‘bespoke’
software systems are being constructed. Instead, generic
components are built to be sold into markets. Components
are selected and purchased ‘off the shelf” with development
effort being refocused on configuration and
interoperability.

The resulting systems are composed from autonomous,
locally managed, heterogeneous components, which are
required to cooperate to provide complex services. They
are, in general, distributed and have significant non-
functional constraints on their operation. There are a wide
range of new, and constantly changing business models
relating to the provision of software and software-mediated
services resulting from internet and e-commerce
technology.

The overall setting is characterised by on the one hand an
increasing business dependence on reliability of software
infrastructure and on the other hand rapid change and
reconfiguration of business services necessitating rapid
software development and frequent change to that software
infrastructure.

3 ORIENTATION

Reflecting an increased disciplinary maturity the
‘orientation’ of software engineering research has changed.
Software engineering research is being more carefully
targeted towards “real” industrial problems. This entails
thorough problem analysis. Increasingly software
engineering research is aimed towards engineering
solutions that are lightweight, in the sense that they make
minimal assumptions about the engineering environment in
which they are deployed. This is often related to the need
for solutions to be simple enough that they can be adopted
in practice. Much, but by no means all, software
engineering research to date has been characterised by
overly complex, heavyweight, solutions that have,

understandably, encountered significant resistance from
practitioners.

It has taken a long time for researchers to realise that we
cannot expect industry to make very large big-bang
changes to processes, methods and tools, at any rate
without substantial evidence of the value derivable from
those changes. This, accompanied again by the increased
disciplinary maturity, has lead to a higher “validity” barrier
which research contributions must cross. It is readily
observable that research that proposes new frameworks,
methods and processes are not accepted without positive
evidence that they are of use rather than simply airy and
unfounded speculation.

Particular attention is being paid to the issue of scalability.
It has, in the past, proved all too easy for researchers to
ignore or make light of the problems that the shear scale of
industrial software systems development gives rise to.
Problems that appear simple in paper-and-pencil exercises
in the laboratory are often far from simple when dealing
with very large amounts of data. The internet too has
implications for scalability. In an open internet setting there
may be millions of potential users of a software service.

While research methodology remains a potent issue there is
some evidence of an increasing acceptance of
methodological diversity. Case studies, qualitative studies,
experiments, proof and mathematical analysis are being
combined judiciously to make a case for research
contributions. Research is expected to, and increasingly
does, build on the work of others. Using existing standards
and building on, rather than in parallel to, proven research
contributions characterises the best research. There is
however less tolerance for reinventing the wheel.

4 DISCIPLINE

In defining software engineering we described it as a
“branch of systems engineering”. Unfortunately systems
engineering, despite a long history, is less mature than
software engineering! Software engineering research is
increasingly aware of the interplay between systems
context and software and there are attempts to take into
account the co-development of hardware and organisational
systems with software. We anticipate a further shift in
orientation among software engineers towards a broader
systems engineering view with software engineers taking a
lead in the creation of a truly integrated systems
engineering discipline

A traditional theme in software engineering discourse has
been “why can’t we build software like other engineers
build bridges” [or similar traditional engineering product].
This refrain has lead to some productive thinking and has
forced software engineers to think hard about
achievements, aspirations and the status of our claim to be
‘engineers’. It has however lead us to apply inappropriate
analogies with, for example, mechanical and other

artefacts, which have fundamentally different
characteristics from software. It has also given rise to a
perceived sense of inferiority, unjustified by the significant
research accomplishments of software engineering. We
believe that this self-deprecation has in turn had an adverse
effect on the funding and the status of software engineering
in computer science. There is some evidence that this
traditional theme is finally becoming less frequently heard
and that a more robust self-image with respect to other
disciplines is emerging. We need to recognize, claim and
publicize our many successes.

Software engineering has, to a large extent, historically
defined itself in terms of testing and debugging. Most
software engineering textbooks start with a discussion of
early error detection and removal. Software engineers seem
to enjoy talking about errors. Failures such as that of the
London Ambulance Service Computer Aided Despatch
system and the Ariane 5 receive much attention. While
such a focus on failures can be instructive - even
construction engineers study bridge failures as a means of
learning lessons - it can also be said to lead to a negative
orientation in which the absence of bugs rather than the
positive presence of quality, however defined, is the most
important goal. The changing context of software
development in which there is a pressing need to roll out a
service rapidly and to change it to meet new business
demands, forces a change in this outlook towards a more
positive ‘holistic’ view of the role of software engineering
in delivering satisfaction to users.

5 RESEARCH CHALLENGES

A wholly mature discipline is one that is able to identify
“dead problems”. Dead problems are those to which effort
need no longer be devoted because they have been solved.
Computer science is slowly building up a list of such dead
problems reinforcing its claim as a mature discipline. By
contrast software engineering is still struggling to identify
its own dead problems. Any list we constructed of such
problems would almost certainly be more controversial
than the attempt, which follows, to pick out key research
challenges across software engineering. These overall
software engineering research challenges are not
comprehensive and the determined reader can infer our
view of dead problems from it. The questions associated
with each challenge are exemplars and individual
researchers may derive much more specific research
questions. Clearly these challenges are not orthogonal and
there are complex relationships binding them together.
Many of the most interesting research programmes look at
these relationships.

e Compositionality - When we compose components
what effect does this have on the properties of those
components? Can we reason about, and engineer for,
the emergent properties of systems composed from
components whose behaviour we understand?

* Change - How can we cope with requirements change?
How can we build systems that are more resilient or
adaptive under change? How can we predict the effects
of such changes?

* Non-functional Properties - How can we model non-
functional properties of systems and reason about
them, particularly in the early stages of system
development? How can these models be integrated
with other models used in system development?

* Service-view - How can we shift from a traditional
product-oriented view of software system development
towards a service view? What effects do new modes of
software service delivery have on software
development?

* Perspectives - How can we devise and support new
structuring schemes and methods for separating
concerns?

* Non-classical life cycles - How can we adapt
conventional software engineering methods and
techniques to work in evolutionary, rapid, extreme and
other non-classical styles of software development?

* Architecture - How can we represent, reason about and
manage the evolution of software architectures? How
can we relate software architecture to other parts of the
software development process?

* Configurability - How can we allow users, in the
broadest sense, to use components in order to
configure, customize and evolve systems?

* Domain specificity - How can we exploit the properties
of particular domains (telecommunications, transport)
to make any of these challenges easier to address?

The detailed tables that follow look at these challenges set
against the detailed challenges or pointers identified by the
authors of the individual roadmaps. The tables also serve as
a useful quick reference to the volume. A grayed box
indicates a clear and straightforwardly identifiable
relationship between a ‘big’ challenge and a more fine-
grained one. Also included in the tables are links or cross-
references from one set of fine-grain challenges to another.

While the challenges that we have been identified do not
subsume all of the issues raised by the roadmaps they
appear to subtly impact many of them. Very large
proportions of the fine-grained challenges relate to the big
challenges. Most of those which do not, relate different
areas of research activity as indicated by links. A small
proportion of the fine-grained challenges relates to neither
big challenges nor other parts of the research agenda. These
are, for the most part, technical problems blocking
advances in particular areas.

6 CONCLUSIONS

This paper takes a positive view of current progress and
future challenges in software engineering. We believe the
discipline has delivered and is well set to continue to
deliver both practical support to software developers and
the theoretical frameworks which will allow that practical
support to be adopted, used and extended with confidence.
It is well known that software engineering innovations take
a surprisingly long time to percolate through to every day
use [4]. Despite this lag current software engineering
practice is being radically reshaped by object-oriented
design methods, CASE tools with powerful code
generation, testing and analysis environments, development
patterns, incremental delivery based life-cycles, component
models and document management environments. All of
these have been formed through software engineering
research.

A vision of the future of software engineering suggests a
setting in which developers are able to wire together
distributed components and services (heterogeneous and
sourced over the net) having established at an early stage,
through rigorous (yet easy-to-use) formal analysis that the
particular configuration will meet the requirements (both
functional and non-functional). The overall process in
which this takes place will have seamless tool support that
extends through to change over the system or service life.
Each facet of the resulting system or service will be
traceable to (and from) the originating stakeholders who
will be involved throughout the process.

This vision is in fact an old one! The difference is that
making it a reality is now within our grasp. We know what
we have to do. What makes our field even more exciting is
that, in addition to the steady progress towards our vision,
there are also the discontinuities, such as was introduced in
the last ten years by the web. The impact of such major
innovations cannot be predicted but they certainly offer
wonderful new opportunities and challenges.

REFERENCES

1. Dorfman, M. & Thayer, R.H. (Eds) Software
Engineering, (November 1999), IEEE Computer
Society.

2. Ghezzi, C. Jazayeri, M. & Mandrioli, D. Fundamentals
of Software Engineering, (January 1991), Prentice Hall.

3. Pressman, R.S. Software Engineering : A Practitioner’s,
4th edition (August 1996), McGraw Hill College Div.

4. Redwine S.T. & Riddle, W.E. Software Technology
Maturation, Proceedings of the 8th International
Conference on Software Engineering, 1985, pp 189-
200, IEEE Computer Society.

5. Sommerville, 1. Software Engineering (International
Computer Science Series), Sth edition (November
1995) Addison-Wesley Pub Co.

1 Software Process

1.1

PML must be tolerant and allow for incomplete,
informal, and partial specification

Compositionality

Change

NF Properties

Service view

Perspectives

>
k=
2
=
O
o]
a
w
£
<]
£
o
[a]

Configurability

Lifecycles
Architecture

1.2

PSEE must be non-intrusive. It must be possible to
deploy them incrementally.

1.3

PSEE must provide the software engineer with a clear
state of the software development process (from many
different viewpoints).

1.4

The scope of software improvement methods and
models should be widened in order to consider all the
different factors affecting software development
activities. We should reuse the experiences gained in
other business domains and in organizational behavior
research.

1.5

Statistics is not the only source of knowledge. We
should also appreciate the value of qualitative
observations.

23

2 Requirements Engineering

Compositionality

Change

NF Properties

Service view

Perspectives

>
k=
2
=
O
o]
a
w
£
<]
£
o
[a]

Configurability

Lifecycles
Architecture

2.1 Better modelling and analysis of problem domains, as
opposed to the behaviour of software.
2.2 Development of richer models for capturing and
analysing non-functional requirements.
2.3 Bridging the gap between requirements elicitation 10
approaches based on contextual enquiry and more
formal specification and analysis techniques.
2.4 Better understanding of the impact of software
architectural choices on the prioritisation and evolution
of requirements.
2.5 Reuse of requirements models to facilitate the
development of system families and the selection of
COTs.
2.6 Multi-disciplinary training for requirements 25

practitioners.

3 Reverse Engineering

>
k=
2
=
O
o]
a
w
£
<]
£
o
[a]

Compositionality
Change

NF Properties
Service view
Perspectives
Lifecycles
Architecture
Configurability

3.1 Teach reverse engineering, program understanding, 25
and software analysis in computer science, computer
engineering, and software engineering curricula.

3.2 Investigate infrastructure, methods, and tools for
continuous program understanding to support the
entire evolution of a software system from the early
design stages to the long-term legacy stages.

3.3 Develop methods and technology for computer-aided
data and database reverse engineering.

3.4 Develop tools that provide better support for human
reasoning in an incremental and evolutionary reverse
engineering process that can be customized to different
application contexts.

3.5 Concentrate on the tool adoption problem by
improving the usability and end-user programmability
of reverse engineering tools to ease their integration
into actual development processes.

4 Testing

>
k=
2
=
O
o]
a
w
£
<]
£
o
[a]

Compositionality
Change

NF Properties
Service view
Perspectives
Lifecycles
Architecture
Configurability

4.1 Development of techniques and tools that will help
component users integrate and test the components
with their applications more efficiently and effectively

4.2 Creation of techniques and tools that can use precode 6
artifacts, such as architectural specifications, for
planning and implementing testing activities.

4.3 Development of techniques and tools for use in
estimating, predicting, and performing testing on
evolving software systems.

4.4 Establishment of effective processes for analyzing and
testing software systems.

4.5 Investigation of methods that use testing artifacts to
assist in software development.

5 Software Maintenance and Evolution

>
k=
2
=
O
o]
a
w
£
<]
£
o
[a]

Compositionality
NF Properties
Service view
Perspectives
Lifecycles
Architecture
Configurability

5.1 The production of new management approaches to
evolution, leading to better understanding of the
relationships between technology and business.

5.2 How can software be designed so that it can easily be
evolved?
5.3 More effective tools and methods for program 3

comprehension for both code and data

5.4 A better formalism and conceptualisation of
‘maintainability’; how do we measure it2

5.5 The development of a service-based model of software,
to replace a product view.

6 Software Architecture

>
k=
2
=
O
o]
a
w
£
<]
£
o
[a]

Compositionality
NF Properties
Service view
Perspectives
Lifecycles
Architecture
Configurability

6.1 Software architectures that support dynamic coalitions
of software services.

6.2 New techniques for composing heterogeneous
components, and certifying the properties of those
compositions.

6.3 Software architectures that adapting themselves to their 17
physical setting.

6.4 Design principles for making architectural tradeoffs
between correctness, resource consumption, and
reliability.

6.5 Self-monitoring systems.

7 Obiject-oriented modelling

>
£
]
c
.2
=
1%
[}
o}
€
o
O

Change

NF Properties

Service view

Perspectives

Lifecycles

Architecture

Configurability

Domain specificity

7.1 To identify appropriate language means for modelling
an "aspect" of a system.
7.2 To separate a core modelling language from domain-
specific extensions.
7.3 To define the semantics of a high-level, heterogeneous 10
modelling language
7.4 To develop means to compose and to refine complex
structured models.
7.5 To identify guidelines for an incremental, round-trip

software development process

8 Software Engineering for Middleware

8.1

A large class of distributed systems need not be built
from scratch but can exploit middleware to resolve
heterogeneity and distribution of the system
components.

Compositionality

Change

NF Properties

Service view

Perspectives

Lifecycles

Architecture

Configurability

>
k=
2
=
O
o]
a
w
£
<]
£
o
[a]

8.2

State of practice middleware products enable software
engineers to build systems that are distributed across a
local area network.

8.3

The state of the art in middleware research aims to
push this boundary towards Internet-scale distribution,
adaptive systems and middleware that can meet
reliability and hard real-time constraints.

8.4

The software engineering challenges lie in devising
methods, notations and tools for distributed system
construction that systematically build and exploit what
middleware products will deliver, now and in the future.

8.5

Software engineering research can contribute to the
further development of middleware, particularly in the
areas of version- and configuration management and
development environments

18,19

9 Software Analysis

9.1

Checking conformance of code to designs is likely to
become a central problem for software analysis.

Compositionality

Change

NF Properties

Service view

Perspectives

>
k=
2
=
O
o]
a
w
£
<]
£
o
[a]

Configurability

Lifecycles
Architecture

9.2

Tools that analyze designs in their own right will grow
in importance.

9.3

Abstract design models are the lynchpin for exploiting
code analyses in this context: they not only make the
analysis results more relevant, but can be used to focus
the analysis and extend it.

9.4

Both powerful tools that can check complex properties
and simpler tools that provide rapid but rough results
will be useful.

9.5

Many kinds of analysis will play a role: static and
dynamic, sound and unsound, operational and
declarative.

10 Formal Specification

10.1

Formal specification technology needs to provide
constructive methods for specification development,
analysis, and evolution.

Compositionality

Change

NF Properties

Service view

Perspectives

>
k=
2
=
O
o]
a
w
£
<]
£
o
[a]

Configurability

Lifecycles
Architecture

10.2

Formal specifications need to be fully integrated with
other software products and processes all along the
software lifecycle.

10.3

Specification techniques should move from functional
design to requirements engineering; higher-level,
problem-oriented ontologies must therefore be
supported instead of program-oriented ones.

10.4

The scope of formal specification and analysis must be
extended to cover non-functional requirements that play
a prominent role in architectural design --such as
performance, security, fault tolerance, accuracy,
maintainability, etc.

10.5

Tomorrow's technology will provide lightweight
interfaces for multiparadigm specification and analysis.

11 Mathematical Foundations of Software Engineering

Representing behaviour (including concurrency and
duration of activities) and being able to analyse it.
There may be many different kinds of behaviour and
there is no obvious necessity to have a universal
representation - quite the opposite! Engineering tools
are the most useful when they are specific, so different
classes of problems may demand differing languages
to represent them.

Compositionality

Change

NF Properties

Service view

Perspectives

Lifecycles

Architecture

Configurability

>
k=
2
=
O
o]
a
w
£
<]
£
o
[a]

Representing 'ility' properties and devising
corresponding engineering theories enabling the use of
the ‘ility' in design.

Systematising domain knowledge for the area of
application. This is hard, long and often tedious work.

Defining the specification and refinement
patterns/architectures required to encapsulate design
choices. This results in support for the 'cookbook'
aspects of normal design. The work on product line
architectures, if properly driven towards formal
eng}ineering systematisation, will contribute enormously
to this.

Better understanding of modularity principles. The only
effective method for dealing with the complexity of
software based systems is decomposition. Modularity is
a property of systems, which reflects the extent to which
it is decomposable into parts, from the properties of
which we are able to predict the properties of the
whole. Languages that do not have sufficiently strong
modularity properties are doomed to failure, in so far
as predictable design is concerned.

Improved and specialised analysis tools, many more
abstraction (interpretation) tools to address
feasibility/tractability of analysis; more and specialised
decision procedures for interesting properties (using
abstractions to approximate same).

12 Software Reliability & Dependability

>
£
]
c
.2
=
1%
[}
o}
€
o
O

Change

NF Properties

Service view

Perspectives

Lifecycles

Architecture

Configurability

Domain specificity

12.1 Shifting the focus from software reliability to user-
centred measures of dependability in complete
software-based systems.
12.2 Influencing design practice to facilitate dependability
assessment.
12.3 Propagating awareness of dependability issues and the 25
use of existing, useful methods.
12.4 Injecting some rigour in the use of process-related
evidence for dependability assessment.
12.5 Better understanding issues of diversity and variation as

drivers of dependability.

13 Software Engineering for Performance

13.1

To create a well understood formalism, probably based
on UML, allowing performance annotations to design
models.

Compositionality

Change

NF Properties

Service view

Perspectives

Lifecycles

Architecture

Configurability

>
k=
2
=
O
o]
a
w
£
<]
£
o
[a]

13.2

To create a methodology which embeds performance
questions within the software lifecycle in terms of widely
used approaches.

13.3

To integrate solution tools for performance measures
transparently within extended design tools, such as
object oriented CASE tools.

13.4

To develop ways of returning performance results from
specialised tools in terms of the design models from
which they were derived.

13.5

To integrate performance modelling measures within a
performance monitoring and testing framework in a
consistent manner.

14 Software Engineering for Real-Time

>
k=
2
=
O
o]
a
w
£
<]
£
o
[a]

Compositionality
Change

NF Properties
Service view
Perspectives
Lifecycles
Architecture
Configurability

141 The development of a system architecture that supports 4
the precise specification of the interfaces between
components in the value domain and in the temporal
domain, such that the components can be developed
and tested independently.

14.2 The constructive integration of exisiting prevalidated
components into diverse system contexts.

14.3 The systematic validation of ultradependable real-time
systems that are used in safety critical applications.

14.4 The development of a framework that supports the 12
generic implementation of fault-tolerance without
introducing additional complexity into the application
software.

14.5 The derivation of tight upper bounds for the worst-case
execution time of real-time programs.

15 Software Engineering for Safety

>
k=
2
=
O
o]
a
w
£
<]
£
o
[a]

Compositionality
Change

NF Properties
Service view
Perspectives
Lifecycles
Architecture
Configurability

15.1 Provide readier access to formal methods for 10,7
developers of safety-critical systems by further
integration of informal and formal methods.

15.2 Develop better methods for safety analysis of product
families and safe reuse of Commercial-Off-The-Shelf
software.
15.3 Improve the testing and evaluation of safety-critical 4

systems through the use of requirements-based testing,
evaluation from multiple sources, model consistency,
and virtual environments.

15.4 Advance the use of runtime monitoring to detect faults
and recover to a safe state, as well as to profile system
usage to enhance safety analyses.

15.5 Promote collaboration with related fields in order to 16, 12, 6,
exploit advances in areas such as security and
survivability, software architecture, theoretical computer 11, 25

science, human factors engineering, and software
engineering education.

16 Software Engineering for Security

16.1

Integrating security considerations smoothly into early
life-cycle activities: uniform application of cost-benefit
analyses to both functional, and security requirements;
unified modelling approaches to integrate the
engineering of both functional requirements and
security requirements.

Compositionality

Change

NF Properties

Service view

Perspectives

>
k=
2
=
O
o]
a
w
£
<]
£
o
[a]

Configurability

Lifecycles
Architecture

16.2

The development of architectures and designs that are
easier to adapt to rapidly evolving security policies, and
approaches to facilitate the integration of security
features into legacy systems.

16.3

The invention of cogent, flexible economic models of
adversary behaviour which can underly the rational
design of software copy-protection and watermarking
techniques in different application contexts.

16.4

Better techniques for formulating desirable security
properties, and the development of scalable,
predictable, static and dynamic verification tools to
evaluate the security of software systems.

16.5

The development of automated, robust, flexible infra-
structures for post-deployment system administration,
that can adapt to 1Ee organization's confidentiality,
non-repudiation, and trust-delegation requirements.

17 Software Engineering for Mobility

17.1

Mobility challenges old assumptions and demands
novel software engineering solutions including new
models, algorithms, and middleware.

Compositionality

Change

NF Properties

Service view

Perspectives

>
k=
2
=
O
o]
a
w
£
<]
£
o
[a]

Configurability

Lifecycles
Architecture

17.2

Coordination mechanisms must be developed to bridge
effectively a clean abstract model of mogili’ry and the
technical opportunities and complexities of wireless
technology, device miniaturization, and code mobility.

17.3

Logical mobility opens up a broad range of new design
opportunities, physical mobility forces consideration of
an entirely new set of technical constraints, and the
integration of the two is an important juncture in the
evolution of software engineering as a field.

17.4

Key concepts shaping software engineering research on
mobility are the choice of unit of mobility, the definition
of space and location, and the notion of context
management.

17 Software Engineering for Mobility

17.5

Middleware is the most likely vehicle by which novel
perspectives on mobility grounded in clean formal
models and effective technical solutions will make their
way into industrial practice.

Compositionality

NF Properties

Service view

Perspectives

Lifecycles

Architecture

Configurability

>
k=
2
=
O
o]
a
w
£
<]
£
o
[a]

18 Software Engineering Tools and Environments

18.1

The development of methodologies, formalisms, and
tool and environment support for separation, extraction
and integration of concerns

>
£
]
c
.2
=
1%
[}
o}
€
o
O

NF Properties

Service view

Perspectives

Lifecycles

Architecture

Configurability

Domain specificity

18.2

Linguistic and tool support for morphogenic software:
software that is malleable for life, sufficiently adaptable
to allow context mismatch to be overcome with
acceptable effort, repeatedly, as new, unanticipated
contexts arise.

18.3

The development of new methodologies, formalisms,
and processes to address non-traditional software
lifecycles, and the tool and environment support to
facilitate them.

18.4

The development of new methodologies, formalisms,
processes and tool and environment support to address
the engineering of software in new, challenging
domains, such as pervasive computing and e-
commerce.

17

18.5

The adoption or adaptation of XML, Enterprise Java
Beans and sophisticated message brokering for
integration of both tools and commercial applications.

21,8

19 Software Configuration Management

Configurability
Domain specificity

>
£
]
c
.2
=
1%
[}
o}
€
o
O

Change

NF Properties
Service view
Perspectives
Lifecycles
Architecture

19.1 Functionality & efficiency. The basic core functions of
SCM systems, like versioning, data management or
workspace support, are still semantically weak, they
lack usability, adaptability and so on.

19.2 PDM vs. SCM. Any serious industrial product now
includes a significant amount of software. We need
tools covering consistently and homogeneously the
development and evolution of products containing
software and other kind of components.

19.3 Process support. Many tools include some process 1
support; SCM in nothing else than one of these. There
is a need to make all these (heterogeneous) process
fragments interoperate with minimum redundancy, to
cover consistently the complete process spectrum of a
company.

19.4 Web support. The Web opens new possibilities for 21
remote access, but the concepts and mechanism for
managing remote concurrent engineering are missing.
On the other hand, managing the evolution of web
pages and other web artifacts raises new challenges.

19.5 Interoperability and architecture. Advanced SCM 20
service have to be componentized, and tailored
solutions will be proposed. The SCM core is likely to be
part of the kernel on which the many company tools
cooperate and interoperate. It will become part of an
architecture and interoperability kernel.

20 Databases in Software Engineering

Configurability
Domain specificity

>
£
]
c
.2
=
1%
[}
o}
€
o
O

Change

NF Properties
Service view
Perspectives
Lifecycles
Architecture

20.1 Seﬁorcﬂion of concerns between database system and
software engineering applications.

20.2 Application of database technology to provide the
infrastructure for the integration of distributed software
engineering teams.

20.3 Provision of intelligent querying functionality for
heterogeneous information sources supported by
powerful meta-information management.

20.4 Leverage of integral elements of the transaction
concept such as consistency control and recovery to
software engineering (environments).

20.5 Alpplicoﬁon of database component technology
allowing the deployment of database services in a
requirement-driven manner.

21 Software Engineering and the Internet o >
El o £ 5
<} 2 2 8 o 5 3
= o 2 = » =) g o
@ o o > 5) ks] =) c
3 2 o g 9] o 9]) ‘5
£ c & 2 Q > = = £
o e w e g L = 5 o

[0} (O] = =

O @] Z [%] o phar] < O [a]

21.1 The field of software engineering can heavilr profit 18

from markup languages, since they provide validation

of structure, display-independent formats and
sophisticated linking capabilities.

21.2 Web integration of all types of project documents, with 18
full support for notations, code and diagrams.

21.3 Creation of tools that take advantage of the semantic
richness of markup languages in order to provide
sophisticated analysis and verifications.

21.4 Exploitation of sophisticated hypertext linking
mechanisms to express complex interconnections
among different documents of the software process.

21.5 Identification of key aspects of documents, process 1
descriptions, and all other types of data objects that are
relevant to the field of software engineering and that
can benefit from standardization.

21.6 Creation of tools that provide useful, non-trivial services
through the comparison and integration of information
deduced from data objects relevant to the field of
software engineering and not created to work together.

22 Software Economics

>
k=
2
=
O
o]
a
w
£
<]
£
o
[a]

Compositionality
Change

NF Properties
Service view
Perspectives
Lifecycles
Architecture
Configurability

22.1 Principles, models, methods and tools for reasoning 24
about and dynamic management of software
development as an investment activity.

22.2 Models for reasoning about benefits and opportunities 24
in software development as well as costs and risks.

22.3 Principles, models, methods and tools for dealing with 24
uncertainty, incomplete knowledge, and market forces,
including competition and change, in software
development.

22.4 Principles, models, methods, and tools for resolving 24
multi-attribute decision issues in software design and
development.

22.5 Integration of economic considerations into software 6,7
design and development methods.

23 Empirical Studies of Software Engineering

23.1

Empirical study play a fundamental role in modern
science, helping us understand how and why things
work, and allowing us to use this understanding to
materially alter our world.

Compositionality

Change

NF Properties

Service view

Perspectives

Lifecycles

Architecture

Configurability

>
k=
2
=
O
o]
a
w
£
<]
£
o
[a]

23.2

Defining and executing studies that change how
software development is done is the greatest challenge
facing empirical researchers.

23.3

The key to meeting this challenge lies in understanding
what empirical studies really are and how they can be
most effectively used - not in new techniques or more
intricate statistics.

23.4

If we want empirical studies to improve software
engineering research and practice, then we need to
create better studies and we need to draw more
credible conclusions from them.

23.5

Concrete steps we can take today include: designing
better studies, collecting data more effectively, and
involving others in our empirical enterprises.

24

24 Software Metrics

24.1

Software metrics should provide information to support
quantitative managerial decision-making during the
software lifecycle.

>
£
]
c
.2
=
1%
[}
o}
€
o
O

Change

NF Properties

Service view

Perspectives

Lifecycles

Architecture

Configurability

Domain specificity

22

24.2

Good support for decision-making implies support for
risk assessment and reduction.

22

24.3

Traditional metrics approaches, often driven by
regression-based models for cost estimation and
defects prediction, provide little support for managers
wiskhing to use measurement to analyse and minimise
risk.

22

24.4

The future for software metrics lies in using relatively
simple existing metrics to build management decision-
support tools that combine different aspects of software
development and testing and enable managers to
make many kinds of predictions, assessments and
trade-offs during the software life-cycle.

24.5

Handle the key factors largely missing from the usual
metrics approaches (causality, uncertainty, and
combining different, often subjective, evidence) using
causal modelling (for example Bayesian nets), empirical
software engineering, and multi-criteria decision aids.

22

25 Software Engineering Education

Compositionality

NF Properties

Service view

Perspectives

Lifecycles

Architecture

Configurability

>
k=
2
=
O
o]
a
w
£
<]
£
o
[a]

25.1 Identifying distinct roles in software development and
providing appropriate education for each.

25.2 Instilling an engineering attitude in educational
programs.

25.3 Keeping education current in the face of rapid change.

25.4 Establishing credentials that accurately represent ability.

