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Abstract

Pleated membrane cartridge filters are used extensively throughout a typical 

bioprocess. They are exposed to a range of operating conditions and feedstocks. 

Discrepancies between the performance of the flat sheet membrane and pleated 

membrane have previously been identified, although little has been done to fully 

characterise the effects of pleating. As current scale-up techniques use the flat 

sheet membrane to predict the performance of the large-scale pleated cartridge, 

the discrepancy in performance between flat sheet and pleated cartridge leads to 

inaccuracy in scale-up. This inaccuracy is accounted for by over-sizing of the 

equipment. In turn this reduces the efficiency of the bioprocess and increases 

capital costs. At the present time no accurate and reliable scale-up methodology 

exists that accounts for the effects of pleating.

A systematic investigation into the effect of pleating has been conducted. By 

varying the key pleat characteristics: pleat height, type and packing density, the 

impact upon cartridge performance of these characteristics has been determined. 

Using this knowledge, new scale-down cartridge filters have been developed, 

fabricated and tested. When faced with both clean water and a pepsin protein 

solution, performance was within 10% of the large-scale 10” counterpart, whilst 

operating with a 1000 fold reduction in feed volume. This compares well to flat 

sheet membrane which showed up to 53% variation in performance to the pleated 

cartridge filter.

The scale-down cartridge is limited to the degree in which reduction of feedstock 

can be achieved. So as to reduce feed volume requirements further, a ultra scale-

down methodology has been developed that uses experimental models to account 

for the effect that pleating has upon cartridge performance. When coupled with 

experimental data derived from flat sheet discs, the scale-up performance 

improves predictions with flat sheet membrane however discrepancies still exist 

between the two scales, suggesting that the method is not yet robust.
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Based upon the work of this thesis the close performance between the  scale-

down cartridges and the large-scale cartridges, coupled with the low feed 

requirement, make the device an excellent method by which rapid scale-up can 

be achieved during the process development of biopharmaceutical products. 

However, it is recommended that the ultra scale-down approach is developed 

further, so as to build a robust method to predict the performance of industrial 

scale pleated filter cartridges using significantly reduced areas of flat sheet 

membrane.
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1 Introduction

1.1 Manufacture of Biopharmaceuticals

Since the first production of recombinant human insulin in 1982 (Pavlou et al., 

2004), the manufacture of recombinant proteins has become an important route 

for provision of new therapies to combat human diseases. These 

biopharmaceutical drugs are typically large complex molecules that are 

dependant upon shape and structure to retain therapeutic activity (Buckland, 

2005; Kee et al., 2008).

Classical chemical syntheses could not generate these complex molecules, so

new production methods were required. As microorganisms naturally produce 

proteins, a method was generated to use a genetically engineered host cell system 

to mass produce therapeutic proteins (Cohen et al., 1973). These host cell 

systems can now be: microbial, funghi, mammalian, insect, or plant cells. The 

production of the bioproduct within the microorganism is carried out in a 

fermenter, where the environmental conditions are altered so as to activate

expression of the bioproduct and maximise production. Once expressed, the 

bioproduct requires isolation and purification. An example flowsheet for a

bioprocess to achieve production of a recombinant protein is shown in Figure 1-

1. Unless the bioproduct has been secreted from the microorganism into the 

culture broth (Option B), then after fermentation the cells will need to be 

harvested and then ruptured (Option A), so that the product can be released. The 

cell debris is removed through a sequence of clarification steps. Option A 

typically involves the use of centrifugation, where as Option B will involve the 

use of tangential flow filtration (Parnham et al., 1996; van Reis et al., 1991). 

After clarification the product is purified through a number of process steps, until 

it attains a purity greater than 99.9% (Asenjo et al., 2008). After a sterile 

filtration step the concentrated product solution is sent for formulation and filling

.
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Figure 1-1: Example bioprocess flowsheet for production, recovery and purification of a 
bioproduct expressed in a cell culture. Bold solid arrows represent the flow of the bioproduct 
through the process. Generally there are two main options available for the primary recovery 
stage, selection of which depends upon whether the product is produced intra-cellularly (Option 
A) or extra-cellularly (Option B).
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It can be seen from Figure 1-1 that filtration plays a key role both within the 

main bioprocess sequence and in related operations. Of particular note is the 

number of bioburder reduction, sterilising filtration and viral filtration steps used. 

All of these steps will use pleated membrane cartridge filters during the 

operation. It can also be seen that the bioprocess contains many individual unit 

operations. If each step had a yield of 80% then the overall yield of the 

bioprocess after 9 steps would be less than 15%. Thus the correct design and 

optimisation of each step in the bioprocess is essential. If knowledge for the 

design of each operation can be derived at an early stage in development using 

small-scale equipment, then this will improve the chances of developing a robust 

and high yielding process by the time the bioproduct is brought through clinical 

trials to market.

1.2 Filtration Principles

Filtration is a separation technique widely used within the bioprocess industry

(Zydney, 2009). It is capable of separating a wide range of materials, depending 

upon the type of filter medium used. Membranes are used to separate entities

with a small diameter, such as micro-organisms, colloidal molecules, proteins 

etc. Membrane filtration works largely on a size exclusion principle. There is a 

range of membrane techniques, and these are primarily defined by the size range

of the pores and thus the components that they can prevent from passing through 

their structure. Table 1-1 gives a summary of key properties linked to the five 

types of filtration typically used within bioprocesses.

Microfiltration operates within the range of 0.1µm to 5µm, with ultrafiltration 

operating within the range of 0.002µm to 0.1µm (Mulder, 1997). Both types of 

filtration are pressure driven processes, requiring a pressure difference to be 

applied across the membrane. Ultrafiltration membranes have smaller pores, and 

thus require higher pressure differences. This accounts for the higher pressure 

drop and osmotic resistance of the membrane. Viral filtration is a specialist form 

of ultrafiltration that targets a log reduction in virus concentration (Dileo et al., 
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1993). As such, the pore size range is narrow and comes in a 20nm or 50nm 

format. Nanofiltration and reverse osmosis are used primarily to purify water.

Ultrafiltration and microfiltration have two main modes of operation. Normal 

flow (also known as dead end flow) applies the solution to be filtered at a 

direction normal to the membrane surface. Tangential flow filtration (also known 

as cross flow filtration) applies the solution to be filtered across the surface of the 

membrane. Each of these modes of operation will have common factors that will 

affect their operation, such as viscosity, temperature and transmembrane pressure 

difference. However, other factors have specific significance for cross-flow 

filtration, such as cross flow rate and shear rate.

The various configurations in which membranes can be fabricated are 

summarised in Table 1-2. Typically, pleated cartridges are used where high flow 

is required and the concentration of fouling material is low. Flat plate membranes 

are typically favoured over hollow fibre units, as flat plate membranes are easy to 

replace should one fail. If a hollow fibre fails, then the entire unit will require 

replacing. Vibrating or rotating membranes are used where the concentration of 

fouling material is very high. By rotating the membrane disc, an increased shear 

force is generated at the surface of the membrane which reduces fouling (Jaffrin, 

2008). This higher shear force is at the expense of membrane packing density, 

which leads to units that can only process small volumes of feed. In practice

these systems are widely used during the manufacture of antibiotics

(Postlethwaite et al., 2004). Membrane chromatography was initially explored a 

number of years ago without any substantial commercial success (van Reis et al., 

2001), however new preparations of adsorptive membranes have shown higher 

capture efficiency and higher productivity than column chromatography (Zeng et 

al., 1999).
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Table 1-1: Key characteristics of various filtration types used within bioprocesses.

Filtration 
Type

Application within BioprocessI Typical
Fabrication MaterialII

Pore Size Typical Operating 
PressureIII (bar)Retained 

Particles
Particles that pass through 

membrane
nm MWCO (Da)

Microfiltration Intact cells
Cell debris

Small colloids
Viruses
Proteins

Salts

PES
PVDF

100 – 5000III 500,000+II 0.1 – 2.0III

Viruses Viruses Proteins
Buffers

PVDF 20 – 50 - 1 – 2

Ultrafiltration Proteins Amino acids
Antifoam
Buffers

PES
RC

2 – 100III 2000 –
500,000III

1.0 – 5.0III

Nanofiltration Divalent ions
Amino acids
Antibiotics

Salts
Water

Proprietary 0.7 – 70III 300 – 10,000III 5.0 – 20III

Reverse 
Osmosis

Amino acids
Sugars
Salts

Water Proprietary 0.1 – 1.0III 10 – 500III 10 - 100III

I Based on (van Reis et al., 2007)
II Abbreviations: PES = Polyethersulphone, PVDF = Polyvinylidenefluoride, RC = regenerated cellulose.
III Based on (Mulder, 1997)
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Table 1-2: Advantages and limitations of various membrane configurations available.

Configuration Normal 
Operational Mode

Membrane Packing 
Density (m2m-3)

Advantages Limitations

Pleated 
membrane 
cartridge

Normal Flow 710 High flux.
High membrane packing density.

Disposable.
Low pumping costs.

Low capacity with fouling feed.
Difficult to clean.

Flat plate Cross flow 300I Process fouling feed.
Easy to clean

Moderate membrane packing density.
Moderate shear.

Moderate pumping costs.
Non-disposable.

Hollow fibre Cross flow 1200I Very high membrane packing density.
Low pumping costs.

High shear.

Difficult to clean.
Moderate capacity with fouling feed.

Spiral bound Cross flow 600I Low pumping costs.
High membrane packing density.

Low pumping costs.
Low shear.

Low capacity with fouling feed.
Difficult to clean.

Difficult to fabricate

Rotating / 
vibrating

Cross flow
(Enhanced)

10I Process highly fouling feed.
Easy to clean.
High shear.

Very low membrane packing density.
Non-disposable.

Membrane 
chromatography

Normal Flow - Disposable.
High flux.

Adsorptive binding.

Difficult to clean.
Low capacity with fouling feed.

Moderate pumping costs.
I Based on (Zeman et al., 1996)
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1.2.1 Transport Through Porous Membranes for Pressure Driven 

Processes

For transport through a porous membrane a potential difference is required

across the membrane. The potential difference causes a driving force through the 

membrane, and can arise from differences in either: pressure, concentration, 

temperature or electrical potential (Mulder, 1997). Only pressure driven 

processes will be considered here as they represent the bulk of the membrane 

operations seen in bioprocesses.

1.2.2 Theory for Non Pore-Blocking Solutions

For non pore-blocking (clean) solutions the empirical relationship describing 

fluid flow through a porous media was first defined as follows (Darcy, 1856):

P
k

J 


(1-1)

where J is the rate of flow through a surface element of unit area, k is the

permeability of the porous media, µ is the fluid viscosity and P is the pressure 

gradient.

For laminar convective flow through a porous structure both the Hagen-

Poiseuille and the Kozeny-Carman equations can be applied for pores 

represented by straight capillaries and nodular structures respectively (Mulder, 

1997). These expressions help define the permeability of the porous media in 

terms of the geometry of the pores. The Hagen-Poiseulle equation is:

x

Pr
J
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
8
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(1-2)

where r is the pore radius, ε is the porosity, τ is the tortuosity factor and µ is the

fluid dynamic viscosity and x is the pore length. The Kozeny-Carman equation is 

represented as:



26

x

P

SK
J





2

3




(1-3)

where K is the dimensionless constant which depends upon the pore geometry 

and S is the surface area of the spherical particles per unit volume.

1.2.3 Theory for Pore-Blocking Solutions

1.2.3.1 Flux Decline

During a pressure driven membrane process the flux through a membrane can 

change over time. Flux decline can be caused by many factors, such as: 

concentration polarisation, adsorption, gel layer formation and plugging of the 

pores (Zeman et al., 1996). The effects that cause flux decline can be lumped into 

various resistances that can be incorporated into Equation (1-1):

totR

P
J




 (1-4)

where Rtot is defined as:

CPgmaPtot RRRRRR  (1-5)

where RP is the resistance due to pore-blocking, Ra is the resistance due to solute 

adsorption within the pores, Rm is the intrinsic membrane resistance, Rg is the 

resistance due to gel layer formation and RCP is the resistance due to 

concentration polarisation. Pore blocking and adsorption cause fouling of the 

membrane and will be discussed in Section 1.2.3.2. The gel layer resistance is 

due to the concentration of accumulated solids becoming high enough that a gel 

layer forms which in turn exerts a resistance to flow that is independent of 

osmotic pressure (Zaidi et al., 2005).
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Concentration polarisation is defined as the reversible build-up of dissolved or 

suspended solute in the solution phase near the membrane-solution interface due 

to a balance between the convective drag toward and through the membrane 

(resulting from the permeation flux) and back-transport away from the membrane

(Belfort et al., 1994). It most often occurs in microfiltration with colloids and 

particles which have low diffusion coefficients, and causes a reduction in 

permeate flux by increasing the osmotic pressure at the upstream face of the 

membrane, leading to a decrease in the transmembrane pressure difference. The 

effects of concentration polarisation are typically lower than for fouling as 

illustrated in Figure 1-2. The effects of flux decline can be reduced through a 

number of techniques (Belfort et al., 1994). These techniques are summarised in 

Table 1-3.

Figure 1-2: Illustration of the relative effects of fouling and concentration polarisation upon flux 
decline.
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Table 1-3: Typical methods for the reduction of fouling and concentration polarisation, and 
hence flux decline.

Method Examples

Hydrodynamic

Chemical. e.g. heterogeneous chemical 

modification; adsorption of hydrophilic 

polymers 

Physical. e.g. irradiation; low temperature 

plasma activation

Instabilities
Turbulent flow

Inserts

Vortices

Rough surface

Pulsation

Couette flow (Taylor vortices)

Flow in a curved channel (Dean vortices)

1.2.3.2 Membrane Fouling

For blocking solutions, which cause the porous media to foul, the rate of flow 

through the membrane will decrease over time. Where a cake forms on the 

surface of the membrane, this fouling can be described by a cake resistance

(Foley, 2006):

 mR

P
J

Cm  


 (1-6)

Where m is given by csVs/Am and:

m
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

 (1-7)



29

Where αC is the specific cake resistance, cs is mass wet cells per unit volume of 

suspension, Vs is the suspension volume, and Am is the membrane area.

There are many instances where cakes can form upon membrane surfaces, e.g. 

the filtration of microbial fermentation broths. For this case, the membrane cake 

resistance is seen to be dependent on many additional factors, especially the 

harvest time of the cells (Okamoto et al., 2001).

In practice, fouling is often due to more than one mechanism than just the 

resistance of the cake. Flux decline data are typically analysed using one of the 

classical filtration models (Hermia, 1982). These are: standard pore blockage, 

intermediate pore blockage, pore constriction and cake filtration. A schematic

representation of the four flux decline models is given in Figure 1-3. The 

governing equations for the flux decline models have been collected and 

summarised in their linear forms by van Reis and Zydney (van Reis et al., 2007). 

The linearised forms can be used to identify the decline regime from 

experimental data. Further details are given in Table 1-4.

Figure 1-3: Schematic representation of flux decline models described in Table 1-4. (a) pore 
blockage, (b) intermediate blockage, (c) pore constriction, (d) cake filtration.
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Table 1-4: Governing equations for flux decline models (assuming constant pressure)

Flux 

decline 

model

DefinitionI Flow rateII Linearised 

form

Pore blockage 

(complete 

blocking)

Each particle arriving to the 

membrane participates in blocking 

some pore(s) with no superposition 

of particles

 te
Q

Q  

0

btaQ )ln(

Intermediate 

blockage

Each particle can settle on other 

particles previously arrived and 

already blocking some pores or it 

can also directly block some 

membrane area.

  1

0

1  t
Q

Q  bta
Q


1

Pore 

constriction 

(standard 

blocking)

Each particle arriving at to the 

membrane is deposited onto the 

internal pore wall leading to a 

decrease in pore volume.

  2

0

1  t
Q

Q  bta
V

t


Cake 

filtration

Each particle locates on others 

already arrived and already 

blocking some pores. There is no 

room for directly obstructing the 

membrane area.

  2
1

0

1  t
Q

Q  bVa
V

t


I  Definitions based on (Bowen et al., 1995).
II Where: Q is the filtrate flow rate, Q0 is the Initial filtrate flow rate, t is the time, V is the 
cumulative filtrate volume.

Whilst the flux decline models given in Table 1-4 have been used as stand alone 

models, in real operation it is likely that there will be a transition in fouling 

behaviour from initial flux decline associated with pore constriction and/or pore 

blockage followed by cake filtration (van Reis et al., 2007). An attempt has been 

made to use the flux models as successive steps to describe the fouling of the 

membrane (Bowen et al., 1995). Taking this approach further, a model has been 

developed to combine the two mechanisms of pore blockage and cake filtration

for membranes with non-interconnected pores (Ho et al., 2000):
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Where α is a pore blockage parameter, Cb is the bulk concentration of fouling 

component, Rm is the membrane resistance and RP is the resistance of the cake.

RP is defined as:
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Where RP0 is the Resistance of a single cake deposit, f’ is the fractional amount 

of deposit that leads to cake growth, R’ is the specific cake resistance.

The first term in Equation 1-8 is equivalent to the classical pore blockage model. 

At longer filtration times the volumetric flow is dominated by the second term 

and is thus proportional to the ratio of the membrane resistance to the total 

resistance. For Equations 1-8 and 1-9 the parameters α; f’R’; and RP0 require 

evaluation from experimental data.

This model has been tested primarily with a bovine serum albumin (BSA) 

feedstock and shows good agreement with the experimental data (Ho et al., 

2000). It has also been tested with a range of other protein solutions (Palacio et 

al., 2002; Palacio et al., 2003). The two-mechanism model has been extended to 

account for asymmetric membranes consisting of a top layer of non-

interconnected pores and a sub-layer of highly interconnected pores (Ho et al., 

2001). It has also been applied to membranes containing highly interconnected 

pores (Zydney et al., 2003). Thus a combined model exists to describe either the 

flow of liquid through the structure of symmetric or through asymmetric 

membranes with differing pore connectivity.

A three-mechanism model has recently been developed (Duclos-Orsello et al., 

2006) to include three of the decline models given in Table 1-4. These are: pore 

blockage, pore constriction and cake filtration. This model was developed with 
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the assumption that fluid flow through the pores can be described by Hagen-

Poiseuille flow and is given below:
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Where tP is the pore blockage time, β is the pore constriction parameter, and J0 is 

the initial flux. Whilst the three-mechanism model may offer the ability to 

calculate the relative influence of each of the fouling mechanisms, the actual 

practical use is limited in industrial situations due to the complexity of the 

model.

As there is a trade-off between the physical detail and the numerical complexity 

of the theoretical model, five combined models have been derived that require 

the fitting of only two parameters (Bolton et al., 2006a). These combined models 

had a reduced model fit error when compared against the stand alone flux decline 

models for the filtration of a BSA solution and also for a human plasma 

ImmunoglobulinG (IgG) solution. This approach was taken further with the 

incorporation of flow rate through the pore on the rate of adsorptive particle 

deposition onto the pore (Bolton et al., 2006b). A good fit to experimental data 

for a human IgG solution was reported. Importantly, by incorporating flow rate 

into the combined model, the model more closely represents the operation of 

membrane units at large-scale, which are typically run under a constant flow 

regime, as opposed to a constant pressure regime.

1.2.3.3 Reversible Membrane Fouling

Experiments supporting the existence of a critical filtered volume (CFV) have 

been presented for the normal-flow filtration of colloids (Bessiere et al., 2005). 

CFV is defined as the filtered volume below which there is no irreversible 
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fouling on the membrane surface. However, to reverse the membrane fouling the 

filtration operation must be halted to rinse the surface of the membrane. This 

approach may hold value where the cost of the membranes is high. However for 

processes where the cost of membranes is relatively low and where by cleaning 

would be a time-consuming exercise (such as sterile filtration in bioprocesses) 

there is probably limited application for the technique.

1.2.4 Solute Interactions

All materials dispersed in aqueous media acquire a surface charge (Bowen, 

1993). This can lead to solute-solute and solute-membrane interactions. Solute-

solute interactions can lead to formation of aggregates, which in turn can lead to 

fouling. Solute-membrane interactions can lead to adsorption to the membrane of 

the solute, which over time can also lead to membrane fouling. These 

interactions have been considered for protein (BSA) filtration with ultrafiltration 

membranes (Bowen et al., 1996) and enzyme (alcohol dehydrogenase) filtration 

with microfiltration membranes (Bowen et al., 1992) and the filtration of silica 

particles through ultrafiltration membranes (Bowen et al., 2003). A model based 

upon a monte carlo simulation technique, has been derived for the simulation of 

colloidal normal flow membrane filtration (Chen et al., 2005). It incorporates 

hydrodynamic effects with inter-particle interactions. Whilst exhibiting promise 

for the simulation of every force and particle displacement, the model requires 

testing with a diverse range of feedstocks.

1.2.5 Cross-Flow Considerations

The focus of this thesis will be on normal flow membrane filtration, therefore 

only a brief discussion of cross-flow transport effects will be presented here.

1.2.5.1 Critical Flux Concept

A critical flux concept has been derived for microfiltration (Field et al., 1995), 

stating that at start-up there exists a flux below which a decline of flux with time 
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does not occur. Above it fouling is observed. The classical filtration laws given 

in Table 1-4 were modified to incorporate cross-flow removal mechanisms. It 

was demonstrated that provided certain terms took finite values, fluxes should 

exist at which there is no observed decline of flux with time. The general form of 

the critical flux model is:

 *2 JJkJ
dt

dJ n   (1-11)

Where J is the flux, k is a constant, and J* is the critical flux. n takes values of: 0 

for cake filtration, 2 for complete blocking and 1 for intermediate blocking.

1.2.5.2 Aggregate Transport Model

A methodology, called the aggregate transport model has been developed, which 

can predict the pressure-independent permeate flux and yield of target species for 

the cross-flow microfiltration of poly-disperse solutions (Baruah et al., 2003a). 

The model involves a number of steps, which ultimately leads to the generation 

of predicted permeate flux and yield as a function of wall shear rate for the 

pressure-independent regime. The model has been tested with a transgenic goat 

milk feed for the recovery of a human IgG fusion protein (Baruah et al., 2003b). 

Despite milk being an extremely complicated poly-disperse suspension, good 

agreement between the model and experimental data was reported. This 

technique was taken a step further to optimize an existing transgenic goat milk 

process (Baruah et al., 2004). In this case the recovery of IgG was increased from 

1% to 95% for the crossflow microfiltration step. The model also works well for 

predicting the separation of BSA from haemoglobin (Hb), and BSA from IgG

(Baruah et al., 2005), and integrates into a two-step membrane process for the 

recovery of heterologous IgG from transgenic goats milk (Baruah et al., 2006). 

However, to date no independent review of the model has been published. 
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1.3 Applications of Normal Flow Filtration

Normal flow filtration is used in the biopharmaceutical industry in two key areas: 

sterile filtration; and viral filtration. Sterile filtration is a microfiltration process 

that removes bacteria from a process stream. Viral filtration acts to significantly 

reduce the concentration of viruses in a process stream. Of the configurations 

discussed in Section 1.2, normal flow membrane filters for industrial applications

are primarily fabricated as pleated cartridges.

1.3.1 Sterile Filtration

Sterile filtration is used in processes where bacteria and other microbial 

contaminants require removal from a process stream, but where the product is 

labile and sensitive to high temperatures or gamma irradiation (Griffiths et al., 

2000). Sterile filtration is conducted at ambient temperatures, and has widespread 

use within the pharmaceutical industry. Pall Corporation sells the Supor®

membrane in 25.4cm 10” cartridges (other cartridge sizes are also available), 

whilst Millipore markets the Durapore® membrane. The key properties of these 

membranes are given in Table 1-5.

The ASTM F 838-83 code, is one of the first standard test methods for 

determining bacterial retention (Madsen, 2006), and has since been re-designated 

as ASTM F 838-05 (ASTM, 2005). The sterile filters of Pall and Millipore are 

still tested to meet this standard. The standard deals with the bacterial retention 

characteristics of membrane filters using Brevundimonas diminuta as the 

challenge organism. When grown in a nutritionally-limiting growth medium the 

size of B. diminuta is small enough at 0.5 µm that it represents a rigorous 

challenge to the retention ability of the membrane. For a filter to meet the 

standard, it must completely retain the B. Diminuta organism at a challenge 

concentration of 1×107 colony forming units (cfu) per cm2 of membrane area

(Waterhouse et al., 1995).
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Table 1-5: Properties of membrane filters used in sterile filtration of biopharmaceuticals.

Manufacturing company Pall Corporation Millipore

Product name Supor® EKV Durapore®

Membrane material Polyethersulfone Polyvinylidene 

fluoride

Wettability Hydrophilic Hydrophilic

Pore size (µm) 0.22 0.45 or 0.22

Cartridge length (inch) 10 10

Area per cartridge (m2) 0.72 0.55

Max. forward flow (ml/min) 171 NS

Bubble point (psig) NS 18II

I Water used to wet membrane
II Mixture of 60/40% IPA/water used to wet membrane
NS: not stated

There also exist some 0.22 µm filters that are not validated to achieve full 

sterility. These so called bioburden reduction filters come in the same pleated 

format as sterile filters and are used primarily for the reduction of microbial cells 

and the protection of chromatography columns further down the bioprocess 

sequence (Figure 1-1).

Typical feedstocks faced by sterile/bioburden reduction filters are given in Table 

1-6. High concentration protein solutions have been seen to foul sterile filters, 

although the formation of fouling components is complicated. This will be 

discussed further in the Section 1.3.2.
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Table 1-6: Characteristics of typical feedstocks filtered using sterile/bioburden reduction filters.

Feed Type Typical 

Composition

Type (Fouling / 

Non-fouling)

Position Within 

Bioprocess Train

Buffer

Solution

Varying viscosity. 

Range of composition 

depending upon 

position within 

bioprocess train.

Non-fouling Buffer feed to fermenter.

Before buffer lines to 

chromatography columns.

Buffer lines to cross-flow 

filtration step.

Fermentation 

Broth

Low concentration of 

microbial cells, lysate.

Fouling After centrifugation and depth 

filtration steps.

Protein

Solution

High concentration of 

protein.

Fouling Before chromatography columns.

At the end of the bioprocess train 

before formulation.

1.3.2 BSA as a Fouling Feedstock

BSA has been used by many groups as a fouling feedstock for the study of 

membranes of varying pore size (Ahrer et al., 2006; Chan et al., 2004; Girones et 

al., 2006; Guell et al., 1996; Kelly et al., 1993; Kelly et al., 1997; Manttari et al., 

2006; Meireles et al., 1991; Mourouzidis-Mourouzis et al., 2006; Nakamura et 

al., 2006; Tracey et al., 1994; Wang, 2005). Generally these groups have 

experienced varying degrees of fouling dependent upon the source of BSA, 

operating conditions and membrane type.

1.3.2.1 BSA Source

There are several methods by which BSA is purified from bovine serum. A cold 

ethanol or heat shock method can be used for the initial fractionation. This can 

then be combined with an additional purification step such as charcoal filtration, 

recrystallization, alkylation or dialysis (Kelly et al., 1993). The method of 

purification affects the rate of flux decline when a BSA solution (Kelly et al., 

1993). These authors found that a cold ethanol/ charcoal filtration purification 
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methodology lead to the fastest rate of flux decline using a 0.16µm pore size 

polyethersulfone membrane.

1.3.2.2 Fouling Mechanism

The size of a BSA at 66kDa is not notionally large enough to foul a 

microfiltration membrane with pore size in the range of 0.1-0.5µm. Instead it is 

thought that BSA solutions contain a low concentration of polymeric BSA 

aggregates, which have a size large enough to foul microfilters. These aggregates 

act as nucleation sites, to which native BSA attaches, thus enhancing fouling. 

Thus the mechanism takes place in stages: deposition of BSA aggregates via 

convective flow, followed by chemical attachment of native BSA to nucleation 

sites. It is believed that this chemical attachment takes place via disulfide 

linkages (Kelly et al., 1993) and is enhanced if the protein contains a free thiol 

group (Kelly et al., 1994; Kelly et al., 1997; Kim et al., 1993; Liu et al., 1991).

1.3.2.3 Other Protein Types

One group (Kelly et al., 1997) has compared the fouling of microfiltration 

membranes with different proteins as well as BSA. Using discs of 0.22µm PVDF 

membrane, they saw that pepsin, ovalbumin and β-lactoglobulin showed similar 

flux decline to that of BSA. Despite having no free thiol groups pepsin had a 

greater rate of flux decline than BSA, whilst ovalbumin and β-lactoglobulin 

showed the greatest rate of flux decline.

1.3.2.4 Effects of Agitation

Two groups (Guell et al., 1996; Kelly et al., 1995), have presented data that 

shows that stirring increases the aggregation of BSA, leading to a greater rate of 

flux decline.
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1.3.3 Viral Filtration

Viral filtration utilises ultrafiltration membranes, operated in a normal flow 

configuration, to remove viruses from a product stream. During the manufacture 

of biotherapeutics derived from mammalian cells and human cells there is a risk 

of contamination by virus or virus-like type A and type C particles (Dileo et al., 

1993). These must be removed during the down stream processing operation. 

Pall Corporation produce the Ultipor® membrane, whilst Millipore market the 

Viresolve® membrane. The key properties of the membrane are given in Table 1-

7. The standard test organism for viral filtration is the murine Leukaemia virus

(Aranha-Creado et al., 1998). This virus, with a size range of 80-120nm, offers a 

good model for A or C retrovirus type molecules. The forward flow test is 

another means by which the integrity of the filter can be assessed, and is 

commonly used by manufacturers of filters (Dowd, 2009).

The membrane is used to remove all manner of viruses from a solution, whilst 

allowing the target protein to pass through the membrane. Generally when 

validating the membrane, target proteins are not used, thus the log removal of the 

virus by the membrane is the key measured parameter. However some examples 

do exist where Human Serum Albumin (HSA) has been used as the target protein

(Dileo et al., 1993). 

Table 1-7: Key properties of virus removal filters

Company Pall Corporation Millipore

Product name Ultipor® Viresolve®

Membrane material of 

construction

Modified

Polyvinylidene fluoride

Polyethersulfone

Wettability Hydrophilic Hydrophilic

Pore size (nm) 20 or 50 Unknown

Cartridge length (inch) 10 10

Area per cartridge (m2) 1 (20nm) 1.6 (50nm) 0.48
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Instead of using an actual virus to test the system, a biological or non-biological 

surrogate can be used. The mechanism through which the membrane retains the 

virus defines the important physical properties that the surrogate must contain.

The retention of viruses is dependent upon two factors (Oshima et al., 1998): size 

exclusion of the virus and adsorption of the virus to the membrane structure. Size 

exclusion is considered to be the most significant mechanism through which 

retention is achieved. If surrogates are to be used instead of the actual virus, then 

the size and conformation of the surrogate is important. Bacteriophages are 

viruses that propagate within bacteria. Some, such as PR772, can be produced 

using E. Coli as the host bacterium. This makes them much easier to generate 

and isolate than human viruses such as influenza or polio that require mammalian 

cells. As such, bacteriophages are often used as biological surrogates to 

mammalian viruses. Two such bacteriophages are Φ6 and PP7, which have sizes 

of 75nm and 25nm respectively (Aranha-Creado et al., 1999). Some 

bacteriophages have been labelled with a fluorescent dye, so as to aid in their 

detection and quantification (Gitis et al., 2002). 

Whilst viral filters have some use within bioprocesses, the frequent and varied 

application of sterile filters make them a relevant and interesting system to work 

with.

1.4 Fabrication of Pleated Membrane Cartridges

Membrane media can be manufactured by a number of methods, the choice of 

which depends upon the porous structure required. Phase inversion is the most 

important technique for commercial membrane production (Reif, 2006). 

Interfacial polymerisation is used for many microfiltration and ultrafiltration 

membranes to apply a coating to the surface of the membrane (Reif, 2006). This 
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surface modification of the membrane creates composite membranes with 

enhanced properties. The membrane media is fabricated as a flat sheet, which is 

provided in large rolls. As has been discussed previously in Section 1.2, the 

pleating of the flat sheet membrane and packing of the pleats into a cartridge 

configuration provides a method by which large membrane areas can be inserted 

into a unit that has a smaller footprint than if flat sheet membrane was used

(Jornitz, 2006).

An overview of the manufacturing process for the production of pleated 

membrane cartridges is given in Figure 1-4. This five-step manufacturing 

procedure is not an automated process, but can be carried out at scale to produce 

large numbers of cartridges during an operating run. The manufacturing 

procedure begins with feeding membrane media into the pleating machine (Step 

1). The membrane media is placed in-between drainage material, which acts to 

protect the material and encourage drainage to and from the membrane surface 

by keeping the membrane pleats apart. The drainage material can be woven, or 

non-woven. The pleating machine has a tooth above and below the membrane 

material which act 180° out of phase with each other, so that one is fully inserted 

into the membrane material the other is fully retracted. The teeth are heated to a 

high temperature so that the pleated shape becomes set and the membrane 

material does not return to a flat sheet format. The pleating machine can be fully 

configured so that the pleat height, rate of pleat production, type of pleat and 

pleat setting temperature can be adjusted. Increasing the rate of pleat production 

may lead to irregularities in the pleat structure and depends upon the physical 

strength of the membrane. The two pleat types produced by Pall Corporation are 

shown in Figure 1-5. The fan pleat is the standard type of pleat used by most 

membrane manufacturers. The Ultipleat® is unique to Pall Corporation, and 

allows for a greater membrane area to be packed into the cartridge (van Reis et 

al., 2007).

The pleating machine can make either pleat type, however separate tooling is 

required and this must be set up on the machine before production can begin. 
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Once the pleated pack has been produced a section is removed with the correct 

pack length to provide a suitable pleat packing once inserted into the cartridge 

format.

Step two takes the loose pack of pleats and seals the two ends of the pack 

together. This produces a cylindrical pleated pack. The two ends are joined using 

a heat sealing technique. The selection of the correct sealing temperature is 

important, as to cool or to hot will lead to a poor seal that will leak. In Step 3 the 

cylindrical pleat pack is trimmed so that the length of the pleat is correct for the 

required cartridge length. In Figure 1-4 two examples are illustrated representing 

a 25.4cm (10”) or 2.54 cm (1”) cartridge length.

Once the pleat pack is trimmed to the suitable lengths it is packed into the 

annulus between an inner and outer cage (Step 4). The inner and outer cages 

have holes machined out of their structure to allow for fluid flow (this is not 

shown in Figure 1-4). The inner core acts as a physical support for the pleated 

pack to sit upon and thus confers mechanical strength (Jornitz, 2006). 

The final step (Step 5) is to fit adaptors onto the ends of the cartridge. This is 

illustrated in Figure 1-4 where the pleated cartridge is shown without the inner 

and outer cores. These adaptors are attached by heat sealing at high temperature, 

and provide the final sealing step. The adaptor at the base of the cartridge is 

referred to as a ‘code 7’ design (van Reis et al., 2007) and has two grooves in 

which ‘o’ rings are placed to form a seal and two tabs to lock the cartridge into 

the housing. Once the adaptors are attached, the cartridges are allowed to cool 

before undergoing a leak test. The standard methodology for the leak test is the 

reverse bubble test, which will be discussed in Section 1.5.
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Figure 1-4: Overview of manufacturing process to produce pleated membrane cartridges.
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Figure 1-5: Photographs of different pleat types. (a) Photograph of a cross-section of a 10” EAV 
cartridge with Fan pleat configuration. (b) Photograph of a cross-section of 10” UEAV 
membrane pleats with a Ultipleat® pleat configuration.

1.4.1 Design Characteristics

The design characteristics of pleated membrane cartridges have been well 

described (Jornitz, 2006; van Reis et al., 2007). There are three main design 

characteristics that can be altered during manufacture: pleat height; pleat type

(see Figure 1-5); and pleat packing density. Pleat height represents the depth of 

each pleat and is represented by hp in Figure 1-6. The pleat packing density is a 

measure of the number of pleats packed into a given cartridge volume. Increasing 

the pleat packing density, decreases the angle, θ, between each pleat, and the 

space between each pleat. This may lead to pleat crowding (Waghode et al., 

2007; Wakeman et al., 2005) where the pleats are no longer acting in isolation, a 

factor that may affect filtration behaviour.
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Figure 1-6: Characteristics of pleated membranes. Examples are shown for loosely and tightly 
packed membrane packs. Increasing the tightness of packing leads to a higher pleat packing 
density.

1.5 Performance Characterisation of Normal Flow Filtration 

Devices

The factors that generally affect normal flow filtration process performance are

(Ireland et al., 2004):

 The feedstock: components and concentration, presence of aggregates, 

pH, temperature, viscosity, ionic strength, cake resistance.

 Operating conditions: pressure difference; mode of operation (constant 

pressure or constant flow); feed flow rate.

 Membrane properties: membrane area; flow distribution; resistances to 

flow; porosity; diameter of pores.
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Generally the following outputs require optimisation:

 Flux of material through the membrane

 Capacity of the membrane

 Product transmission or retention performance

 Performance of the membrane: removal rating (100%) for sterile 

filtration; reduction rating (6 Log titer) for viral filtration

Clearly there are a large number of variables and this makes the optimisation of 

filtration step difficult. There are also many ways in which process steps

upstream of the membrane filtration step can influence the performance of the 

membrane operation. The membrane filtration step can also have a significant 

effect on units downstream of the filter unit. Thus a system that accurately and 

rapidly assesses the performance of the microfiltration step would be of value. 

This will be discussed further in Section 1.7.

The flux and capacity of the cartridge can be identified using theory outlined in 

Sections 1.2.1. A calculation of product transmission will typically require an 

assay to be conducted that quantifies the concentration of the product in feed and 

permeate streams. Examples of suitable total protein assays are: the Bradford 

assay (Bradford, 1976) and the Lowry assay (Lowry et al., 1951). Alternatively 

HPLC can be used, which can be particularly useful for identifying multiple 

components of the product. During a normal-flow filtration experiment samples 

from the feed and permeate are taken and then processed with the chosen assay. 

For most microfiltration operations high product (protein) transmission would be 

expected.

The ability of the membrane to remove microbial organisms and viruses (where 

applicable) can be quantified using invasive and non-invasive tests. These are 

described in more detail in the Section 1.5.1 and Section 1.5.2 respectively.
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1.5.1 Invasive Integrity Testing

It has previously been mentioned in Section 1.3.1 that B. diminuta is used to test 

the integrity of cartridges, due to the small size of the micro-organism. The 

challenged membrane must retain no less than 1×107 colony forming units per 

cm2 of available membrane area (Waterhouse et al., 1995) at a maximum test 

filter differential pressure of 206 kPa and a flow rate of 2 to 4 Lmin-1cm-2

(Madsen, 2006). An apparatus for conducting such a test is illustrated in Figure 

1-7. A flat sheet disc is placed downstream of the test cartridge. The permeate 

from the disc and the disc itself are used to identify whether the cartridge passes 

the test. Incubation of the disc and the permeate on agar can take 7-14 days to 

yield a result (Waterhouse et al., 1995). An alternative method that uses 

bioluminescent and fluorescent strains of B. diminuta has been proposed

(Griffiths et al., 2000), although this method still requires 24 hours to generate a 

result. The length of time required to conduct the test, coupled to the invasive 

nature of the test, which renders the cartridge unusable after completion of the 

test has lead to the generation of non-invasive tests. These are outlined in the 

Section 1.5.2.

Figure 1-7: Illustration of method for B. diminuta integrity test.
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1.5.2 Non-Invasive Integrity Testing

It is common industrial practice to integrity test the membranes before and after 

each batch so as to ensure that the pore size of the membrane is small enough 

that the membrane will fully retain the microbial challenge. The B. Diminuta

retention challenge is an invasive test that requires the membrane to be cleaned 

after the test has taken place. Alternatively non-invasive tests such as the bubble 

point or the forward flow test are used instead. The bubble point test is designed 

to determine the pressure at which a continuous stream of bubbles is observed 

downstream of a wetted filter under gas pressure. Figure 1-8 shows a rig that can 

be used to quantify the bubble point when using flat sheet discs of membrane. 

The same type of rig set-up can also be used when identifying the bubble point of 

pleated membrane cartridges. The membrane is fully immersed in water so that it 

becomes fully wetted, before being placed within a membrane holder. A gas is 

applied to the feed side, and as the pressure differential increases the gas 

dissolves into the water. When the pressure differential reaches the bubble point 

it is great enough that the air forces trapped water out of the pore, and a steady 

flow of air travels through the membrane pores. Thus the bubble point is reached 

and the air travels through the membrane by a mechanism of bulk transport.

Figure 1-8: Rig for quantifying bubble point using small diameter discs of membrane. PG = 
pressure gauge.

Upstream Downstream

Air

Membrane disc Water

Bubbles

Membrane disc 
holder

PG
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The bubble point can be used to measure the maximum pore size through the use 

of the Cantor equation (Meltzer et al., 1998), which is expressed as follows and 

is derived from the balance of forces in a capillary:

P
D W




 cos4
(1-12)

where ΔP is the pressure differential across the filter; D is the diameter of the 

capillary; θW is the wetting angle between the fluid and the surface of the filter; γ 

is the surface tension between the liquid and the solid interface material. It has 

also been demonstrated that for fluids that wet porous materials well the contact 

angle θW is zero. Hence Equation 1-12 reduces to Equation 1-13. However, 

Equation 1-13 is only valid when the units of ΔP and D are psi and µm 

respectively.

ΔP

30
D  (1-13)

It is common for membrane manufacturers to quote typical bubble point values 

for their filters in terms of pressure. They also supply bubble points for all of 

their membranes that are sold to customers. Thus the customer can use the 

bubble point to ensure that their filter is correctly installed, and that after each 

batch it still has the same ability to retain bacteria. If the bubble point was to 

decrease then the pore size will increase, and thus the membrane filter may no 

longer have a pore size small enough to fully retain bacteria.

The forward flow test is based upon similar principles, but measurements are 

taken whilst the pores are still fully wetted. Figure 1-9 shows how gas flow 

downstream of the filter will change as the differential pressure across the 

membrane increases.
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Figure 1-9: Downstream gas flow regimes for membrane with fully wetted pores

The forward flow test works by measuring the gas flow rate downstream of the 

wetted membrane for a given test pressure. This test pressure should be below 

the KL value, which marks the transition between diffusional and bulk flow. If 

the integrity of the membrane remains the same after each time it is used, then 

the gas flow rate measured at this test pressure should remain the same. It is 

standard for manufacturers to quote a maximum allowable forward flow test, 

which is achieved just before the KL value is reached. Due to the low gas flow-

rates that will be seen downstream of the filter during diffusive flow, the forward 

flow test is only applied to large scale cartridges, where the surface area of 

membrane in the cartridge is high.
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1.5.3 Leak Testing

A quick methodology to test whether a membrane is perforated or a cartridge 

contains a leak is to carry out a reverse bubble test. An illustration of the typical 

experimental set-up is given in Figure 1-10. In this test the cartridge is soaked in 

a solvent (e.g. IPA/water mix) before having a bung inserted into the permeate 

hole at the base of the cartridge. An air line passes through the bung and into the 

permeate side of the cartridge. The wet cartridge is submerged in a vessel 

containing the solvent used for wetting. Air is applied to the permeate side of the 

cartridge and the cartridge is observed to see if a steady stream of air bubbles 

escaping from the feed side of the cartridge, which would indicate a leak. 

Particular attention is paid to the adaptors welded onto the cartridge, and the 

pleated membrane side seal.

Figure 1-10: Illustration of equipment set-up required for leak testing of a pleated cartridge using 
the reverse bubble test method. PG represents a pressure gauge.
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1.6 Effect of Membrane Pleating on Cartridge Performance

In most applications the filter will be exposed to large volumes of process fluid 

containing a relatively low concentration of suspended solids (Figure 1-1). Due 

to the large process volumes it is common practice to strive for the highest 

membrane area per unit volume of cartridge to minimise the footprint of the 

overall unit. One option to achieve this is by pleating of the flat sheet membrane 

and packing a high density of pleats around a central core (Jornitz, 2006).

Pleated geometries are frequently used in the manufacture of air filters, which are 

used in a number of secondary operations within a typical bioprocess sequence. 

The filter medium is contained in either a pleated panel or a cylindrical cartridge 

configuration. A number of studies (Baleo et al., 2000; Caesar et al., 2002; Chen 

et al., 2008; Chen et al., 1995; Lucke et al., 1996; Subrenat et al., 2003; Tronville 

et al., 2003) have investigated pleating effects in air filter design. These typically 

seek to reduce the overall pressure drop by optimising the pleat count per unit 

length. It has been reported that pleat height also impacts upon overall pressure 

drop (Chen et al., 1995). More recent studies (Nassehi et al., 2005; Waghode et 

al., 2007; Wakeman et al., 2005) have produced models utilising computational 

fluid dynamics to explore the influence that pleat design has on air filter 

performance. These include compression of the medium, pleat deformation and 

pleat crowding at high pleat packing densities. When simulations were run 

incorporating medium compression and area loss, there was good agreement with 

experimental data. Examination of the data presented suggested that of the two 

factors incorporated into the model, area loss appeared to have the greatest 

impact on performance (Waghode et al., 2007; Wakeman et al., 2005). Air filters 

are similar in basic design to those used in the biopharmaceutical industry, but as 

noted above are generally optimised so as to reduce the pressure drop across the 

pleat. The cartridges used in the biopharmaceutical industry are optimised to 

maximise the filtration area and to handle high viscosity, liquid feeds. Whilst 

findings generated for air filters may well bear on the characteristics of their 

biopharmaceutical counterparts these key differences must be borne in mind. 



53

For 0.45 µm PVDF membrane filter cartridges used with liquid feeds, pleating 

has also been associated with a drop in cartridge performance when compared 

with flat sheet membranes (Chandler et al., 2004). Several researchers (Giglia et 

al., 2007; Gollan et al., 1985) have considered the effect of the permeability of 

the drainage material upon cartridge performance. Golan and Parekh (Gollan et 

al., 1985) developed permeability models to account for the different process 

feeds that a cartridge may be required to filter. A drainage permeability term to 

account for the compressibility of the drainage material was introduced. This 

varied across the length of the pleat, but no experimental data was presented for 

model validation. Giglia and Yavorsky (Giglia et al., 2007) built upon this work 

and compared the performance of a range of sterile cartridges consisting of 

different pore sizes and membrane materials. A discrepancy in membrane 

permeability was observed between flat sheet discs and 10” cartridges. 

Discrepancies have also been reported in two further un-related studies (Chandler 

et al., 2004; Rajniak et al., 2008). 

In summary, there has been little work conducted to fully characterise pleated 

cartridges. This is especially the case for pleated cartridge filters used for the 

filtration of liquid feedstocks. This has lead to a problem for those involved in 

bioprocess design, whereby discrepancies between the performance of flat sheet 

and pleated membrane have been noticed, but no solution is given (Chandler et 

al., 2004; Rajniak et al., 2008).

1.7 Scale-Down and Ultra Scale-down

Scale-up involves using small-scale equipment to predict the performance of 

large-scale process equipment (Pampel et al., 2008). In order to conduct scale-up 

studies a scale-down device is required that mimics the larger unit whilst 

maintaining the main geometric parameters constant between scales. Such 

studies are utilised when feedstock is scarce or expensive, as a means to design 

or optimise the large-scale equipment. In an ideal scale-up the performance of 

the large-scale equipment would be exactly mimicked by the small-scale. 
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Typically this does not happen and scaling factors must be utilised to account for 

uncertainty in the performance prediction (Anderson et al., 2009). This leads to 

over-sizing of equipment and process inefficiencies. It also shows limitations in 

the understanding of the process if these factors must be incorporated. Scale-

down beyond a given size range is often difficult to achieve due to the 

geometrical complexities of the large-scale industrial equipment, and as such a 

new approach has been developed, called Ultra Scale-down (USD), which aims 

to seek out key effects and parameters that dominate when scale changes are 

made (Titchener-Hooker et al., 2008). This approach has been developed 

primarily for centrifugation and is discussed in greater detail in Section 1.7.5.

In normal flow membrane cartridge filtration most small-scale data is obtained 

using small flat sheet discs of the membrane, which are typically 47mm in 

diameter (Badmington et al., 1995). The membrane disc is of the same material 

as the membrane contained within the cartridge. As has been discussed in 

Section 1.6 there have been discrepancies reported between the performance of 

the flat sheet disc and the pleated cartridge. This would affect the ability to scale-

up reliably from flat sheet data. As yet, no scale-down device or methodology 

has been developed to account for the differences between flat sheet and pleated 

membranes. The standard protocols for use with the flat sheet discs are presented 

in the following section.

1.7.1 Scaling with Flat Sheet Discs

Flat sheet discs are not geometrically similar to large-scale pleated cartridges, 

and on this basis can be considered an Ultra Scale-down method of achieving 

scale-up. Flat sheet disc experiments are operated at constant pressure, provided 

by a gas supply. Depending upon the feedstock used a variety of parameters can 

be obtained. For clean solutions the membrane resistance used in Equation 1-1

can be obtained by measuring the permeate flow-rate over a range of trans-

membrane pressures. For fouling feedstocks the cake resistance can be evaluated 

by measuring the mass of cake built up upon the membrane surface and 

combining with flux decline data (Foley, 2006). For feedstocks that cause 
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standard blocking of the membrane pores the Vmax test protocol is used, which 

allows for the prediction of maximum volume filtered through the membrane 

before the permeate flow drops to zero (Badmington et al., 1995). Vmax is defined 

by:

0max

1

QV

t

V

t
 (1-14)

Where: Q0 is the initial flow rate at start of filtration.

Thus Vmax can be obtained by plotting t/Vcum against t, where t is the operational 

time and Vcum is the cumulative volume collected. Vmax is the gradient of the 

straight line that is yielded. Normalising Vmax for the membrane area of the disc 

provides a parameter to design the size of a cartridge (in terms of membrane 

area) required to process a given volume of feedstock.

However, as has previously been noted in Section 1.6, the performance 

prediction from a flat sheet disc does not generally scale well to the large-scale 

pleated cartridge (Chandler et al., 2004; Rajniak et al., 2008).

1.7.2 High Throughput Membrane Evaluation

Recently a number of studies have shown that high throughput screening of 

normal flow filtration can be achieved using small areas of membrane discs (0.28 

cm-2) (Chandler et al., 2004; Jackson et al., 2006). The membrane discs in these 

cases are housed in wells, and each filter plate contains 96 wells. The 96 well 

arrangement allows multiple experiments to be conducted at any one time. 

Whilst at this scale variation in the porosity of the membrane was reported to be 

an issue and this can affect the ability to characterise the performance of the 

membrane. However the method provides a useful scoping approach for the 

enhancement of larger scale trials.
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1.7.3 Pmax Test

For feedstocks where a constant flow regime is used during the filter operation a 

concept called Pmax can be used (van Reis et al., 2007). This method is primarily 

used for the evaluation of the capacity of depth filters (Tarrach et al., 2003; 

Wang et al., 2006; Yavorsky et al., 2003). The approach works by monitoring the 

build-up of pressure on the feed side as fouling occurs. The governing equations 

for the flux decline models discussed in Section 1.2 are given in Table 1-8. It has 

also been reported that if fouling is due entirely to pore constriction then (van 

Reis et al., 2007):

2

max0

1












V

V

P

P
(1-15)

This approach has not previously been reported as being used for the prediction 

of performance for normal flow microfiltration cartridges, but could be used for 

systems where the concentration of fouling components is low. For systems such 

as these large volumes of feedstock would be required to conduct the equivalent 

Vmax test.

Table 1-8: Governing equations for flux decline models.

Flux Decline Model Governing Equation

PressureI Linearised FormI

Pore blockage (complete

blocking)
  2

1

0

1  t
P

P  Vba
P


2

1

Intermediate blockage
  1

0

1  t
P

P  Vba
P


1

Pore constriction (standard 

blocking)
  2

0

1  t
P

P  Vba
P


2

1

1

Cake filtration
t

P

P
 1

0

VbaP 

I Taken from (van Reis et al., 2007).
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1.7.4 Scale-down through reduction of effective area

Scale-down is often achieved through a process of miniaturisation, however, for 

a disc stack centrifuge an alternative approach has been taken to modify an 

existing piece of equipment to achieve a lower feed requirement (Mannweiler et 

al., 1992). The reduction in scale is achieved by blanking off areas of the disc 

stack centrifuge with solid aluminium discs, which in effect reduces the number 

of active discs available for the separation of the feed material leading to a 

reduction in separation capacity. The study reported that up to a 10-fold 

reduction in separation capacity was achieved. Despite the reduction in 

separation capacity the recovery of a dilute suspension of polyvinylacetate 

particles was seen to be similar for the blanked off centrifuge when compared to 

the centrifuge in its un-blanked standard setup. However, the work also 

highlighted the importance of careful positioning of the active discs, as 

performance was seen to vary depending on whether the active discs were 

positioned at the top or bottom of the centrifuge.

This study was taken further (Maybury et al., 1998) by examining the effect that 

scaling down in stages had upon both the hold-up volume within the disc stack 

centrifuge and the separation capacity. The study showed that the maximum 

scale-down gave a reduction in separation capacity of 76% and a reduction in 

bowl volume (and hence feed volume requirement) of 70%. Once again, it was 

seen that despite the reduction in scale of separation capacity and hold-up 

volume the grade efficiency curves, a measure of the separation performance, 

produced by the scale-down variants closely follow the curves for the full stack 

machine.

Whilst the two studies described above were conducted for a centrifuge system, 

they present an interesting strategy of achieving scale-down as key parameters of 

the system are held constant (in this case bowl diameter and disc shape). This is 

contrary to miniaturisation of the device whereby scale-down takes place in all 

dimensions. 
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1.7.5 Ultra Scale-Down

Another scale-down strategy that differs significantly from typical scale-down 

techniques has been presented as an ultra scale-down (USD) methodology

(Titchener-Hooker et al., 2008) The USD approach has been developed to 

improve the ability to predict the performance of large-scale biopharmaceutical 

unit operations from small-scale experiments (Dunnill et al., 2003). This is 

achieved by generating data for key engineering parameters around which the 

scale-up can take place. Ultra scale-down studies are conducted using equipment 

that does not have geometrical similarity to the large-scale target. For 

downstream processing equipment that is geometrically complex, this often 

means that USD studies can be conducted with vastly reduced feed volume 

requirements (Tustian et al., 2007). Ultra scale-down techniques have been

developed primarily for centrifugation (Berrill et al., 2008; Boulding et al., 2002; 

Hutchinson et al., 2008; Levy et al., 1999; Neal et al., 2003; Pampel et al., 2008; 

Tustian et al., 2007; Zhang et al., 2007), but have also been extended to candle 

filters (Reynolds et al., 2003). Further details of various USD studies reported to 

date are contained in Table 1-9. To date there have been no published studies that 

use a USD methodology and apply it to normal flow membrane cartridge filters, 

or any other filter beyond that of a Nutsche filter.
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Table 1-9: Key aspects of Ultra Scale-Down studies conducted to date by various researchers.

Unit 

Operation(s)

Process material USD Technique / Device Scale Findings of Study Reference

Precipitation, disk-

stack centrifuge

Precipitated casein 

isolation from milk

Rotating disk shear device and 

lab centrifuge

15ml per 

experiments

Systematic approach used to generate critical 

process parameters. From these parameters a 

process model was produced to predict 

performance of 1000-fold larger pilot-scale process

(Pampel et 

al., 2008)

Disk-stack 

centrifuge

S. cerevisiae and E. coli

studied at 

concentrations greater 

than 10% (wet cell 

weight)

Use of rotating disk shear device 

followed by dilution of sheared 

material before lab-scale 

centrifugation. Mathematical 

correction applied to clarification 

results to mimic original feed

250ml per 

experiment

Improvements were seen in clarification 

performance over traditional USD protocols.

(Tustian et 

al., 2007)

Centrifugal pump, 

mono pump, disc-

stack centrifuge

Supercoiled circular 

plasmid DNA

Rotating disk shear device using 

elongational strain rate as the 

engineering scale-up parameter

20ml per 

experiment

Shear causes degradation of SC plasmid DNA. 

First order equation was observed to apply for the 

elongational strain rate. Good agreement seen 

between USD scale predictions and large-scale 

equipment.

(Zhang et 

al., 2007)

Flocculation, disk-

stack centrifuge

Heat lysed high 

concentration E. coli

cells exposed to 

flocculating agent.

High speed rotating disk device 

used to generate low shear and 

high shear material. Lab-scale 

centrifuge.

20ml per 

experiment, 

100ml for full 

characterisation

Introduction of sheared material lead to closer 

match of pilot-scale clarification compared to 

material that had not been exposed to shear. High 

shear reduced the particle size of the solids.

(Berrill et 

al., 2008)
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Precipitation, disc-

stack centrifuge

Recovery of serum 

based 

immunoglobulins.

Rotating disk device, lab 

centrifuge. A time-integrated 

fluid stress used as the scaling 

factor

Undefined but 

‘ml’ level.

Difference of ±10% between large-scale and USD 

results. This variation was within the limits of the 

biological assays used.

(Neal et al., 

2003)

Disk-stack 

centrifuge

Recovery of 

monoclonal antibodies 

from a mammalian cell 

culture broth.

Pre-treatment of centrifuge feed 

in rotating disk device coupled 

with lab-scale test tube 

centrifuge.

20ml per 

rotating disk 

experiment. 

10ml per lab 

centrifuge 

experiment.

Shear lead to reduction in particle size, which in 

turn lead to a reduction in clarification efficiency. 

70% reduction in industrial scale flow-rate 

attributed to shear effects.

(Hutchinson 

et al., 2008)

Filtering basket 

centrifuge

Recovery of an 

antibody fragment from 

a fungal broth.

USD filtering centrifuge coupled 

with critical regime analysis and 

computational fluid dynamics to 

match energy dissipation rate 

between scales.

35ml per 

experiment

Good prediction of recovery of antibody fragment 

at same energy dissipation rate between USD 

device and pilot-plant basket centrifuge.

(Boulding 

et al., 2002)

Candle filter Human plasma fraction 

IV

Nutsche filter modified to 

become a rotating vertical leaf 

filter. Iterative calculation of the 

initial cake resistance made.

Unknown Continuous operation lead to improved prediction 

of performance characteristics compared with a 

batch operated Nutsche filter. This was particularly 

seen during the initial high flow rate period of 

filtration.

(Reynolds 

et al., 2003)
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1.7.5.1 Commercial Application of USD

At present bioprocess development will take place in pilot plant trials, using 

existing equipment and process set-ups. This approach can only take place at late 

stage drug development after successful studies in animals have lead to filing 

with regulatory bodies and initiation of Phase I clinical trials (Titchener-Hooker 

et al., 2008). This leaves little time for process development and optimisation, 

before the process is locked for regulatory submission. Carrying out process 

development using pilot-scale equipment is expensive, with large volumes of 

feedstock required. The advantage of the USD approach described above is that 

it allows for changes in how process development is integrated into the overall 

drug development process (Dunnill et al., 2003). As small volumes of feedstock 

are required then this allows process development to take place at an earlier stage

(see Figure 1-11). When coupled with whole bioprocessing modelling (Pampel et 

al., 2008), a good understanding of the operation of the process is derived, so that 

pilot plant trials are operated as confirmatory batches, not development batches. 

USD trials can take place soon after the drug discovery stage has completed and 

as soon as animal studies give favourable signs for the effectiveness of the drug. 

At this stage, the volume of process feed to use for process development will be 

low. Thus the advantage of carrying out process development using low feed 

requirements is significant.



62

Drug Discovery

Animal Studies

Clinical trials

Regulatory 
Submissions

1 2 3 4 5 6 70
U

lt
ra

 s
ca

le
-d

o
w

n
 

p
ro

ce
ss

 
d

ev
el

o
p

m
en

t

B
io

p
ro

ce
ss

 
m

o
d

el
lin

g

C
o

n
fi

rm
at

o
ry

 p
ilo

t 
p

la
n

t 
tr

ia
ls

Development time (yr)

Drug Discovery

Animal Studies

Clinical trials

Regulatory 
Submissions

1 2 3 4 5 6 70
U

lt
ra

 s
ca

le
-d

o
w

n
 

p
ro

ce
ss

 
d

ev
el

o
p

m
en

t

B
io

p
ro

ce
ss

 
m

o
d

el
lin

g

C
o

n
fi

rm
at

o
ry

 p
ilo

t 
p

la
n

t 
tr

ia
ls

Development time (yr)

Figure 1-11: Typical timeline for biopharmaceutical drug development (Adapted from (Nealon, 
2006). USD allows for process development to take place at an early stage during drug 
development. This is compared with current practice, which would involve pilot plant trials using 
existing equipment from year 3 to year 4.

1.8 Aims and Objectives of Thesis

As described in Section 1.1, pleated membrane cartridges are used extensively 

throughout a typical bioprocess. They operate with a variety of conditions and 

feedstocks (Section 1.3). Discrepancies between performance of the flat sheet 

and pleated membranes have been identified (Section 1.6), although little has 

been done to fully characterise the effects of pleating, particularly for the liquid 

feeds common in biopharmaceutical applications.

Current scale-up techniques use small flat sheet membrane discs to predict the 

performance of the large-scale pleated cartridge (Section 1.7). The discrepancy in 

membrane performance leads to inaccuracies in scale-up, which is overcome in a 

practical sense by over-sizing of the large-scale equipment. In turn this reduces 

the efficiency of the bioprocess and increases capital costs. No accurate and 

reliable scale-up methodology currently exists that accounts for the effects of 

membrane pleating.
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Reducing the active area for separation (as was seen in Section 1.7.4 for 

centrifugation) by blocking off parts of a pleated cartridge, may offer a means by 

which a scale-down cartridge device can be produced which will retain the key

characteristics of a pleat. Such a device could then be compared against the 

standard scale-down methodology of using small discs of the flat sheet 

membrane so as to evaluate whether a better performance prediction can be 

achieved.

A radically different approach to performing scale-down experiments, through a 

USD approach, was discussed in Section 1.7.5. Whilst USD techniques have 

been successfully developed to mimic the performance of centrifuges and other 

process equipment (see Table 1-9), it has not been applied to pleated cartridge 

filters. Taking the USD approach of focussing on key engineering parameters 

and using models to modify experimental data, it may also be possible to adapt 

experimental data gathered using small discs of flat sheet membrane to improve 

the performance prediction relative to a large-scale cartridge. This in turn offers 

the benefits highlighted in Figure 1-11, whereby bioprocess development can 

take place at an earlier point in the drug development cycle, reducing the amount 

of pilot scale work required to develop the process. This in turn reduces the cost 

of process development and provides more time for developing an optimised 

process.

The aim of this thesis is to establish scale-down and USD approaches to the rapid 

design and optimisation of microfiltration processes using pleated membrane 

cartridges. The approach will be to devise solutions that are readily applicable in 

industry and hence will be illustrated with a fouling feedstock typical of those 

found in many biopharmaceutical processes. Figure 1-12 provides an overview 

of the research approach to be taken. The specific objectives of each chapter are

described below:

 The initial objective will be to characterise the basic filtration 

performance of a commercial 10” UEAV 0.2 µm rated pleated membrane 

cartridge filter in a standard cartridge hosing. This device is typical of the 
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format and scale currently used in biopharmaceutical applications. This 

work is described in Chapter 3, which also covers the development of a 

realistic fouling protein feedstock for use throughout.

 The next objective will be to systematically investigate the influence of 

pleat design on the filtration performance of protein solutions, since this 

information is not currently available in the literature. This work will 

define which characteristics of the pleat geometry have a significant 

impact upon filtration performance, and hence which will be the 

characteristics to maintain in the design of a scale-down cartridge device. 

This work is described in Chapter 4.

 The following objective will be to design and test the effectiveness of a 

new scale-down cartridge device to predict the performance of the large-

scale cartridge characterised in Chapter 3. This study is described in 

Chapter 5, for a range of fouling and non-fouling feedstocks. Initial 

comparisons will also be made to the current standard scale-down 

technique that utilises flat sheet membrane.

 The final objective will be to develop a new USD methodology based on 

the insights on pleat geometry in Chapter 4, which improves the 

predictions made using flat sheet membrane and thus allows for improved 

performance predictions of the large-scale pleated cartridge to be made 

using reduced feed volumes. This is described in Chapter 6.

In addition to the above, Chapter 2 describes the experimental methods 

established in order to ensure the generation of accurate and precise quantitative 

experimental data. As part of the requirements for the award of an Engineering 

Doctorate (EngD), Chapter 7 describes the key challenges to commercialisation 

of the scale-down pleated device and the steps required in technical, commercial 

and validatory areas to overcome these challenges. Chapter 8 gives a summary of 

the main findings and conclusions of the study as well as suggestions for future 

work.
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Figure 1-12: Overview of the approach to be taken for the creation of scale-down and USD methods for prediction of large scale pleated membrane cartridge 
performance.
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2 Materials and Methods

2.1 Description of Standard Cartridge and Housing

The standard 10” cartridge type used in this work is shown in Figure 2-1(a). 

During an operation the cartridge is contained within a stainless steel housing 

which is also shown in Figure 2-1(a). The housing is attached to a base using a 

tri-clamp fitting to hold the housing and base together. A rubber o-ring is placed 

between the housing and base so as to prevent leaks during operation when the 

housing will be pressurised. The flow of fluid into and out of the housing is 

illustrated in Figure 2-1(b), which also shows the dimensions of the housing and 

base.

Figure 2-1: Images of standard cartridge and housing. (a) Photograph of a standard 10” pleated 
membrane cartridge and the standard stainless steel housing in which cartridge is contained when 
in use. (b) Illustration of standard housing (not to scale), showing dimensions of housing and base 
LH = Length of housing and LC = Length of cartridge. LH and LC varied depending upon the type 
of cartridge used, however the diameter of the base remained constant for all cartridges used, and 
the dimensions are given.
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2.2 Characterisation of Cartridge Housing

To characterise the liquid flow inside the cartridge housing, a transparent housing 

made from Perspex was fabricated in-house. This had the same internal 

dimensions as a standard stainless steel housing (Pall Advanta®, Pall Europe Ltd, 

Portsmouth, UK) and is shown in Figure 2-2. The transparent section was 

attached to the base of a standard stainless steel housing, with four screw rods 

used to hold the housing in place whilst under pressure. A rubber ‘O’ ring was 

used to seal between the transparent housing and the stainless steel base.

The experimental set-up is shown in Figure 2-3. P- 1, was a diaphragm positive 

displacement pump (Quattro Flow, M & S Armaturen GmbH, Kürnbach, 

Germany). P- 2 was a pilot-scale peristaltic pump (605Di, Watson-Marlow Ltd, 

Cornwall, UK). Pressure indicators used were digital manometers (P2082, 

Digitron, Torquay, UK). Equipment was connected using Masterflex® PharMed®

tubing (Cole-Parmer, London, UK). Tubing had ½” (12.7 mm) inner diameter.

Figure 2-2: Transparent cartridge housing containing 10” pleated membrane cartridge filter.
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Figure 2-3: Piping and Instrumentation diagram of the experimental set-up used for the 
observation of the cartridge housing hydrodynamics. V = vessel, HV = hand valves, PI = pressure 
indicators, P = pump.

2.2.1 Measurements of Axial Mixing

To measure the rate of axial mixing within the 10” housing a 10” pleated 

membrane cartridge (UEAV, Pall Europe Ltd, Portsmouth, UK) was inserted into 

the housing base. The transparent housing was secured around it. Vessel 1 was 

filled with reverse osmosis (RO) water. HV- 1 and HV- 3 were opened before P-

1 was turned on. HV- 2 and HV- 5 were kept closed to allow the cartridge 

housing to fill with water. When water was seen to exit from the vent line, P- 1 

was switched off and HV- 3 closed. HV- 5 was opened and the unit was operated 

with full recycle back to vessel 1. The pump speed was set to ~9 Lmin-1 for 10 
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minutes to ensure all void spaces within the cartridge were filled and the 

cartridge was fully wetted. The pump was shut down when the wetting time was 

completed.

A potassium permanganate solution (Sigma-Aldrich Company Ltd, Gillingham, 

UK) was prepared to a concentration of 0.1 gL-1 and added to V- 2. The coloured 

permanganate solution allowed easy visualisation of the hydrodynamics within 

the housing. To image the flows, the flow from P- 1 was set to the required value 

for the experiment; the flow of P- 2 was set to 0.68 Lmin-1. A digital camera 

(Ixus 55, Canon, Uxbridge, UK) was fixed in place approximately 1 metre from 

the housing, facing the inlet side (see Figure 2-4). P- 1 was switched on to begin 

the flow of water through the cartridge. HV- 2 was opened, and P- 2 switched on, 

so as to pump permanganate into the housing, the camera was switched on and a 

video recording made. A scale on the inlet side of the housing was used to assess 

the infiltration of permanganate into the housing. On the outlet side of the 

housing measurements were made at the base, middle and top of the cartridge, as 

illustrated in Figure 2-4. These marks represented distances (30 mm, 130 mm, 

and 220mm from the base of the cartridge respectively). The flowrate of P- 1 was 

varied for each experiment conducted, each flow rate being repeated three times 

with video footage acquired for each run.

The video footage was analysed frame by frame using editing software

(Windows Movie Maker, Microsoft, Reading, UK). The time taken for the 

permanganate dye to reach the top of the cartridge (as indicated by the marked 

scale) was quantified. Actual progress into the housing from the inlet was 

determined by taking freeze frames of the video footage every 0.23 seconds and 

comparing the change in dye position relative to the marked scale.
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Figure 2-4: Schematic illustration of cartridge housing showing marked positions on each side of 
the housing that were used to make measurements of mixing times.

2.2.2 Measurements of Radial Mixing

The protocol followed for the measurement of radial mixing within the cartridge 

housing followed was generally the same as in Section 2.2.1. However the 

position of the digital camera was changed so that it was fixed in position to face 

the outlet side of the housing, 180° from the inlet. 

The digital camera was fixed in place within 20 cm of each point of measurement 

in turn. Each experiment was repeated three times. Once again the editing 

software described in Section 2.2.1 was used to calculate the time at which the 

dye reached the measurement mark. 
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2.3 Cartridge Fabrication

2.3.1 Variation of Pleat Packing Density and Pleat Number

In order to investigate the effect that pleat geometry has upon the performance of 

a filter cartridge, a series of specially fabricated 2.54 cm (1”) sections from a 

25.4 cm (10”) long cartridge (Pall Europe Ltd, Portsmouth, UK) were produced 

by pleating flat sheet membrane as shown in Figure 2-5. Before pleating a 

polypropylene drainage support layer, shown in Figure 2-6, was placed above 

and below the membrane. The pleat height was controlled by the pleat machine 

and could be set to a range of heights. The pleated pack was cut to the correct 

pack length to achieve a desired pleat packing density. The ends of the pleated 

pack were heat sealed together and a perforated polypropylene core inserted 

inside the cylindrical pleated pack. A perforated polypropylene cage was placed 

around the outside of it, before adaptors (shown in Figure 2-7) were heat sealed 

to the top and bottom of the cartridge. The cartridge materials of construction and 

heat sealing techniques were the same as those used for the commercial 

production of a 10” cartridge. The 1” cartridges are not available on a 

commercial basis and were designed to provide a range of pleat geometries 

between that of 10” cartridges and flat sheet discs (see Figure 2-8). Fully packed 

1” and 10” cartridges were defined as having a pleat packing density (PPD) of 1. 

Two other configurations of 1” cartridges with PPD values of 0.85 and 0.65 were 

also fabricated. In each case fewer pleats within the 1” cartridge reduced the PPD 

and increased the distance between each pleat (see Figure 2-7 and Figure 2-8). 25 

mm discs of membrane with an effective area of 21.5 mm were punched out of a 

roll of Supor® EAV membrane for comparison against the 1” cartridges.

The 1” cartridges were also fabricated with two different types and three 

different heights of pleat. Cartridges fabricated with the Ultipleat® (Figure 2-9) 

had a pleat height of 24 mm. Cartridges fabricated with the fan pleat (Figure 2-

10) had a pleat height of either 15 mm or 10 mm. A 10” long cartridge with hP = 

10 mm and PPD = 1 was also specially fabricated. Standard 10” UEAV 

cartridges were commercially available, so did not require specialist fabrication.
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Figure 2-5: Illustration of the method used to pleat flat sheet membrane. hP = pleat height.

Figure 2-6: Image of polypropylene drainage support material. (A) Photograph of section of 
drainage material alongside Supor® EAV membrane. (B) Photograph of drainage material 
illustrating woven nature of the material.
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Figure 2-7: Exploded view of a 1” cartridge (without housing), illustrating the way in which the 
pleated membrane is installed inside the cartridge; in this case a 65% pleated configuration is 
shown. The illustration does not show the inner and outer perforated cores.

Figure 2-8: Illustration of the different pleat densities and membrane configurations used in this 
work and the total membrane surface area available per 1” cartridge. PPD = pleat packing 
density, hP = pleat height, θ = angle between pleat, dd = diameter of flat sheet disc, A = 
membrane area.
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1cm1cm

Figure 2-9: Photograph of a cross-section of a 10” UEAV cartridge with an Ultipleat® pleat 
configuration.

1cm1cm

Figure 2-10: Photograph of a cross-section of a 10” EAV cartridge with a fan pleat 
configuration.
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2.3.1.1 Cartridge Nomenclature

The characteristics of the specially fabricated 1” cartridges are given in Table 2-1 

alongside those of 10” cartridges fabricated with a fan pleat type and with pleat 

heights of 15mm or 10mm. In order to simplify representation of each cartridge 

configuration, the following nomenclature is used to describe each variant: X 

Yα,β. X represents the length of the cartridge, Y represents the type of membrane, 

α represents hP and β represents PPD. For example: 1” EAV10, 0.65 is a 1” 

cartridge formed from an EAV membrane with hP = 10 mm and PPD = 0.65. The 

membrane area within this cartridge would be 65% that of a fully packed 

cartridge (PPD = 1). 

Table 2-1: Properties of the various membrane cartridges fabricated for use within this study. All 
cartridges contained a Supor® EAV 0.22 µm rated membrane.

Nomenclature Membrane 

area (m2)

Pleat type Pleat 

height, 

hp

(mm)

Pleat 

packing 

density 

(PPD)

Angle 

between 

pleats, θ 

(°)

10” UEAV24, 1 1.06 Ultipleat® 24 1 ~0

10” EAV10, 1 0.72 Fan 10 1 ~0

1” UEAV24, 1 0.106 Ultipleat® 24 1 ~0

1” EAV10, 1 0.079 Fan 10 1 ~0

1” EAV10, 0.85 0.067 Fan 10 0.85 ~6

1” EAV10, 0.65 0.052 Fan 10 0.65 ~12

1” EAV15, 1 0.090 Fan 15 1 ~0

1” EAV15, 0.85 0.076 Fan 15 0.85 ~6

1” EAV15, 0.65 0.059 Fan 15 0.65 ~12
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2.3.1.2 Leak Testing

All cartridges were reverse bubble tested after manufacture to assure cartridge 

integrity. A rubber bung was inserted into the permeate exit at the base of a 

cartridge to form a tight seal. A 2 L measuring cylinder was 90% filled with a 

mixture of isopropyl alcohol (IPA) and water (60:40 by volume). The specific 

gravity was measured with a hydrometer (Les Ateliers Alla, Chemillé, France) to 

ensure that it was within the range of 0.894 – 0.904. The bunged cartridge was 

placed into the measuring cylinder and allowed to soak until it was totally 

submerged and had sunk to the bottom of the tube. The fully wetted cartridge 

was then taken from the measuring cylinder and the bung removed. A new bung, 

through which a flexible tube was fed, was placed into the permeate exit of the 

cartridge. The flexible tube was attached to an air supply via a pressure regulator. 

The cartridge was submerged within a basin containing the same solvent mixture 

as used to first wet the cartridge. This set-up is illustrated in Figure 2-11. An air 

pressure of 10psi was set. Visual inspections were made around the cartridge to 

identify leaks. Leaks were represented by a steady stream of gas bubbles 

originating from the cartridge (see Figure 2-11). Special attention was given to 

the heat seals between the cartridge adaptors and the membrane and the side seal 

joining the pleated membrane section. Cartridges were passed for filtration 

studies if no evidence of leaks were observed.
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Figure 2-11: Experimental set-up for reverse bubble testing of membrane cartridges. Solvent 
used was a 60:40 mix (by volume) of IPA and water. Evidence of a leak is shown by the presence 
of a steady stream of bubbles originating from the cartridge.

2.3.2 Scale-Down Pleated Membrane Cartridges

For this study a novel design of scale-down cartridge was developed and 

fabricated. The new cartridge design maintained the same key pleat 

characteristics: height of pleat, type of pleat, pleat packing density, but reduced 

the active membrane area for liquid permeation. This reduction was achieved by 

incorporating a limited number of sections of pleated membrane, Supor® EAV 

(Pall Europe Ltd, Portsmouth, UK), into a pack of hydrophobic PTFE material. 

The standard polypropylene drainage support layer was located above and below 

all of the pleated sections whether hydrophilic or hydrophobic. Hydraulic

integrity was achieved by heat sealing of the two elements. The hydrophobic 

material sections were impermeable to water-based feedstocks, thus regions of 

the pleated pack remained inactive and only the inserted EAV section was 

available for flow. 
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The heat sealed sections of the Supor® membrane into a hydrophobic pack is 

shown in Figure 2-12(a-d). Figure 2-12(a) shows detail of the configuration of a 

cartridge with just 1.5 pleats of Supor® membrane incorporated into the 

membrane pack. Figure 2-12(b) shows how this pleat is located within the 

cartridge. Figure 2-12(c) shows a cartridge containing one section of active 

membrane containing 4.5 active pleats of membrane, with Figure 2-12(d) 

representing a cartridge with four sections of active membrane, with each section 

containing 4.5 active pleats of membrane. In all cases where multiple inserts 

were used, then these were inserted so as to maintain an even radial distribution 

(Figure 2-13). A summary of the range of different pleat sections and pleat 

numbers used are given in Figure 2-13 and Table 2-2 respectively. The scale-

down cartridges were fabricated in 1” and 10” configurations so as to investigate 

any impact of the cartridge length upon performance. 

Figure 2-12: Cross sections through the various specially fabricated 1” scale-down pleated 
devices showing the range of pleat configurations of Supor® EAV membrane used within this 
study: (a) Magnification showing heat sealing of the pleat to the PTFE material. (b) 1 membrane 
section with 1.5 active pleats heat sealed to PTFE packing material. (c) 1 section with 4.5 pleats. 
(d) 4 sections each containing 4.5 pleats.
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A greater number of pleats were incorporated into some cartridges so as to 

provide a means of investigating the effect that membrane variability and 

position of active pleat had upon the ability of the scale-down cartridges to 

predict the performance of a large-scale cartridge. The scale-down cartridge 

containing the least number of active membrane pleats (1.5) had a membrane 

area corresponding to that of a 50 mm flat sheet disc. All cartridges were leak 

tested to assure cartridge integrity, as described in Section 2.3.1.2.

The range of scale-down pleated devices are shown in Figure 2-13. Each variant 

of the pleated device has been labelled with a different subscript to identify it. 

The key properties of the pleated devices along are given in Table 2-2.

Figure 2-13: Schematic representation of the cross-section of the specially fabricated 1” USD 
cartridge configurations used in the study. Figure shows the number and distribution of active 
pleat sections (shaded black) that each cartridge contained. The pleat numbers and membrane 
areas for each configuration are given in Table 2-2.
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Table 2-2: Characteristics of Supor® EAV 0.22 µm rated membrane cartridges used in 
study.Figure 2-13 shows the distribution of the pleat sections within the 1” cartridges.

Cartridge type Number 

of active 

pleat 

sections

Number of 

hydrophobic 

sections

Total number 

of pleats within 

active pleat 

sections

Membrane 

area (m2)

10” UEAV 1 0 - 1.06

1” UEAV 1 0 - 0.106

10” UEAVA 1 1 1.5 1.51 x 10-2

1” UEAVB 4 4 11.5 4.64 x 10-2

1” UEAVC 4 4 4.5 1.81 x 10-2

1” UEAVD 1 1 4.5 4.54 x 10-3

1” UEAVB 1 1 1.5 1.51 x 10-3

25mm flat sheet 

disc

- - - 3.8 x 10-4

2.4 Quantification of Clean Water Flux

2.4.1 Experiments Using Cartridges

Clean water flux measurements were used to quantify the differences in 

performance of the various cartridges and calculate membrane resistances. Each 

cartridge was contained within a membrane filter housing (Pall Advanta®, Pall 

Europe Ltd, Portsmouth, UK). The design of this housing is shown in Figure 2-1. 

Feed enters at the base of the housing. The permeate stream also leaves at the 

base of the housing. Figure 2-14 shows the experimental set-up used for water 

flux measurement. The cartridge housing was connected to a pumping rig 

modified for normal flow operation (Maxim, Pall Europe Ltd, Portsmouth, UK). 

The pumping rig consisted of a diaphragm positive displacement pump (Quattro 

Flow, M & S Armaturen GmbH, Kürnbach, Germany) and a electromagnetic 

flowmeter on the permeate line (SO-55, Bürkert, Brimscombe, UK). The same 

rig was also used with the specially fabricated 1” cartridges, described in Section 

2.3.1, except that in these cases a smaller housing was used to contain each 

cartridge. 
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The cartridge housing was filled with water prior to operation so that all air 

pockets were removed. Digital manometers (P2082, Digitron, Torquay, UK) 

were connected to the base and to the permeate exit of the housing. Before each 

experiment all membrane cartridges were flushed with water at a flow rate of 10 

Lmin-1 for a period of at least ten minutes. This ensured that all of the voids of 

the cartridge unit were filled with water, and that the cartridge was fully wetted. 

During permeate flux measurement the feed flowrate was altered and the 

corresponding feed and permeate pressures recorded. Except for the 1” EAV10, 

0.65 configuration all permeate flux measurements were made in triplicate using a 

fresh membrane cartridge. All flux measurements were within 1% of the mean 

for the 10” cartridge.

Figure 2-14: Piping and instrumentation diagram illustrating the experimental rig utilised for 
investigation of the different cartridge configurations of Supor® EAV 0.22 µm rated membrane. 
V = vessel, P = pump, HV = hand valve, PG = pressure gauge, FI = Flow indicator.
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So as to establish accurately the transmembrane pressure difference the pressure 

drop across the empty housing was also evaluated as a function of feed flowrate. 

This housing pressure drop was subsequently subtracted from the pressure drop 

measured when a cartridge was present. In most cases the housing pressure drop 

was less than 15% of the combined housing plus cartridge measurement.

2.4.1.1 Validation of Clean Water Flux

A special rig has been fabricated at Pall Walton Road, to measure the 

transmembrane pressure difference without the need for accounting for the 

housing pressure drop. A standard housing base has been modified so that tubing 

enters the housing and is situated next to the feed and permeate surface of the 

membrane. This is shown in Figure 2-15. 

A flowsheet for the experimental rig is shown in Figure 2-16. The outlet of the 

tubing connected to a pressure indicator, PI-1, which showed the differential 

pressure across the cartridge. The feed was pumped to the cartridge housing 

using a rotor pump (Merlin, Mono Pumps Ltd, Manchester, UK). A flow 

indicator (Schaevitz®, Measurement Specialities, Hampton, USA) on the outlet 

showed the permeate flowrate. The flowrate was varied and the corresponding 

differential pressure measured. 

Figure 2-15: Illustration of a standard stainless steel housing (a) and a stainless steel housing 
modified such that steel pressure tappings (represented by broken line) are inserted into the 
housing on the feed and permeate side of the cartridge. The outlet from the pressure tappings go 
to a pressure indicator.
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Figure 2-16: Flowsheet for Flow dP rig maintained at Pall Walton Road. V = vessel, P = pump, 
HV = hand valve, PI = pressure indicator, FI = Flow indicator.

2.4.2 Experiments Using Flat Sheet Discs

Filtration experiments with flat sheet discs were conducted using 0.22 µm rated 

Supor® EAV filters (25 mm FTKEAV, Pall Europe Ltd, Portsmouth, UK). 

Figure 2-17 shows the experimental set-up used. Each membrane disc was placed 

into a membrane holder (Amicon Stirred Cell 8010, Millipore, Watford, UK) and 

the holder was connected downstream of a vessel containing the feed to be 

filtered. Upstream of the feed vessel a positive pressure (<0.7 bar(g)) was applied 

using a nitrogen gas supply. A digital manometer (P2082, Digitron, Torquay, 

UK) was connected upstream of the feed vessel with the permeate open to 

atmosphere. Permeate was collected in a beaker on an electronic balance 

(PB3002-S, Mettler-Toledo GmbH, Urdorf, Switzerland). The balance was 

connected to a computer (Latitude D600, Dell, UK) via an RS232 interface. 

Readings of the permeate mass were collected every second to an accuracy of 

±0.02 g. All permeate flux measurements were made in triplicate using fresh 

membrane. All flux measurements were within 6% of the mean.
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Figure 2-17: Representation of the experimental set-up for small-scale flat sheet discs of 25 mm 
diameter.

2.5 Visualisation and Quantification of Particle Deposition

2.5.1 Filtration With Yeast Suspensions

Yeast suspensions were used to explore and quantify the deposition of particles 

within the pleated membrane structure. Yeast solutions were prepared by 

suspending fresh bakers yeast (DCL Yeast Limited, Surrey) into 0.03 M sodium 

phosphate buffer (pH 7.5) to obtain a wet cell weight concentration of 7.7 gL-1. A 

homogenous yeast suspension was achieved using a high speed mixer (Silverson 

Machines Ltd, Chesham, UK). To this solution Bovine Serum Albumin (BSA) 

(Sigma-Aldrich Company Ltd, Gillingham, UK) was added to a concentration of 
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1 gl-1. Experiments were performed using the experimental rig shown in Figure 

2-14.

The filtration was conducted at a constant feed flowrate until the cartridge 

became fouled and the feed pressure reached a maximum of 0.8 bar(g). At this 

stage the feed pump was switched off until the pressure reduced. Once it had 

dropped below 0.2 bar(g), the feed pump was activated until the pressure once 

again rose to 0.8 bar(g). This sequence was repeated for 30 minutes (~ 40 

cycles), by which point the cartridge was considered to be completely fouled. 

2.5.2 Quantification of Yeast Deposition

Following yeast filtration the cartridges were allowed to dry for three days in a 

drying cabinet at 50 ºC. In order to visualise yeast deposition within the pleats 

and the location of cake built up, the cartridge was cut open and the membrane 

removed. Care was taken to minimise the loss of dried yeast during this 

operation. The pleats were gently opened up and photographed using a digital 

camera (E501, Olympus, UK). This was repeated for three separate cartridges for 

each cartridge configuration apart from for a 10” EAV10, 1 cartridge. More 

detailed grey-scale images were generated using a controlled lighting 

environment for one set of images for each of the cartridge (GelDoc-it Imaging 

System, UVP, Upland, USA). These images were then analysed using ‘Image J’, 

an image analysis package freely available within the public domain (Abramoff 

et al., 2004) to quantify the thickness of the cake build up and to characterise the 

pattern of deposition within the pleat. The variation in the grey level at various 

points within the image was recorded. Grey-scale variation data was plotted 

using a running average method with a sampling proportion of 0.1. Images from 

at least three separate experiments were analysed in this way.
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2.5.3 Quantification of Clean Membrane Areas

The dried membrane used in Section 2.5.2 was re-photographed using a digital 

SLR camera (E501, Olympus, UK) and these image loaded into Image J

(Abramoff et al., 2004) analysis software. For each image a horizontal line was 

drawn across the height of the pleat, and the scale was set to the length of the 

line. The image was converted from colour to an 8-bit grey scale and the contrast 

was enhanced by 2%. The image was cropped to remove any edges of the 

membrane. The threshold of the image (which defines the point at which colours 

within the image are either black or white) was adjusted to cover the fouled 

areas. The image was converted to a binary image, where white areas represented 

clean membrane. A particle analysis routine within the software application was 

used to quantify the area of the binary image that contained white particles.

2.6 Filtration of Protein Feedstocks

2.6.1 Experiments Using Cartridges

A pepsin feedstock was prepared by dissolving pepsin (Fisher Scientific, 

Loughborough, UK) in 30 mM sodium phosphate buffer (pH 7.4) (Sigma-

Aldrich Company Ltd, Gillingham, UK). A concentration of 10 gL-1 of pepsin 

was used for all experiments.

A constant flow regime was used whilst filtering the pepsin feedstock. All 

cartridges contained 0.22 µm rated membrane, Supor® UEAV (Pall Europe Ltd, 

Portsmouth, UK). The cartridges were contained within a stainless steel housing 

(as shown in Figure 2-1) with the flowrate set using a pump. The experimental 

rig used was described previously in Section 2.4.1. Various pump sizes were 

used depending upon the cartridge to be tested. For experiments using a 10” 

UEAV cartridge a pilot-scale peristaltic pump was used (605Di, Watson-Marlow 

Ltd, Cornwall, UK). All other scales of cartridges used a lab-scale peristaltic 

pump (505Du, Watson-Marlow Ltd, Cornwall, UK). The ratio of the pump 

flowrate to active membrane area was maintained to ensure that the throughput 
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rates were similar for all the scales of cartridges used. During operation the feed 

pressure was measured using a digital manometer (P2082, Digitron, Torquay, 

UK). Permeate was collected in a vessel placed on a top pan balance; E2000 

(August-Sauter GMBH, Albstadt, Germany), for pilot-scale studies, or a 

PB3002-S (Mettler-Toledo GmbH, Urdorf, Switzerland) for lab-scale studies. 

The lab balance was connected to a computer (Latitude D600, Dell, UK), via a 

RS232 interface. Readings of the permeate mass were collected every second and 

to an accuracy of ±0.02 g for lab-scale studies whilst mass measurements were 

taken manually with the pilot scale balance over a range of time intervals and to 

an accuracy of ±5 g.

Before any filtration run began feed solution was pumped into the housing until 

it exited from the vent. The vent was then closed off and filtration begun. The 

feed pressure was monitored over the course of the operation until it reached 0.8 

bar(g). At this point the pump was de-activated and the feed pressure subsided. 

Once the feed pressure had dropped to 0.2 bar(g) the pump was activated. This 

sequence was repeated with periodic decreases in the pumping flowrate. The 

filtration was halted after the pumping flowrate had dropped below 85% of the 

starting value. Samples were taken from the feed and permeate to quantify 

protein concentration for all of the cartridges examined.

2.6.2 Experiments Using Flat Sheet Discs

2.6.2.1 Filtration of BSA Feedstock

A 10 gL-1 BSA solution was prepared by dissolving BSA (Sigma-Aldrich 

Company Ltd, Gillingham, UK) into a sodium phosphate solution (pH 7.4) 

(Sigma-Aldrich Company Ltd, Gillingham, UK). Long filtration times were 

achieved by using 4 L of the BSA solution as a feed. The filtration used the 

equipment set-up shown in Figure 2-18. A 47 mm disc of Supor® EAV 

membrane was inserted into the membrane disc holder (FTK200, Pall Europe 

Ltd, Portsmouth, UK). The BSA solution was added to V-1. HV-1 was opened, 

and the pressure set to 0.21 bar(g). HV-2 and HV-3 were opened to start the 
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filtration of the feedstock. Over the course of the filtration run, the permeate 

flowrate was measured by removing the permeate line from V-2 and inserting 

into a measuring cylinder, where the accumulation of permeate was measured 

after one minute.

Figure 2-18: Flowsheet of experimental set-up for filtration of BSA feedstock. HV = hand valve, 
V = vessel, PI = pressure indicator.
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2.6.2.2 Filtration of Pepsin Feedstock

Filtration experiments with flat sheet discs were conducted using 0.22 micron 

rated Supor® EAV filters (25 mm FTKEAV, Pall Europe Ltd, Portsmouth, UK). 

The experimental methodology was the same as for the clean water experiments 

described in section 2.4.2, however upstream of the feed vessel a positive 

pressure (0.8 bar(g)) was applied using a nitrogen gas supply. This feed pressure 

was selected as it represented the maximum pressure seen during the constant 

flow cartridge filtration experiments outlined in Section 2.6.1. Samples were 

taken from the feed and permeate to quantify the protein concentration.

2.6.3 Total Protein Concentration Assay

A Lowry assay method (Lowry et al., 1951) (with Onishi and Barr modification

(Ohnishi et al., 1978)) was used to assess the concentration of pepsin in the 

samples taken during the filtration experiments. Using this method 0.2 mL of 

sample was added to 2.2 mL of Biuret reagent (Sigma-Aldrich Company Ltd, 

Gillingham, UK). After mixing the solution was allowed to stand for 10 minutes. 

0.1 mL of Folin and Ciocalteau’s phenol (Sigma-Aldrich Company Ltd, 

Gillingham, UK) was then added. After mixing the solution was allowed to stand 

for 30 minutes. A solution to blank a spectrophotometer (Aquarius, Cecil 

Instruments, Cambridge, UK) at 750 nm was prepared in the same way as the 

sample, but by replacing the sample with reverse osmosis water. The absorbance 

of the sample was measured at 750 nm. Absorbance measurements were within 

0.08% of the mean. All readings were taken within 30 minutes of the first sample 

being measured. A standard curve prepared using known quantities of pepsin 

(Figure 2-19) was used to convert the absorbance readings from samples into 

protein concentrations.
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Figure 2-19: Standard curve for Lowry Assay used for quantification of pepsin concentration
within the range 1gL-1 to 10gL-1. Error bars show one standard deviation around the mean (n=3). 
Solid line filled by linear regression was fitted to the data points (R2 > 0.99).

2.6.4 Particle Size Analysis

Samples from filtration runs were analysed using dynamic light scattering 

(Zetasizer Nano, Malvern Instruments Ltd, Malvern, UK.). Before the analysis of 

each sample, RO water was first measured to ensure that the measurement 

cuvette was clean and did not contain dust particles. 100 µL of the sample to be 

measured was added to the empty measurement cuvette, which was inserted into 

the Zetasizer so that the sample could be analysed. After each sample was 

analysed the cuvette was cleaned using a specialist solution (Hellmanex® II, 

Hellma GmbH & Co., Müllheim, Germany.
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3. Characterisation of Pleated Membrane Cartridge 

Performance

3.1. Introduction and Aims

The aim of this thesis, as set out in Section 1.8, is to develop and characterise 

scale down and ultra scale-down devices and methodologies that better predict 

the performance of large-scale pleated membrane filters.

The large-scale unit selected as the basis for this study is a 10” UEAV24,1

cartridge, which contains a pleated 0.2 µm rated membrane. This filter is used 

within industry primarily for bioburden reduction; an operation that is used 

extensively within a typical bioprocess (Figure 1-1). Before the accuracy of the 

performance prediction from new scale-down or USD methodologies can be 

assessed, the basic performance of the 10” UEAV24, 1 cartridge must be fully 

characterised when fitted in a standard cartridge housing (described in Section 

2.1) for a range of feedstocks. As this type of filter is used extensively within a 

bioprocess flow sheet, then there is a large range of feedstocks that it can 

potentially process (Table 1-6). One example is relatively clean fluids such as 

buffers, and these feedstocks can be mimicked with water. However, the filters 

are also used with more complicated feedstocks containing proteins, which have 

been seen to foul 0.2 µm rated membranes (Girones et al., 2006; Kelly et al., 

1995; Kelly et al., 1997) (Section 1.3.2).

There has been previous work reported in the literature to develop models that 

describe the fouling nature of proteinaceous feedstock with sterile filters (Kelly 

et al., 1995; Kelly et al., 1997) . It is unusual that such feedstocks should be 

capable of fouling the membranes, as the nominal pore size of 0.2 µm is 

significantly higher than the native size of proteins. It is thought, however, that 

aggregation of the protein is one of the mechanisms that leads to the fouling of 

the membrane (Kelly et al., 1993). Development of a realistic feed will allow for 
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studies to be conducted on the large and small scale devices for comparison of 

performance. From an experimental standpoint, it would also be beneficial to 

generate a feedstock for which multiple batches of consistent material can be 

generated easily with a minimum of pre-processing.

The aim of this chapter is therefore to characterise the basic filtration 

performance of a large-scale pleated cartridge in a standard cartridge housing for 

a range of feedstocks. The specific objectives of this chapter are:

 To investigate whether cartridge and housing hydrodynamic effects 

should be accounted for when performance data is generated using a 

scale-down version of a cartridge filter or an ultra scale-down approach.

 To establish a protein solution suitable for use as a realistic test feedstock, 

which can be used subsequently to characterise the filtration performance 

of the large-scale pleated cartridge.

 To characterise the basic filtration performance for a large-scale pleated 

cartridge filter within a standard housing, using a selection of fouling and 

non-fouling feedstocks.

This work seeks to develop small-scale techniques that account for pleating 

effects to provide accurate performance predictions. Once the basic performance 

of the cartridge has been characterised then a basis will have been set against 

which the predictions of other small-scale techniques can be assessed. This 

approach is highlighted in Figure 3-1.
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Figure 3-1: Overview of the structure of the thesis showing strategy towards the development of 
a USD methodology that accounts for pleating effects. This chapter seeks to characterise the 
basic filtration performance of a large-scale pleated membrane cartridge, against which the 
performance predictions generated using a USD methodology can be compared against other 
small-scale techniques.

3.2. Cartridge and Housing Hydrodynamics

3.2.1. Quantification of Housing Pressure Drop

Due to the design and fabrication of the cartridge housing, and the location of the 

digital manometers, as shown in Figure 2-3, a housing pressure drop is imposed 

upon the hydraulic system. This pressure drop must be accounted for if accurate 

measurements of transmembrane pressure drop are to be made when a cartridge 

is inserted into the housing. Consequently, the housing pressure drop was first 

characterised without a cartridge present. The measured pressure difference for 

standard 10” and 1” housings are given in Figure 3-2 as a function of applied 

feed (clean water) flowrate. It is evident that significant variation was 

experienced when measuring the pressure drop. From the size of the error bars, 

the measured variation was less for the 10” housing. A higher pressure drop was 

measured for the 1” housing due to the lower hold-up volume within the housing 

relative to the 10” housing. For the 1” housing an initial region of constant 

pressure drop was observed. However the housing pressure drop became a 

function of feed flowrate at flowrates above 4 Lmin-1. For the 10” housing, no 

significant change in pressure drop, beyond changes due to measurement error, 
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was seen for the range of feed flowrates used. The pressure drop was constant at 

3.7 mbar as indicated by the dashed line in Figure 3-2. 

Given the variation in housing pressure drop, especially for the 1” housing, the 

pressure drops shown in Figure 3-2 were subsequently used throughout this 

thesis to correct water flux data. A typical example of water flux data correction 

for a 10” UEAV24, 1 cartridge is shown in Figure 3-3.

In Figure 3-3 a small effect was seen when the flux data for a 10” UEAV24, 1

filter cartridge was corrected for the housing pressure drop. This is due to the low

transmembrane pressure differences measured for the applied feed flowrates. For 

the range of flowrates used the housing pressure drop represented 7.5 – 37% of 

the total transmembrane pressure difference.

Figure 3-2: Measured pressure drops for a 10” cartridge housing () and a 1” cartridge housing 
().Error bars represent one standard deviation about the mean (n=3). Dashed line intersects the 
y-axis at 3.7 and represents the mean pressure drop for the 10” housing over the range of 
permeate flow rates used. Experiments were conducted as described in Section 2.3.1 but without 
a cartridge inside of the housing.
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The 10” UEAV24, 1 corrected water flux data in Figure 3-3 was compared to data 

recorded using a separate ‘flow dP’ rig as described in Section 2.3.1.1. The 

results are shown in Figure 3-4. The Pall ‘flow dP’ rig is modified so that fixed 

tubing connected to digital manometers, record the pressure at the feed and 

permeate side of the membrane cartridge, thus avoiding the housing pressure 

drop (see Figure 2-14). Figure 3-4 shows the two datasets to be in good 

agreement. This confirms that it is possible to correct the 10” TMP data for the 

housing pressure drop, thus ensuring the maximum accuracy of the data. The 

calculated membrane resistance was 3.48×1010 m-1 and 3.43×1010 m-1 for the Pall 

‘flow dP’ and UCL rigs respectively. For comparison, the calculated membrane 

resistance for the dataset without the housing correction is 3.79×1010 m-1. 

Figure 3-3: Permeate flux through a 10” UEAV24, 1 cartridge for measured transmembrane 
pressure differences that were corrected () and  not corrected () for the housing pressure 
drop. Experiments conducted with clean water as described in Section 2.3.1. Feed flowrates 
ranged from 0-10.6 Lmin-1.

Transmembrane Pressure Difference (mbar)

0 10 20 30 40 50 60

P
er

m
e

at
e

 F
lu

x 
(L

m
-2

h
-1

)

0

200

400

600



96

A typical example of water flux data correction for a 1” UEAV cartridge is 

shown in Figure 3-5. It can be seen in Figure 3-5 that despite the relatively large 

variation in housing drop reported in Figure 3-2, the correction to the water flux 

data was small. This is due to the higher feed pressure caused by the flow 

restriction that exists when a filter cartridge is present in the housing. The 

housing pressure drop, when compared to the filter cartridge pressure drop, is 

relatively small and accounts for less than 8% of the measured transmembrane 

pressure difference.

Transmembrane Pressure Difference (mbar)

0 10 20 30 40 50

P
er

m
ea

te
 F

lu
x 

(L
m

-2
h

-1
)

0

200

400

600

Figure 3-4: Permeate flux through a 10” UEAV24, 1 cartridge for measurements made at UCL, 
and corrected for the housing pressure drop () and measurements made at Pall Walton Road 
using the ‘flow dP’ rig (). Measurements made at UCL as described in Section 2.3.1 
Measurements at Pall Walton Road as described in Section 2.3.1.1.
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Figure 3-5: Permeate flux through a 1” UEAV24, 1 cartridge for measured transmembrane 
pressure differences that were corrected () and not corrected () for the housing pressure drop. 
Experiments conducted with clean water as described in Section 2.3.1. Feed flow rates ranged 
from 0-10.6 Lmin-1.

3.2.2. Axial Mixing Within Cartridge Housing

Having measured the pressure drop exerted on the experimental system by the 

cartridge housing, the liquid hydrodynamics within the 10” housing were 

investigated. A transparent housing with the same internal dimensions as a 

standard stainless steel housing was constructed as described in Section 2.1. This 

allowed for direct observation of fluid flow inside the housing during each 

experimental run. As described in Section 2.1 potassium permanganate was used 

to visualise the path of the feed into and around the housing from the inlet.
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Figure 3-6: Time-lapse images showing the infiltration of dyed feed solution into the 10” 
cartridge housing when operated at a feed flowrate of 1.0 Lmin-1. Images captured every 0.23 
seconds from (a) t = 0 s, through (b) t = 0.23 s, (c) t = 0.46 s, (d) t = 0.92 s, (e) t = 1.15 s, (f) t = 
8.23 s. Marked scale on side of housing used to plot the progression of the dyed feed up the 
length of the cartridge. Housing viewed from the side with the feed inlet. Experiments conducted 
as described in Section 2.2.1.

Figure 3-6 shows the infiltration of dye into the housing for a feed flowrate of 1.0 

Lmin-1 corresponding to a clean water flux of approximately 57 Lm-1h-1 at a 

TMP of 5 mbar. A marked scale on the side of the housing was used to record the 

progress of the dye from the feed inlet, situated at the base of the cartridge, to the 

top of the cartridge. The progression of the dyed feed solution was observed from 

the side of the feed inlet. It took 8 seconds from when the dye entered the 

housing for it to reach the top of the cartridge.



99

Figure 3-7: Time-lapse images showing the infiltration of dyed feed solution into the 10” 
cartridge housing when operated at a feed flowrate of 3.9 Lmin-1. Images captured every 0.23 
seconds from (a) t = 0 s, through (b) t = 0.23 s, (c) t = 0.46 s, (d) t = 0.92 s, (e) t = 1.15 s, (f) t = 
2.20 s. Marked scale on side of housing used to plot the progression of they dye up the length of 
the cartridge. Housing viewed from the side with the feed inlet. Experiments conducted as 
described in Section 2.2.1.

Figure 3-7 shows the infiltration of dye for a higher feed flowrate of 3.9 Lmin-1, 

corresponding to a clean water flux of approximately 220 Lm-1h-1 at a TMP of 19 

mbar. Here it can be seen that the higher flowrate lead to greater infiltration up 

the height of the cartridge. This was due to the higher momentum in the axial 

direction caused by the higher linear velocity of the dyed feed at the inlet. A 

slight increase in radial dispersion was also observed for the higher feed 

flowrate. 
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Figure 3-8: Time-lapse images showing the infiltration of dyed feed solution into the 10” 
cartridge housing when operated at a feed flowrate of 7.1 Lmin-1. Images captured every 0.23 
seconds from (a) t = 0 s, through (b) t = 0.23 s, (c) t = 0.46 s, (d) t = 0.92 s, (e) t = 1.15 s, (f) t = 
1.36 s. Marked scale on side of housing used to plot the progression of they dye up the length of 
the cartridge. Housing viewed from the side with the feed inlet. Experiments conducted as 
described in Section 2.2.1.

Figure 3-8 shows that the degree of infiltration was seen to increase further for 

the highest feed flowrate tested of 7.1 Lmin-1 corresponding to a clean water flux 

of approximately 400 Lm-1h-1 at a TMP of 34 mbar. Once again the increase in 

feed flowrate lead to an increase in axial momentum. It was again observed that 

radial dispersion did not increase significantly with the increase in feed flowrate.

Using the measuring scale on the side of the housing it was possible to plot the 

progression of the front of the dyed feed solution for each of the feed flowrates 

used in Figure 3-6 to Figure 3-8. The rate of infiltration as a function of feed 

flow rate is shown in Figure 3-9.
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Figure 3-9: Progression of dyed feed front over time as a function of feed flowrate: () 1.0 
Lmin-1, () 3.9 Lmin-1 and () 7.1 Lmin-1. Error bars represent one standard deviation around 
the mean (n = 3). Solid lines fitted by linear regression (R2>0.99). The dashed line indicates the 
top of the cartridge at a height of 10” (25.4 cm). Experiments were conducted as described in 
Section 2.2.1.

Figure 3-9 shows that, for each feed flowrate used, the progression of dye in the 

axial direction followed a linear relationship, which would be expected, as the 

feed flowrate (and thus feed velocity) remained constant. The dye front was 

almost seen to reach the top of the cartridge by the time that the recording was 

stopped (time = 8.2s) indicating rapid progression in all cases.

Progression of the dye front appears to be a function of the feed flowrate. To 

investigate further the time taken for the dye front to reach the top of the feed 

side of the cartridge was recorded for a wide range of feed flowrates as shown in 

Figure 3-10.
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Figure 3-10: Time taken for dyed feed front to reach the top of the cartridge (hC) on the feed side 
of the membrane as a function of feed flowrate. Error bars represent one standard deviation about 
the mean (n=3). Experiments performed as described in Section 2.2.1.

Figure 3-10 shows that as the feed flowrate increased there is an almost 

exponential decline in the time for the dye to reach the top of the cartridge. 

Higher measurement variation was seen in the measurement taken at lower 

flowrates. Whilst the time taken to reach the marked position was relatively high 

for low feed flowrate, the maximum time (~10 s) was still quick when placed in 

the context of a filtration operation (>15 min). Above a feed flowrate of 4 Lmin-1

the time taken for fluid to reach the top of the cartridge was negligible. In a 

bioprocess it is likely that the cartridges would be operated at feed flowrates 

greater than 4 Lmin-1 (Haslam, 2007), thus any effects seen below this rate are 

likely not to be significant. 
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3.2.3. Radial Mixing Within Cartridge Housing

Initial investigation of the images captured in Figure 3-6 – Figure 3-8 suggested 

that the rate of liquid dispersion in the radial direction may be lower than that in 

the axial direction. Thus the camera used to record the progression of the dye 

front into the housing was re-positioned to face the permeate side of the housing, 

at a position 180° from the feed inlet (Figure 2-4). Three measurement marks 

were made at the bottom, middle and top of the cartridge (hC = 30 mm, 130 mm 

and 220 mm from the base respectively). Just as for the axial dispersion 

measurements, the time taken to reach these marks was recorded for the same 

range of feed flowrates.

The results for the measurement mark located at the bottom of the cartridge (hC = 

30 mm) are given in Figure 3-11. The line shows a non-linear decline similar to 

that observed for the axial mixing in Figure 3-10. However, for feed flowrates 

less than 4 Lmin-1, the time to reach the measurement mark was greater than for 

the axial dispersion, even though the bottom permeate side measurement mark 

was closer to the feed inlet. Above a feed flowrate of 4 Lmin-1 the time taken for 

the dye to reach the measurement mark was negligible. A degree of variation in 

the measured time was seen for the lower feed flowrates, as indicated by the 

error bars. 

Similar trends are seen for radial dispersion measurements at the mid-point of the 

cartridge, hC = 130 mm, (Figure 3-12) and the top of the cartridge, hC = 220 mm, 

(Figure 3-13). As was found for the bottom measurement mark, greater variation 

was seen in the time measurements made at low feed flowrates. This was 

particularly the case at the middle of the cartridge. Also for the top and middle of 

the cartridges, the time measurement did not reduce to the same level as had 

previously been seen for the bottom of the cartridge. 
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Figure 3-11: Plot of time taken for dyed feed front to reach the bottom measurement (hC = 30 
mm) mark on the permeate side of housing as a function of feed flowrate. Error bars represent 
one standard deviation around the mean (n=3). Experiments conducted as described in Section 
2.2.2.
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Figure 3-12: Plot of time taken for dyed feed front to reach the bottom measurement (hC = 130 
mm) mark on permeate side of housing as a function of feed flowrate. Error bars represent one 
standard deviation around the mean (n=3). Experiments conducted as described in Section 2.2.2.
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Figure 3-13: Plot of time taken for dyed feed front to reach bottom measurement (hC = 220 mm) 
mark on the permeate side of the housing as a function of feed flowrate. Error bars represent one 
standard deviation around the mean (n=3). Experiments conducted as described in Section 2.2.2.

To compare more closely the axial and radial dispersion, the datasets for the two 

measurement marks at the top of the cartridge (with one on the feed side and the 

other on the permeate side) have been combined in Figure 3-14. It can be seen

from the figure that it takes longer for dispersion to take place on the permeate 

side, than it does on the feed side. This difference in dispersion reduces at higher 

flowrates as greater axial and radial momentum enters the system at the feed 

inlet. 

Whilst there appears to be a measurable housing effect in terms of variation in 

axial and radial hydrodynamics, in the context of a filtration operation the effect 

is likely to be insignificant.
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Figure 3-14: Combined plot of data contained in Figure 3.10 and 3-13. Error bars represent one 
standard deviation about the mean (n = 3). Both datasets were taken at the top of the cartridge, 
but with one on the feed side () and the other on the permeate side ().

3.3. Development of a Realistic Fouling Feedstock

In Section 1.3.1 it was noted that a common feedstock that a sterile or bioburden 

reduction filter will face is a protein solution. In Section 1.3.2 the filterability of 

a range of protein solutions was discussed; in general the protein solutions were 

seen to foul a microfiltration membrane and the filterability varied depending 

upon the protein contained within the solution. As part of this work the 

assessment of the performance of a 0.22 µm rated membrane filter with a 

realistic feedstock is required for a range of size-scales. A protein solution would 

make an ideal test feedstock, however, as the filterability varies depending upon 

the protein selected then an initial study is required to select a suitable protein for 

use in this work, particularly as experiments will be conducted on the large-scale.
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Based upon ease of availability and cost, bovine serum albumin (BSA) and 

pepsin were selected as initial candidates. The filterability of solutions of each of 

the proteins was assessed using flat sheet membrane. The selected protein will be 

used to characterise the performance of the large-scale 10” pleated cartridge later 

in Section 3.4.2.

3.3.1. Filterability of BSA Solution using a 0.2 µm rated Membrane 

Filter

A 1 gL-1 solution of BSA in 0.03 M phosphate buffer (pH = 7.4) was selected for 

initial investigation. BSA has been used extensively within the filtration studies 

outlined in Section 1.3.2, thus providing literature data for comparison (Girones 

et al., 2006; Kelly et al., 1995; Kelly et al., 1997). Furthermore, BSA is a species 

that is readily available.

Initial studies quantified permeate flux versus time relationships as a function of 

storage time of the BSA solution as shown in Figure 3-15 for a solution stored at 

20°C between filtration runs. For fresh BSA solution (t = 1 hr) a 20% decline 

was seen in the permeate flow over the course of the filtration run. The decline in 

permeate flow was largely linear after an initial drop of 10% at the start of the 

filtration run.

After 24 hr of storage the filterability of the solution had declined significantly. 

A drop in permeate flux to below 20% of the initial flowrate was seen after 10 

minutes of operation. From this point the permeate flow was seen to decline to 

less than 5% of the initial flow. The rate of decline in permeate flow increased 

further after a total storage time of 48 hr. When the solution was filtered a drop 

in permeate flow to below 20% of the initial rate was seen after 5 minutes of 

operation. Again, from this point further decline was seen to a point where the 

permeate flow was less than 5% of the initial rate.
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Figure 3-15: Impact of storage time (at 20 °C) upon the filterability of 1 gL-1 BSA solution in 
0.03 M phosphate buffer (pH = 7.4). Q = Permeate flow rate (mLmin-1). Q0 = 130 mLmin-1.
Filtration experiments conducted at the following times after preparation: 1 hr (), 24 hr (), 48 
hr (), 72 hr (). Experiments conducted with a single preparation of the BSA solution, which 
was filtered through 47 mm discs of Supor® EAV membrane as described in Section 2.6.2.1. 

After storage for a further period of 24 hr (total storage time = 72 hr) no further 

change in the rate of decline in permeate flow was measured. It was seen that the 

non-linear flux decline was the same as after 48 hr of storage.

Another preparation of BSA solution was stored at a temperature of 4°C between 

filtration runs. The results for these experiments are shown in Figure 3-16. Just 

as for when stored at 20°C the filterability of the BSA solution declined during 

storage, however the rate of decrease in permeate flow was significantly slower 

than when the solution was stored at 4°C.
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Figure 3-16: Impact of storage time (at 4°C) upon the filterability of 1 gL-1 BSA Solution in 0.03 
M phosphate buffer (pH = 7.4). Q = Permeate flow rate (mLmin-1). Q0 = 90 mLmin-1. Filtration 
experiments conducted at the following times after preparation: 1 hr (), 48 hr (), 120 hr (), 
216 hr (), 552 hr (). Experiments conducted with a single preparation of the BSA solution, 
which was filtered through 47 mm discs of Supor EAV membrane as described in Section 
2.6.2.1. 

After 1 hour of storage a 15% reduction in permeate flowrate was measured after 

filtration for 30 min. After 48 hr of storage the rate of decline remained slow 

although after 30 min of operation a drop in permeate flow of 25% was 

measured. The rate of decline in permeate flow continued to increase after total 

storage times of 120 and 216 hr, until after 552 hr the rate of decline in permeate 

flow increased to a level whereby the permeate flow declined to below 20% of 

the initial flow after 10 min of operation.

The datasets in Figure 3-15 and Figure 3-16, are summarised in Table 3-1 in 

terms of the time (t20) taken for the permeate flow to drop to less than 20% of the 

starting flow rate (Q/Q0 = 0.2). This value is presented for a range of storage 
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temperatures and storage times. It can be seen that the value of t20 after storage at 

20°C for 72 hr is less than for the chilled solution stored at 4°C for 552 hr, 

indicating that the filterability of the BSA solution is worse after storing at room 

temperature. Values of t20 taken from other studies in the literature are also given 

in Table 3-1. In the case of storage at 20 °C, the value of t20 measured in this 

study was lower than that reported in the literature. However for storage at 4 °C, 

the value of t20 measured here was seen to higher than the values reported in the 

literature. It should be noted that for three different types of membranes were 

used for the literature studies and this may be cause in the differences noted.

These experiments have shown a BSA solution to foul a 0.22 µm rated 

membrane. However, the volume of feedstock required to conduct the 

experiment was high (2 L for low fouling conditions). Pepsin has been discussed 

in the literature as showing a greater propensity to foul microfiltration 

membranes (see Section 1.3.2.3), and thus may require a lower feedstock volume 

to gain representative data with a range of filtration devices. 
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Table 3-1: Measured values of t20 for the datasets given in Figure 3-15 and Figure 3-16. Literature values also presented for comparability of the values derived in this 
study.  

Membrane Type BSA Concentration

(gL-1)

Max Storage Time

(hr)

Storage Temperature

(°C)

t20

(min)

Data Source

Material Pore Size 

(µm)

PES 0.2 1 1 20 - Figure 3-15

PES 0.2 1 24 20 9 Figure 3-15

PES 0.2 1 48 20 4 Figure 3-15

PES 0.2 1 72 20 4 Figure 3-15

PES 0.2 1 1 4 - Figure 3-16

PES 0.2 1 48 4 - Figure 3-16

PES 0.2 1 120 4 - Figure 3-16

PES 0.2 1 216 4 - Figure 3-16

PES 0.2 1 552 4 10 Figure 3-16

PVDF 0.22 2 24 22 30 (Kelly et al., 1997)

PES 0.16 4 24 4 4 (Kelly et al., 1994)

PVDF 0.22 1 48 4 70 (Kelly et al., 1995)

Silicon Nitride 1.2 1 2 8 10 (Girones et al., 2006)



112

3.3.2. Filterability of Pepsin Solution using a 0.2 µm rated Membrane 

Filter

The filterability of three separate preparations of 10 gL-1 pepsin in 0.03 M 

phosphate buffer (pH 7.4) is shown in Figure 3-17. In Section 3.3.1 throughput 

was reported as Q/Q0 due to the high permeate flow rates measured initially. In 

this section, throughput is reported as cumulative volume, as the flow rates were 

too small to measure accurately using this method. The three preparations varied 

in the processing that they received before filtration. As would be expected, the 

fresh preparation (filtered after 1 hr storage) yielded the best filtration 

performance. The preparation that was exposed to mixing for one hour showed a 

reduced filterability, which was likely caused by aggregation of the pepsin due to 

shear (Wang, 2005). The solution stored for three days at 20°C showed the worst 

filterability, in turn likely to be due to aggregation as a consequence of 

temperature and time effects. 

The mechanism behind the fouling of the membrane has been partially 

investigated here through the analysis of samples taken from the feed stream and 

permeate stream during a filtration run. These samples were analysed using light 

scattering as described in Section 2.6.4 to identify the size of particles contained 

within the sample. The results of the analysis for the fresh preparation of pepsin 

solution (storage time = 1 hr) is given in Figure 3-18. The results of the analysis 

for the aged preparation of pepsin solution (storage time = 3 days) is given in 

Figure 3-19. It is important to note that the data shown in the two figures is 

qualitative and not quantitative. Also, the technique is sensitive to the range of 

particles, such that the presence of large particles in the sample will dominate the 

measured signal, hiding the presence of smaller particle species (Malvern 

Instruments, 2004).
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Figure 3-17: Filterability of three separate preparations of a feedstock consisting of 10 gL-1

pepsin in a 0.03 M phosphate buffer (pH = 7.4). One preparation was filtered within one hour of 
preparation (―), one underwent mixing for one hour (– –) and one was left in storage at a 
temperature of 20°C for three days (▬). All preparations were filtered at 0.14 bar(g) using 25 
mm discs of Supor EAV membrane as described in Section 2.6.2.2.

The analysis of the samples taken during the filtration of the fresh preparation of 

the pepsin feedstock (Figure 3-18) showed that the feed sample was dominated 

by large aggregate species with a size range between 1-3 µm that would be large 

enough to block the pores of the 0.22 µm rated membrane. There was also a 

smaller peak between the size range of 20-40 nm. The permeate sample showed a 

similar taller peak at this size range, with an additional peak at the range of 1-9 

nm. It is assumed that this peak was not observed in the feed sample as it was 

obscured by the larger particles present. The permeate sample did not show the 

presence of any particles in the 1-3 µm range as they had been removed by the 

membrane. 
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The analysis of the feed sample taken from the filtration of the aged pepsin 

solution stored for three days (Figure 3-19) showed similar trends to those seen 

for the filtration of the fresh preparation of the feedstock.

The controlling mechanism behind the fouling of the membranes cannot be 

identified from these results. It is possible that the largest particles are blocking 

the pores outright, following a complete blocking model (Table 1-4). However it 

is also possible that the smaller species in the range of 20-40 nm are collecting in 

the pores of the membrane leading to constriction of the pore according to the 

standard pore blocking model (Table 1-4). It has been previously suggested 

during another study that a two step mechanism is in action that consists of initial 

blocking of the pores by protein aggregates, followed by attachment of native 

protein to the growing deposit (Kelly et al., 1997). 

The effect of feed pressure on the filtration of the pepsin feedstock is shown in 

Figure 3-20. It can be seen that the fouling nature of the feedstock is similar for 

both feed pressures used. However, throughput is dependent upon feed pressure, 

when an increase in feed pressure lead to higher throughput. 

Figure 3-18: Size distribution of particles contained with samples taken during the filtration
(Figure 3-17) of fresh (storage time = 1 hr) feedstock of 10 gL-1 pepsin in 0.03 M phosphate 
buffer (pH = 7.4) with a 0.22 µm rated Supor® EAV membrane. Samples taken were from the 
feed stream (―) and permeate stream (– –) after 7 min. Measurements made using light 
scattering as described in Section 2.6.4.



115

Figure 3-19: Size distribution of particles contained with samples taken during the filtration 
(Figure 3-17) of aged (storage time = 3 days) feedstock of 10 gL-1 pepsin in 0.03 M phosphate 
buffer (pH = 7.4) with a 0.22 µm rated Supor® EAV membrane. Samples taken were from the 
feed stream (―) and permeate stream (– –) after 7 min. Measurements made using light 
scattering as described in Section 2.6.4.
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Figure 3-20: Filtration of feedstock consisting of 10 gL-1 pepsin in 0.03M phosphate buffer (pH 
= 7.4) with Supor® EAV membrane. Experiments conducted at two different feed pressures: 0.14 
bar(g) (―) and 0.83 bar(g) (– –). Experiments conducted as described in Section 2.6.2.2.
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Table 3-2: Estimated feed volume requirements for filtration of protein solutions using a 10” 
UEAV24, 1 cartridge calculated from filtration data for the various feedstocks stored at 20°C.

BSA (fresh) BSA (stale) Pepsin (fresh) Pepsin (stale)

Estimated Feed 

Volume (L)I

2700 250 40 10

I Calculated using the Vmax method described in Section 1.7 applied to data contained in Figures 
3.2 and 3.5.

A summary of the estimates of the volume of a BSA or pepsin feed required to 

determine Vmax type data with a 10” UEAV24, 1 cartridge is given in Table 3-2. It 

can be seen that the feed volume required was much higher for BSA feedstocks. 

As the aim for the large-scale study is to work with less than 100 L, and ideally 

with less than 1 L, for each experiment then the pepsin feedstock should be used. 

Furthermore, to enable the material to be quickly generated for multiple batches, 

the fresh preparation should be used.

3.4. Basic Filtration Performance for 10” Pleated Membrane 

Cartridge Filters

Having investigated the design features of pleated cartridge housings that can 

impact upon accurate measurement of the performance of pleated cartridge filters 

with liquid feedstocks, the pressure drop across housing was seen to be of 

significance for the 10” scale cartridge, where the measured transmembrane

pressure differences are relatively low for the operational flowrates used.

These findings will be used to generate a dataset for a 10” UEAV24,1 cartridge, 

which is used in this thesis as the standard large-scale device against which all 

other scales are compared. Base data will be presented for both non-fouling 

(water) and two fouling feedstocks (protein solution and a yeast solution).
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3.4.1. Water Flux Performance for 10” Pleated Cartridge Filter

The 10” UEAV24, 1 cartridge was first characterised with water. The variation of 

water flux with a change in transmembrane pressure difference for three separate 

cartridges is given in Figure 3-21. The measured transmembrane pressure 

differences were relatively low, up to 50 mbar, due to the limitations of the 

pumping equipment used. However good agreement was seen between the three 

independent datasets.
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Figure 3-21: Clean water flux through a 0.2 µm rated 10” Supor® UEAV24, 1 cartridge. Results 
for three separate cartridges presented. Dashed line (▬ ▬) fitted by linear regression (R2>0.92)
represents the mean (n=3). Measurements made at ambient temperature (20°C) as described in 
Section 2.4.1. TMP measurements were corrected for housing pressure drop as described in 
Section 3.2.1. 
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3.4.2. Volume Throughput for Protein Solution Filtration

Earlier in this chapter (Section 3.3) the filterability of a range of different protein 

solutions was assessed using flat sheet membrane. Based upon an estimate of the 

volume required to operate at the large-scale, a 10 gL-1 pepsin solution was 

selected to work with as the feed volume required was lower than for BSA. 

The filtration data using a 10” UEAV24, 1 cartridge of three separate preparations 

of the pepsin solution is shown in Figure 3-22. A new cartridge was used to filter 

each fresh preparation of the pepsin feedstock. The volume of pepsin required to 

perform the filtration of pepsin was significantly greater than the 40 L that was 

predicted in Section 3.3.2 (Table 3-2). Thus the performance prediction 

generated on the flat sheet membrane was poor (this will be discussed further in 

Section 5.3). From the figure it can be seen that volume throughput of the 

permeate was constant during the start of the filtration operation, whilst a rise in 

the feed pressure was measured. After approximately 15 minutes a second 

operational region was observed whereby the volume throughput no longer 

remained at a constant rate. During this region the equipment used to pump the 

feed into the filtration rig had to be switched off to allow the feed pressure to 

drop. After the feed pressure had dropped below 0.2 bar the pumping was 

activated until the feed pressure again rose to 0.8 bar. This cycle was repeated 

until an operational time of 55 minutes had been reached. 

It can be seen in Figure 3-22 that variation in the filtration performance was seen 

in the throughput performance of the three cartridges used. This variation has 

been attributed to differences in the composition of the feedstock. 

During each filtration experiment samples were taken from the feed and 

permeate streams. The procedure described in Section 2.6.3 was used to measure 

the concentration of pepsin in each sample. The average transmission rate 

measured for the three filtration experiments was 95%.
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Figure 3-22: Filtration performance of 10” UEAV24, 1 cartridges for three separate preparations 
of 10 gL-1 pepsin solution in 0.03 M sodium phosphate buffer (pH 7.4). A new cartridge was used 
to filter each preparation of the pepsin solution. Filled symbols represent the measured feed 
pressure, whilst unfilled symbols represent the measured permeate volume. Experiments 
performed as described in Section 2.5.

3.4.3. Volume Throughput for Yeast Solution Filtration

The performance of the 10” UEAV24,1 cartridge has also been characterised for a 

7.7 gL-1 yeast solution containing 1 gL-1 BSA in a 0.03 M sodium phosphate 

buffer (pH = 7.4). The filtration of two separate preparations of the feedstock is 

given in Figure 3-23. A new filter cartridge was used for each filtration 

experiment. The volume throughput data given in Figure 3-23 shows a similar 

trend as that seen in Figure 3-22 for the pepsin feedstock, whereby two distinct 

regions are evident. The variation between experiments was seen to be low, 

which is in contrast to the higher variation seen with the pepsin feedstock. 

Average transmission of BSA from the feed to permeate streams for the two 

experiments was 86%, indicating that the yeast cake upon the surface of the 

membrane of the membrane may be acting to retain BSA on the feed side.
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Figure 3-23: Filtration performance of 10” UEAV24, 1 cartridges for three separate preparations 
of 7.7 gL-1 yeast and 1gL-1 BSA solution in 0.03 M sodium phosphate buffer (pH 7.4). A new 
cartridge was used to filter each preparation of the yeast solution. Experiments performed as 
described in Section 2.5.1.

3.5. Discussion and Summary

The aim of this chapter was to characterise the basic filtration performance of a 

large-scale pleated cartridge in a standard cartridge housing for a range of 

feedstocks. This aim was achieved through a number of objectives that were 

fulfilled. The main conclusions are:

 Whilst there is some variation in the measured transmembrane pressure 

difference (Figure 3-3) and both axial (Figure 3-10) and radial (Figure 3-

14) mixing in the cartridge housing at lower flow rates, the magnitude of 

the effects are considered small relative to the operation of a real filtration 

process. Consequently, hydrodynamic effects related to the cartridge 

housing can most probably be neglected in the design of any scale-down 

cartridge device. The effect seen in Figure 3-10 and Figure 3-14 may be 
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more pronounced when using feeds with greater viscosity. In the case of 

bioprocesses it is unlikely that non fouling feeds filtered by the cartridge 

filters would differ widely from that of water.

 The impact of storage conditions (time and temperature) upon the 

filterability of a model BSA system were investigated. The filterability of 

BSA solution was seen to decrease over the course of storage, such that 

after 72 hrs of storage the permeate flow would drop to below 20% of the 

initial permeate flow after 5 minutes of operation. The rate of decline in 

filterability was slowed by reducing the storage temperature, although the 

decline could not be prevented.

 A 10 gL-1 pepsin solution was seen to be a good candidate for use within 

the thesis as a realistic fouling feedstock, as the propensity for fouling 

was such that it was estimated that 40 L of a fresh preparation would foul 

a large-scale 10” UEAV24, 1 cartridge. However, when the performance of 

the large-scale cartridge was characterised for the pepsin solution (Figure 

3-22), then the performance prediction generated using the flat sheet 

membrane was seen to significantly underpredict the volume required 

(150 L). This confirms the utility of pepsin as a fouling feedstock and 

also the poor scale-up predictions from flat sheet disks (Chandler et al., 

2004; Rajniak et al., 2008).

 The performance of the 10” UEAV24, 1 cartridge was characterised for 

three feedstocks: water (non-fouling), pepsin solution (fouling), yeast and 

BSA solution (fouling). This provides the basic flux, volume throughput 

and transmission data against which the scale-down approaches studied in 

this thesis can be assessed.

In the next chapter, the design of the membrane pleats and their impact on 

filtration performance will be considered in more detail.
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4 Influence of Pleat Geometry on Membrane 

Cartridge Performance1

4.1 Introduction and Aims

It was seen in Figure 1-1 that 0.2 µm rated and sterilising grade pleated 

microfiltration cartridges are widely used within the biopharmaceutical industry 

at many positions within a bioprocess sequence. Typical applications include 

filtration of buffers (Jornitz et al., 2007), final product stream clarification after 

depth filtration and sterile product filtration prior to formulation (Sundaram, 

1998). In most applications the filter will be exposed to large volumes of process 

fluid containing high protein concentration but relatively low concentration of 

suspended solids (Jornitz et al., 2007). Due to the large process volumes it is 

common practice to strive for the highest membrane area per unit volume of 

cartridge to minimise the footprint of the overall unit. One option to achieve this 

is by pleating of the flat sheet membrane and packing a high density of pleats 

around a central core. As was discussed in Section 1.6, pleating has been 

associated with a drop in cartridge performance when compared with flat sheet

membranes (Chandler et al., 2004; Rajniak et al., 2008).

In the previous chapter it was shown that hydrodynamic effects within the 

membrane housing had a negligible impact on membrane cartridge performance. 

Consequently this chapter will focus on the membrane pleat geometry since in 

the literature there has yet to be a study to determine the role that each pleat 

characteristic has upon the performance of the pleated cartridge. 

                                                
1 The majority of the results presented in this chapter have been published in: Brown, A.I., 
Levison P., Titchener-Hooker, N.J., Lye G.J.. 2009. Membrane pleating effects in 0.2µm rated 
microfiltration cartridges. Journal of Membrane Science. 341: 76-83.
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The aim of this chapter is to investigate in more detail the influence of pleat 

design on filtration performance in order to define which characteristics of the 

pleat geometry must be preserved in any scale-down device. The specific 

objectives of this chapter are:

 To fabricate a range of cartridges that enable the first systematic 

investigation of the influence of pleat geometry upon cartridge 

performance.

 To assess particle access into the pleat structure to further elucidate 

potential fouling mechanisms and the effective membrane area used 

during filtration.

 To determine the impact of pleating upon the optimal use of pleats within 

cartridges that handle liquid feeds.

 To define the pleat characteristics that must be maintained in any scale-

down cartridge device.

In this chapter the results of a systematic experimental investigation is presented, 

which considers the effect that membrane pleating has upon the clean water flux 

of a large scale cartridge and studies the change in clean water flux when 

transitioning from a flat sheet disc of membrane to a large scale cartridge. The 

insights gained, coupled with the findings from Chapter 3, will later be used to 

develop scale-down strategies that better mimic the performance of large-scale 

pleated cartridges. This strategy is illustrated in Figure 4-1.



124

Figure 4-1: Overview of the structure of the thesis showing strategy towards the development of 
a USD methodology that accounts for pleating effects. This chapter seeks to investigate the effect 
that pleating has upon the performance of membrane cartridge filters.

4.2 Effect of Pleating on Clean Water Flux

The clean water flux performance for the large-scale target cartridge (10” 

UEAV24, 1) has previously been evaluated in Figure 3-21. For comparative 

purposes the clean water flux of a flat sheet disc of the same membrane has also 

been measured. The mean flux for the two different configurations are given in 

Figure 4-2 as a function of applied TMP. The smaller area of the flat sheet disc 

lead to higher variation in the quantification of the flux (indicated by the large 

error bars) than for the 10” cartridge. This is in agreement with previous findings 

when working with small areas of membrane (Jackson et al., 2006). From Figure 

4-2 it can be observed that at an equivalent TMP, the permeate flux was 

considerably lower for the 10” cartridge than for the flat sheet disc. The 

reduction in flux is about 53% on average. This compares well with a measured 

flux reduction of 53% for a PVDF sterilising grade membrane cartridge when 

compared to a flat sheet (Rajniak et al., 2008), though is lower than a flux 

reduction of 70% for a pleated glass fibre cartridge (Wakeman et al., 2005).
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Figure 4-2 Measured clean water flux through 0.2 µm Supor® EAV membrane for different 
module configurations and scales. The small-scale () utilises 25 mm diameter flat sheet discs of 
membrane. The large scale () data given is the mean of the three datasets given in Figure 3-21 
and also the data given in Figure A-1 (Appendix A). Measurements made at ambient temperature 
(20°C) as described in Section 2.4. Lines fitted by linear regression (R2>0.92). Error bars 
represent one standard deviation about the mean (n = 3).

Average membrane resistances (Rm) for the flat sheet discs and the 10” pleated 

cartridge based on the data in Figure 4.3 were calculated using Equation 1-4 to 

be 1.60×1010 m-1 and 3.43×1010 m-1 respectively. In principle the membrane 

resistance due to the porosity of the membrane and the resistance to flow that the 

pores create (Reif, 2006) should be identical since both the cartridge and flat 

sheet are made from the same material. The primary factors that changed 

between the two configurations were: the flat sheet was pleated with a Ultipleat®

configuration, hP = 24 mm, and the pleats were packed into a cartridge to yield a 

pleated packing density (defined in Section 2.3.1) = 1.
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4.3 Effect of Pleat Geometry on Clean Water Flux

In order to further investigate the influence of membrane pleating on the 

measured membrane resistance, a series of 1” pleated membrane cartridges were 

specially fabricated as described in Section 2.3.1. They were fabricated to enable 

systematic investigation of the type of pleat (Fan or Ultipleat®), the pleat height 

(hP) and the pleat density as shown in Figures 2-7 – 2-10 . The properties of these 

are summarised in Table 4-1. As was described in Section 2.3.1.2, all cartridges 

were tested after manufacture to ensure that no leaks were present. The measured 

water flux profiles for various specially fabricated 1” cartridges with a Fan pleat 

and hP = 15 mm and varying PPD are shown in Figure 4-3. It can clearly be seen 

that as the pleat structure becomes more open (reduced PPD) so water flux 

increased and TMP decreased. The 1” cartridge with a PPD of 0.65 shows a 

performance closest to that of the flat sheet membrane. 

Table 4-1: Properties of the various membrane cartridges used within this study. All cartridges 
contained a Supor® EAV 0.2µm rated membrane. Cartridge configuration nomenclature as 
defined in Section 2.3.1.1. Pleat characteristics as defined in Figure 2-7 – 2-9.

Cartridge 

Configuration

Membrane 

area (m2)

Pleat type Pleat 

height, hp

(mm)

Pleat 

packing 

density 

(PPD)

Angle 

between 

pleats, θ (°)

10” UEAV24, 1 1.1 Ultipleat® 24 1 ~0

10” EAV10, 1 0.72 Fan 10 1 ~0

1” EAV10, 1 0.079 Fan 10 1 ~0

1” EAV10, 0.85 0.067 Fan 10 0.85 ~6

1” EAV10, 0.65 0.052 Fan 10 0.65 ~12

1” EAV15, 1 0.090 Fan 15 1 ~0

1” EAV15, 0.85 0.076 Fan 15 0.85 ~6

1” EAV15, 0.65 0.059 Fan 15 0.65 ~12
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Figure 4-3: Measured clean water flux through 0.2 µm Supor® EAV membrane in pleated 
membrane cartridges with different pleat configurations: 1” Cartridges with hP = 15 mm, PPD of 
1 (), 0.85 () and 0.65 () were used. Flat sheet data (---) and 10” cartridge data (—) shown 
for comparison. Measurements made at ambient temperature (20°C) as described in Section 2.4. 
Error bars represent one standard deviation about the mean (n = 3).

The measured water flux profiles for 1”cartridges with the same Fan pleat type 

but reduced pleat height (hP = 10 mm) and varying PPD are shown in Figure 4-4. 

The results for these cartridges showed the same trend as for the 1” Fan pleat 

cartridges with hP = 15 mm, however, for hP = 10 mm the flux profiles shifted 

still closer to that of the flat sheet disc. By application of an ANOVA analysis

(Hinkelmann et al., 2008) it was seen that for PPD = 0.65 the water flux profile is 

not significantly different (P = 0.7) to that of the flat sheet disc. Hence, at this 

level of pleat packing, height and type, there ceases to be a significant difference 

between performance of a pleated or a flat sheet membrane.
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Figure 4-4: Measured clean water flux through 0.2 µm Supor® EAV membrane in pleated 
membrane cartridges with different pleat configurations: 1” Cartridges with hP = 10 mm, PPD of 
1 (), 0.85 () and 0.65 () were used. Flat sheet data (---) and 10” cartridge data (—) shown 
for comparison. Measurements made at ambient temperature (20°C) as described in Section 2.4. 
Error bars represent one standard deviation about the mean (n = 3).

Table 4-2: Calculated membrane resistances for Supor® EAV 0.2 µm rated membrane fitted in 
each of the cartridges described in Table 4.1. Errors represent one standard deviation about the 
mean (n=3). Only one 1” EAV10, 0.65 cartridge was available for the study.

Cartridge 

Configuration

Membrane Resistance 

(×1010) (m-1)

10” UEAV24, 1 3.43 ± 0.04

1” EAV10, 1 2.01 ± 0.20

1” EAV10, 0.85 1.78 ± 0.02

1” EAV10, 0.65 1.50

1” EAV15, 1 2.59 ± 0.12

1” EAV15, 0.85 2.20 ± 0.02

1” EAV15, 0.65 1.93 ± 0.14

Flat sheet 1.60 ±0.13
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Average Rm values, calculated using Equation 1-4, for all the cartridge 

configurations used are shown in Table 4-2. In all cases changes in pleat height 

and PPD from the standard 10” UEAV24, 1 configuration caused the measured Rm

value to decrease. In general it was seen that Rm decreased as both PPD and hP

decreased. The 1” cartridge with hP = 10mm and PPD = 0.65 had a resistance 

closest to that of the flat sheet membrane. The calculated membrane resistance is 

critically dependent upon the effective area of the membrane as defined in 

Equation 1-4. The increase in membrane resistance caused by the increasing hP

and PPD may cause the effective filtration area available for flow to be lower as 

has been hypothesised by other researchers (Wakeman et al., 2005). Such a 

hypothesis would be valid if the characteristics of the pleat affected fluid 

accessibility to the entire surface area of the installed membrane within a 

cartridge. This would also account for the measured variation in clean water 

fluxes. This possible mechanism of performance loss was therefore investigated 

further.

4.4 Probing Particle Penetration within Pleats

To further investigate the hypothesis of reduced membrane accessibility with 

increased PPD and hP, a yeast (S. cerevisiae) suspension with a wet cell weight 

concentration of 7.7 gL-1 was used to probe the ability of micron-sized particles 

to penetrate into the pleat structure and to access the whole membrane surface 

area. A selection of 1” and 10” membrane cartridges, as described in Table 4-1, 

were used to filter the yeast solution until the permeate flux fell to a negligible 

level as described in Section 2.5. After each experiment the cartridges were 

allowed to dry and were then carefully cut open. The unfolded membrane was 

then examined to ascertain the extent to which cells had deposited at different 

points within the membrane pleats. Photographs illustrating typical deposition 

patterns in 10” and 1” cartridges are shown in Figure 4-5 and Figure 4-6. 
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Figure 4-5: Typical photographs of fouled membrane surfaces from 10” module configurations 
of varying hP showing yeast cell deposition. Inset shows the position within the pleat, where 0 
and 1 indicate the apex of the pleat, 0.5 indicates the base of the pleat. (a) 10” UEAV24, 1 cartridge 
containing tightly packed pleats of hP = 24 mm; areas of clean membrane are clearly visible 
corresponding to the inner surfaces of each pleat. (b) 10” EAV10, 1 cartridge containing Fan pleats 
of hP = 10 mm; similar areas of clean membrane are also seen on the inner surface of each pleat. 
Membranes imaged as described in Section 2.5.
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Membrane from 10” cartridges with hP = 24 mm and an Ultipleat® pleat type 

(Figure 4-5(a)) and hP = 10 mm and Fan pleat type (Figure 4-5(b)) showed areas 

of relatively clean membrane where yeast particles had been unable to penetrate 

into the pleat structure. These clean areas were predominantly located towards 

the base of each pleat and the total area of yeast-free membrane, as estimated 

visually, was smaller for the cartridge with hP = 10 mm compared to hP = 24 mm.

Yeast cell deposition varied along the length of each membrane cartridge. Areas 

of clean membrane tended to be found at the base of the cartridge (hP = 24 mm) 

and at the top of the cartridge with hP = 10 mm. For both pleat heights there was 

a greater deposition of yeast within the pleats toward the middle of the cartridge. 

Heat sealing of the pleated membrane to the plastic endcaps during cartridge 

fabrication at the base and the top may lead to these longitudinal variations and 

contribute to the formation of tighter, more closed structures in the membrane 

cartridge at these points. This would in turn account for the decreased 

accessibility into the pleat structure by the yeast particles at the ends of the unit.

The 1” cartridge with hP = 10 mm and PPD = 1 (Figure 4-6(a)) showed large 

areas where the membrane was free from particle deposition, predominantly at 

the base of the pleat. As the PPD decreased the deposition of yeast across all 

areas of the membrane was seen to increase based upon visual inspection. The 

cartridge with a PPD = 0.85 (Figure 4-6(b)) exhibited few areas of clean 

membrane, while at a PPD = 0.65 (Figure 4-6(c)) there was deposition of yeast 

across the entire membrane surface.

In summary the series of specially fabricated cartridges have helped identify the 

two main design characteristics of a pleat, hP and PPD, which appear to impact 

upon the accessibility of suspended solids into the pleat structure. Quantification 

of the extent and distribution of yeast cell deposition on the membrane for each 

of the configurations shown in Figure 4-5 and Figure 4-6, was used later in the 

chapter to gain further insight into the influence of pleat design on performance.
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Figure 4-6: Typical photographs of fouled membrane surfaces from specially fabricated 1” 
module configurations of varying PPD (hP = 10 mm) showing yeast cell deposition. (a) 1” EAV10, 

1 (b) 1” EAV10, 0.85 (c) 1” EAV10, 0.65. Images show that as the pleat structure opens up (decreasing 
PPD) there is a thicker layer of yeast upon the inner surface of each membrane pleat. Membranes 
imaged as described in Section 2.5. Cartridge configurations as defined in Table 4.1.
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4.4.1 Variation in Suspension Deposition

To assess the degree of experimental variation in the deposition of the yeast 

suspension within the pleated cartridges, experiments have been repeated in at 

least duplicate for each of the cartridge configurations used in Figure 4-5 and 

Figure 4-6. Images of the membrane surface for each of the configurations are 

shown in Figure 4-7 to Figure 4-11 for all three experiments conducted.

The yeast cell deposition for the 10” UEAV24, 1 cartridges are shown in Figure 4-

7. The results of the three experiments showed similar fouling patterns with the 

largest areas of clean membrane seen toward the base of the cartridge and the 

least yeast deposition within the pleat. For the 10” EAV10, 1 cartridge similar 

fouling patterns were also seen (Figure 4-8) with evidence of small areas of clean 

membrane found at the top of the cartridge. However, for the second experiment 

clean areas were also located towards the base of the cartridge. For both 

experiments the total area of clean membrane within the pleat structure was small 

when compared with the areas of clean membrane seen for the 10” UEAV24, 1

cartridge.

The fouling deposition for three 1” EAV10, 1 cartridges are shown in Figure 4-9. 

The first and third experiments showed similar fouling patterns with large areas 

of clean membrane evident towards the base of the pleat. The areas of clean 

membrane were smaller in size for the second experiment, but still located 

towards the base of the pleat. The three experiments conducted for the 1” EAV10, 

0.85 cartridges, i.e. with the more open pleat structure, showed consistent results 

as shown in Figure 4-10. Deposition of yeast was heavier and seen across the 

whole pleat with some evidence of heavier patches towards the apex of the pleat. 

Finally, the observation of the membrane surface for the three 1” EAV10, 0.65

cartridges (Figure 4-11) showed that for all three experiments large areas of 

heavy deposition was seen, with the deposits typically located towards the apex 

of the pleat. There was little evidence of clean membrane for each of the three 

experiments.
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Figure 4-7: Photographs of fouled membrane surfaces from 10” UEAV24, 1 cartridge containing 
tightly packed pleats. The images are taken from three separate cartridges, where (a) is the same 
image shown in Figure 4-5(a). Membranes imaged as described in Section 2.5.
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Figure 4-8: Photographs of fouled membrane surfaces from 10” EAV10, 1 cartridge containing 
tightly packed pleats. The images are taken from two separate cartridges, where (a) is the same 
image shown in Figure 4-5(b). Membranes imaged as described in Section 2.5.
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Figure 4-9: Photographs of fouled membrane surfaces from 1” EAV10, 1 cartridge containing 
tightly packed pleats. The images are taken from three separate cartridges, where (a) is the same 
image shown in Figure 4-6(a). Membranes imaged as described in Section 2.5.
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Figure 4-10: Photographs of fouled membrane surfaces from 1” EAV10, 0.85 cartridge containing 
more open pleat structure. The images are taken from three separate cartridges, where (a) is the 
same image shown in Figure 4-6(b). Membranes imaged as described in Section 2.5.
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Figure 4-11: Photographs of fouled membrane surfaces from 1” EAV10, 0.65 cartridge containing 
most open pleat structure of configurations used. The images are taken from three separate 
cartridges, where (a) is the same image shown in Figure 4-6(c). Membranes imaged as described 
in Section 2.5.
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Based upon the results reported in this section where similar deposition patterns 

were observed when duplicate experiments were conducted for each cartridge 

configuration, the results reported in Section 4.4 and shown in Figure 4-5 and 

Figure 4-6 are considered representative of the deposition patterns seen, and will 

be used for further analysis of the degree of deposition seen for the different 

membrane configurations.

4.5 Quantification of Effective Membrane Area

To more accurately quantify the effective membrane area (based upon micron 

sized particle deposition) high quality grey scale images of membranes 

abstracted from each cartridge configuration were first generated (as described in 

Section 2.5). Image analysis was used to measure the intensity of the grey level 

from the apex to the base of each pleat. The results of this analysis are given in 

Figure 4-12 to 4-14. The clean membrane data was plotted using a global average 

across the pleat height from apex to apex. The grey scale intensity can be used as 

a measure of the degree of yeast cell deposition. In this case a lower number 

represents darker areas and heavier deposition. Here, a grey scale intensity 

ranging between: 140 - 130 is taken to represent clean membrane: 130 - 110 

represents light yeast cell deposition: 110 - 90 represents heavy yeast cell 

deposition. 

Figure 4-12 shows the analysis of a 10” cartridge with hP = 24 mm, PPD = 1 and 

Ultipleat® pleat type. Three measurements were taken of the yeast deposition 

within a pleat at the top, middle and base of the cartridge. The membrane at the 

base of the cartridge revealed areas of light yeast cell deposition towards the 

apex of the pleat. Yeast cell deposition within each pleat then gradually reduced 

so that only clean membrane was measured towards the base of the pleat. The 

measurements of all deposits within pleats located at the middle and top of the 

cartridge both showed light levels of deposition within the whole pleat, with the 

measurement from the top of the cartridge showing the highest degree of yeast 

deposition.
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Figure 4-12: Quantification of yeast cell deposition and distribution within a representative 
individual pleat for a 10” UEAV24, 1 cartridge. Image analysis was used to quantify the intensity 
across the height of the pleat from each apex (0 and 1.0) to the base (0.5) as shown in the inset. A 
low grey level indicates heavy fouling.. Pleats were analysed at the base (▬ ▬), middle (▬), and 
top (—) of the cartridge. Dashed line (– –) represents average grey scale data from a clean 
membrane. Experiments and image analysis performed as described in Section 2.5.

Measurements were also taken from pleats located at the top, middle and base of 

the 10” cartridge with hP = 10 mm, PPD = 1 and Fan pleat type (Figure 4-13). 

Cell deposition measurement at the base of the cartridge showed predominantly 

light deposition at the apex of the pleat with evidence of clean membrane areas 

towards the base of the pleat. Pleats at the top of the cartridge were also 

predominantly clean. A uniform level of light yeast deposit was seen in the 

middle of the cartridge. This was in agreement with the sample taken from the 

middle of the 10” cartridge with an Ultipleat® pleat type (Figure 4-12).
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Figure 4-13: Quantification of yeast cell deposition and distribution within a representative 
individual pleat for a 10” EAV10, 1 cartridge. Image analysis was used to quantify the intensity 
across the height of the pleat from each apex (0 and 1.0) to the base (0.5) as shown in the inset. A 
low grey level indicates heavy fouling. Pleats were analysed at the base (▬ ▬), middle (▬), and 
top (—) of the cartridge. Dashed line (– –) represents average grey scale data from a clean 
membrane. Experiments and image analysis performed as described in Section 2.5.

The specially fabricated 1” cartridges also enabled investigation of yeast cell 

deposition as a function of PPD. Cartridges with a PPD of 1 showed areas of 

clean membrane at the base of the pleat with a low level of yeast deposits 

towards the apex. Figure 4-14 shows the effect that PPD has upon the deposition 

of yeast for measurements taken at the mid point of each cartridge length. At a 

PPD of 0.85 there was a uniform level of yeast deposits and at a slightly higher 

level than for a PPD of 1, across the entire membrane area within the pleat. 

Significantly higher levels of yeast deposits were measured for the cartridge with 

a PPD = 0.65, where position within the pleat appeared to have little effect upon 

the degree of yeast deposition.
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Figure 4-14: Quantification of yeast cell deposition and distribution within a representative 
individual pleat for various pleat sizes and configurations. Image analysis was used to quantify 
the intensity across the height of the pleat from each apex (0 and 1.0) to the base (0.5) as shown 
in the inset. A low grey level indicates heavy fouling. 1” EAV10, 1 (—),1” EAV10, 0.85 (▬), 1” 
EAV10, 0.65 (▬ ▬). Dashed line (– –) represents average grey scale data from a clean membrane. 
Experiments and image analysis performed as described in Section 2.5.

Overall, both pleat height, hP, and PPD, affected the deposition of yeast within 

the pleat. With these results it was seen that by manipulating the characteristics 

of the pleat, particularly reducing the PPD, the ability of yeast to enter the pleat 

and to then deposit upon its surface increased. With a hP = 10 mm and PPD = 

0.65, patches of a thick cake were evident. This suggests that the pleat was fully 

accessible for the yeast to deposit upon its surface.

Taken together these results show that though increasing the pleating density 

increases the membrane area within each cartridge, beyond a critical level this is 

at the expense of accessibility of both the process fluid (as indicated by a 
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decrease in the normalised clear water flux in Figure 4-2) and any suspended 

solids in the feed as indicated in Figure 4-12 to 4-14. 

4.6 Optimal Use of Pleating in Membrane Cartridges

Pleat geometry has so far been shown to affect normalised performance 

characteristics of pleated membrane cartridges, such as flux-TMP profiles 

(Figure 4-2) and calculated Rm values (Table 4-2). However, it has not yet been 

seen what affect pleating has upon the real filtration performance of the 

cartridge. To investigate this further the calculated processing time required to 

filter 100 L of feed were calculated for three solutions of the same protein 

(MAb1 in 16 mM histidine, 266 mM Sucrose, 0.03% polysorbate 20, pH 6.0) but 

with different concentrations (10 mgmL-1, 60 mgmL-1 and 80 mgmL-1) and 

different viscosities (3 cP, 6 cP and 11cP respectively) (Liu et al., 2005). The 

operational time was calculated for each of the 1” configurations defined in 

Table 4-1 by using the values of Am and Rm given in Table 4-1and Table 4-2

respectively and using Equation 1-4. For this exercise, the protein solution was 

assumed to be non-fouling. The calculated values of the processing times are 

given in Table 4-3. The “optimum” condition represents that which leads to the 

minimum processing time.

It can be seen that for a given protein solution viscosity generally a reduction in 

PPD leads to an increase in processing time, meaning that the reduction in Rm

with increased PPD does not compensate for the reduction in Am in less tightly 

packed cartridges. It can also be seen that the lower pleat height lead to lower 

processing times, suggesting that higher pleat heights are not optimal as the 

increase in Rm is greater than the increase in Am. As would be expected an 

increase in viscosity can be seen to increase the processing time for each 

cartridge configuration. However, increase in viscosity also increases the 

differences in processing time between the different cartridge configurations. 

However it should be noted that the differences seen in Table 4-3 are small.
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Table 4-3: Processing time required to filter 100 L of three solutions of the same protein (MAb1 
in 16 mM histidine, 266 mM Sucrose, 0.03% polysorbate 20, pH 6.0) but with different 
concentrations (10 mgmL-1, 60 mgmL-1 and 80 mgmL-1) and different viscosities (3 cP, 6 cP and 
11cP respectively) (Liu et al., 2005). A transmembrane pressure difference of 0.41 bar(g) also 
used. Values given are calculated from the membrane filter data in Table 4-1 and Table 4-2.

Cartridge

Configuration

Processing Time (min)

µ = 3 cP µ = 6 cP µ = 11 cP

1” EAV15, 1 35 70 129

1” EAV15, 0.85 35 71 129

1” EAV15, 0.65 40 80 146

1” EAV10, 1 31 62 114

1” EAV10, 0.85 32 65 119

1” EAV10, 0.65 35 70 129

The predicted processing times of 100 L of protein solution (MAb1 in 16 mM 

histidine, 266 mM Sucrose, 0.03% polysorbate 20, pH 6.0) with µ = 6 cP (Liu et 

al., 2005), at three different values of TMP are given in Table 4-4. Again it can 

be seen that generally a higher PPD leads to a lower processing time, although 

for hP = 15 mm there was a difference seen between the processing time for 

PPDs = 1 and 0.85. Also, lower processing times were again calculated for 

cartridges with smaller pleat heights, although the differences seen between the 

two pleat heights reduced as TMP increased. However, the differences measured 

between the different configurations were small.

Thus, the optimum pleating conditions for the filtration of clean fluids such as 

this protein solution, appears to favour fully packed cartridges with lower pleat 

heights. However, this optimum condition would only result in a small increase 

in performance over other cartridge configurations.
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Table 4-4: Processing time required to filter 100 L of protein solution (60 mgmL-1 MAb1 in 16 
mM histidine, 266 mM Sucrose, 0.03% polysorbate 20, pH 6.0, µ = 6 cP) (Liu et al., 2005). 
Three different values of TMP used. Values given are calculated from the membrane filter data in 
Table 4-1 and Table 4-2.

Cartridge

Configuration

Processing Time (min)

TMP = 0.21 

bar(g)

TMP = 0.41 

bar(g)

TMP = 0.62 

bar(g)

1” EAV15, 1 137 70 46

1” EAV15, 0.85 138 71 47

1” EAV15, 0.65 156 80 53

1” EAV10, 1 121 62 41

1” EAV10, 0.85 127 65 43

1” EAV10, 0.65 137 70 47

This investigation has been for protein solution that has been assumed to be non-

fouling. For other protein-containing feedstocks a fouling phenomena may also 

take place. The rate of fouling will be proportional to membrane area, thus for a 

pleated scale-down device high PPD and hP will be favoured as representative of 

larger cartridge configurations.

4.7 Discussion and Summary

The aim of this chapter was to describe and to quantify the effect that pleat 

design has upon cartridge performance, leading to insights into the optimal use of 

pleats within cartridges. The main conclusions are:

 A range of novel cartridges were fabricated, which contained a range of 

PPD and hP configurations. These cartridges were leak tested and found 

to be suitable for conducting the first systematic investigation into the 

effect of pleat geometry upon cartridge performance.
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 A significant difference (53%) was measured between the clean water 

flux performance of the target large-scale pleated cartridge and non-

pleated flat sheet disc (Figure 4-2).

 Using the newly fabricated cartridge it was seen that clean water flux 

performance varied as a function of PPD and hP (Figure 4-3 and Figure 4-

4). In turn Rm decreased as PPD and hP decreased (Table 4-2).

 Access into the pleat was initially probed visually using a dilute yeast 

suspension. It was seen that at PPD values beyond 0.85 and at an hP of 10 

mm, areas of the cartridge were inaccessible to the yeast challenge 

(Figure 4-6 and Figure 4-14). This was concluded to be due to the affects 

of pleat crowding. As the PPD and hP were reduced, accessibility of the 

particles to the inner surface of each pleat improved, until the whole 

membrane surface became covered with yeast.

 For non-fouling buffer feedstocks it was estimated that in terms of time to 

process a given volume of feedstock, then the optimum pleat 

configuration favoured high PPD and low hP. However, this optimum 

arrangement gave a negligible improvement over other pleat 

configurations.

 These results suggest that in the design of any scale-down approach, 

maintenance of the pleat geometry (PPD, hP) will be vital if the large-

scale cartridge is to be accurately reproduced. If the pleat geometry 

cannot be maintained then an alternative approach that accounts for the 

effect of pleating is required.

In the next chapter, a new scale-down cartridge, which contains the same pleat 

characteristics as the large-scale target, will be designed and evaluated to assess 

whether an improved performance prediction can be achieved.
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5 Scale-Down Approaches to Performance Prediction 

of Pleated Cartridge Filters2

5.1 Introduction and Aims

In Chapter 4 it was seen that the characteristics of membrane pleat geometry 

impact significantly upon the filtration performance of a pleated membrane 

cartridge. Consequently the performance prediction from a flat sheet membrane 

when compared to a large-scale-pleated cartridge was seen to be poor (Figure 4-

2). A scale-down approach that incorporates the geometric characteristics of the 

pleat with a reduction in membrane area may offer a means of achieving an 

improved performance prediction with reduced requirements of feed material.

In Section 1.7.4 a study was discussed that showed a scale-down approach to 

improved small-scale performance prediction for a disk stack centrifuge. This 

was achieved by reducing the active separation area of a pilot scale centrifuge, 

thus rendering areas of the centrifuge in-accessible to the feed (Mannweiler et al., 

1992; Maybury et al., 1998). A key feature of this approach required that the 

bowl diameter remained constant, and subsequently the grade efficiency curves 

closely matched the large-scale target, whilst a reduction in feed volume was also 

reported. A similar approach has been adopted in this work to achieve a small-

scale pleated cartridge device that maintains the characteristics of the pleat as 

constant, i.e. the hP, PPD and pleat type. A description of this new scale-down 

pleated cartridge device is given in Section 2.3.2.

The reduction in active area has been achieved through the incorporation of 

sections of a hydrophobic material into the pleated membrane pack. In this way 

the area available for separation is reduced, as the feed material will be unable to 

penetrate into the hydrophobic sections. The scale-down pleated cartridge 

                                                
2 The majority of the work presented in this chapter has been submitted for publication as: 
Brown, A.I., Titchener-Hooker, N.J., Lye, G.J. Scale-Down Prediction of Industrial Scale Pleated 
Membrane Cartridge Performance. Biotechnology and Bioengineering
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devices were fabricated with a range of active pleat sections. Different 

configurations were built into the small-scale pleated device so as to assess 

whether the findings in Chapter 3, where an uneven flow distribution was seen 

within the housing, would impact upon the performance predictions of the scale-

down cartridges. Thus, these new cartridges represent a new scale-down 

approach that can be utilised to generate performance predictions to the large-

scale target. How this approach fits within the overall strategy of this work is 

given in Figure 5-1.

The aim of the chapter is to design and fabricate a range of scale-down pleated 

membrane cartridges and evaluate their performance prediction compared to the 

large-scale 10” UEAV24,1 cartridge. They will be evaluated for a range of 

feedstocks as defined in Chapter 3. The specific objectives of the chapter are:

 Design and fabricate a range of scale-down pleated cartridges that have a 

reduced area of active membrane, but that retain the pleat geometry of the 

large-scale target.

 Evaluate the scale-down pleated cartridge devices with a non-fouling 

water feedstock, comparing calculated Rm values between the various 

size scales and configurations.

 Evaluate the scale-down cartridge device with a fouling feedstock 

comprising pepsin aggregates by comparing experimentally determined 

Vmax / Am ratios for the various scale-down devices and configurations.

 Investigate the effects of membrane variability and housing 

hydrodynamics upon the performance predictions of the scale-down 

pleated cartridge device.

 Investigate the utilisation of the Pmax test as a means to reduce further the 

volume of feedstock required to conduct a scale-up study with the scale-

down pleated cartridge device.
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Figure 5-1: Overview of this thesis highlighting the strategy used to generate scale-down and 
USD methodologies aimed at providing a robust prediction of the performance of a large-scale 
pleated cartridge filter.

5.2 Pleated Cartridge Clean Water Flux Predictions

The design of the scale-down has been described earlier in Section 2.3.2. A range 

of scale-down pleated cartridges were fabricated and leak tested as described in 

Section 2.3.1.2. The nomenclature used for the various cartridge configurations is 

described in Figure 5-2.

The methodology for carrying out a scale-up prediction with the various scale-

down pleated cartridges is summarised in Figure 5-3. The normalised 

performance data that is generated, such as clean water flux, product 

transmission and volume throughput, requires validation against the large-scale 

pleated cartridge counterpart so as to verify that the performance prediction is 

within an acceptable range (arbitrarily defined here as <10%). The type of large-

scale cartridge used as the basis for comparison is the 10” UEAV24, 1 that was 

characterised for a range of feedstocks in Chapter 3.
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Figure 5-2: Schematic representation of the cross-section of 1” scale-down cartridge 
configurations used in this chapter, showing the number and distribution of active pleat sections 
(shaded black) that each type represents.

The evaluation of the performance of the scale-down pleated devices compared 

to the large-scale 10” cartridge was first carried out using clean water to 

represent a non-fouling feedstock. The clean water flux profiles for various 

cartridge and flat sheet configurations are given in Figure 5-4. It can be seen that 

there was a significant difference between the water flux profile of a flat sheet 

disc (solid line) compared to the large-scale 10” pleated cartridge (dashed line). 

This would lead to an overestimation of 53% if the flat sheet data were used to 

predict the performance of the large-scale cartridge. This is identical to the 

measured flux reduction described in Section 1.6 of 53% for a pleated PVDF 

sterilising grade membrane compared to a flat sheet (Rajniak et al., 2008), but 

lower than a flux reduction of 70% measured for a pleated glass fibre cartridge

(Wakeman et al., 2005).



151

Figure 5-3: Flowsheet showing the methodology used to generate performance predictions (such 
as clean water flux, product transmission or volume throughput) from the scale-down pleated 
cartridge device, which can then be compared and verified against the performance of the large-
scale pleated cartridge.

Figure 5-4: Water flux data for various Supor® cartridge and flat sheet membrane configurations.
The large-scale 10” UEAV24, 1 cartridge () contained fully pleated membrane. The scale-down 
cartridges were 1” UEAVA () and 10” UEAVA(). Each scale-down cartridge contained 1.5 
active pleats. Also used was a standard 25 mm flat sheet disc (). Error bars represent one 
standard deviation about the mean (n = 3). Experiments performed as described in Section 2.4.
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Figure 5-4 also shows the results for two of the scale-down cartridges fabricated 

for this study. The first, 10” UEAVA (Figure 5-2), contained 1.5 active pleats 

with a membrane area of 1.51 × 10-2 m2. The second, 1” UEAVA (Figure 5-2), 

contained 1.5 active pleats with a membrane area of 1.51 × 10-3 m2. In contrast to 

the flat sheet disc, the scale-down devices showed significantly better predictions 

of the 10” cartridge performance. At low transmembrane pressure a discrepancy 

between the performance of the 1” and 10” scale-down devices compared to the 

10” large-scale cartridge can be seen. However this discrepancy becomes 

reduced at higher transmembrane pressures, > 1200 mbar, and over the whole 

operational range the performance of the scale-down cartridges more closely 

resembled that of the 10” UEAV24, 1 cartridge than the flat sheet disk. Of the two 

scale-down devices, the 10” cartridge with 1.5 active pleats (10” UEAVA) gave 

the better prediction of 10” UEAV24, 1 performance. However, this still operated 

with feed requirements comparable in volume to the 10” UEAV24, 1 cartridge (> 

1 L) that makes it unsuitable as a small-scale performance prediction tool. The 1” 

cartridge with 1.5 active pleats (1” UEAVA) only required 180 mL of feed 

material and thus represents a good trade-off between quantitative performance 

prediction and greatly reduced feed requirements.

Table 5-1 shows the calculated membrane resistances (Hermia, 1982) from the 

flux profiles shown in Figure 5-4. The 53% flux variation between the flat-sheet 

disk and 10” UEAV24, 1 cartridge resulted in a lower flat sheet membrane 

resistance as found previously in Section 4.2. The resistances calculated for the 

two small scale cartridges were close to that of the 10” UEAV24, 1 cartridge. 

Variation from the Rm value for the 10” UEAV24, 1 cartridge was 2% and 8% for 

the 10” UEAVA and 1” UEAVA cartridges respectively. These percentage 

variations are within 10% of the large-scale cartridge and thus offer a good 

prediction of performance, especially when compared to the flat sheet disc.



153

Table 5-1: Summary of the key performance parameters generated in this chapter for a selection 
of cartridge configurations that contained Supor® EAV 0.22 µm rated membrane.

Cartridge 

type

RM (× 1010) 

(m-1)

Vmax / Am

(Lm-2)I

Protein 

transmission 

(%)II

Feed volume 

requirements 

(L)III

10” UEAV24, 1 3.43 152 95 137

1” UEAV24, 1 3.26 146 84 12.9

10” UEAVA 3.38 - - 1.8

1” UEAVA 3.14 144 93 0.18

Flat Sheet 1.60 110 94 0.04

I Values taken from Figure 5-6
II Measured for pepsin solutions as described later in Section 5.3.
III Calculated based on collected permeate volume.

5.3 Volume Throughput Predictions for Protein Solution 

Filtration

Having shown that the scale-down devices gave a good prediction of large-scale 

cartridge performance (10” UEAV24, 1) when a clean water feedstock was used, a 

more realistic pepsin feedstock was used to further evaluate the various 

configurations of scale-down cartridge. As was discussed in Section 1.3.2.3 and 

seen in Chapter 3.4.2, a solution of pepsin has previously been shown to foul 

0.22 µm polyvinylidene fluoride (PVDF) membranes through a dual-mode 

mechanism consisting of initial pore blockage by protein aggregates, followed by 
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further attachment of protein to the aggregates (Kelly et al., 1997). The pepsin 

feedstock consisted of 10 gL-1 pepsin in a 0.03 M sodium phosphate buffer (pH = 

7.4), prepared as described in Section 2.6. This solution was considered 

representative of a concentrated pure protein solution typically processed using

sterile filters at the end of a biopharmaceutical process (Sundaram, 1998). It was 

reported in Section 3.3.2 that the feed contained aggregates of 1-4 µm in size that 

were capable of blocking the 0.2 µm rated membrane, and which lead to fouling.

Figure 5-5 shows the cumulative permeate volume normalised for membrane 

area (Table 5-1) measured over the course of the filtration operation. Close 

agreement is seen between the performance of the 1” UEAVA scale-down 

cartridge, containing 1.5 pleats of active membrane and the large-scale 10” 

UEAV24, 1 cartridge over the course of the total filtration operation. Other 

configurations used included a fully pleated 1” UEAV24, 1 cartridge and a flat 

sheet disc. The flat sheet and cartridge filtration runs were carried out over 

different operational times (10 min and 55 min respectively), so the operational 

time is presented in Figure 5-5 as normalised against the total operating time. 

The different operational mechanisms are evident between the flat sheet disc, 

which is run under a constant pressure regime, and the cartridges, which are run 

under a constant flow regime. The 1” UEAVA scale-down device showed 

considerably better agreement with the large-scale cartridge over the course of 

the operation, than did the flat sheet disc. This may be because the flat sheet 

experiments were conducted at constant pressure, whilst experiments performed 

with the 1” UEAVA cartridge were conducted at constant flow. However, the 

measured feed pressure during the cartridge experiments was not allowed to 

exceed the pressure that was set during the flat sheet experiments. Hence the 

driving forces should be similar. However, if the difference is a consequence of 

the different operating regimes, then it is important to note that the large-scale 

target will always be operated with a constant flow regime, and as such, the 

scale-down pleated cartridge matches the large-scale target in this respect.
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Figure 5-5: Representative volume throughput data for a range of cartridge and flat sheet 
membrane configurations for the filtration of a protein solution (10 gL-1 pepsin in 0.03 M sodium 
phosphate buffer, pH 7.4). Cumulative permeate volume normalised for membrane area and 
plotted against normalised operational time. Flat sheet data is represented by a solid line (—). 
Cartridges used were: 10” UEAV24, 1 (), 1” UEAV24, 1 () and 1” UEAVA (). Cartridges 
described in Section 2.3.2 and Figure 5-2. Experiments performed as described in Section 2.6.

All the curves shown in Figure 5-5 can be divided into two regions. The first 

region shows a linear increase in cumulative volume as the membrane pores 

became blocked, but the flowrate remained constant. During this period, when 

operating with a constant flow regime, the feed pressure increased. After a given 

maximum operating pressure, and as the pump was switched on and off, an 

operational region was evident where the permeate flowrate was low. This 

reduction in throughput was attributed to membrane fouling. Fouling by pore 

constriction (Hermia, 1982) was found to be the most likely mechanism to 

describe the reduction in throughput, as an excellent fit to the experimental data 

(R2>0.99) was achieved for the results obtained from all the cartridges used. An 

example plot of the fouling mechanism to throughput data for a 10” UEAV24, 1

cartridge is given in Figure 5-6.
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Figure 5-6: Plot of t / V against t for 10” UEAV24, 1 throughput data reported in Figure 5-5.
Gradient of the line can be used to calculate Vmax. Excellent fit of line to datapoints achieved 
(R2>0.99).

During the period controlled by pore constriction, the Vmax values, defined as the 

maximum filtered volume before complete fouling occurs (Badmington et al., 

1995), were calculated from the throughput data. The Vmax value, described in 

Section 1.7, was used as an industrially relevant method to compare the filtration 

performance of various scales tested with the aim to seek the closest match to the 

performance of the 10” UEAV pleated cartridge. Vmax is defined as the 

maximum filtered volume before complete fouling occurs, and was obtained by 

plotting t/V against t. The Vmax value is defined by the inverse of the gradient 

from the subsequent line. Typical Vmax values and the R2 values from the lines 

used to generate the Vmax are given in Table 5-2. 

The calculated Vmax values were subsequently normalised by dividing by the area 

of active membrane. This provided a method of directly comparing the 

performance predictions of differing scale down devices with different 
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membrane areas, and is also a method through which scale-up could be achieved. 

To facilitate linear scale-up prediction, the Vmax/Am ratios should be the same for 

all scales. The Vmax/Am values calculated for each of the three independent 

experimental data sets are given in Figure 5-7. It can be seen that the 1” UEAVA

cartridge shows good agreement to the two cartridges used that contained a full 

pack of active membrane pleats (10” and 1” UEAV24, 1). The flat sheet disc was 

seen to under-predict the performance of the 10” UEAV24, 1 cartridge in all cases.

The mean of these Vmax/Am values are given in Figure 5-8 together with the error 

bars calculated from the triplicate measurements. It can be seen that the 1” 

UEAVA cartridge performance is within 10% of the 10” UEAV24, 1 cartridge, 

compared with 41% for the flat sheet disc. The performance of the 1” UEAV24, 1

cartridge was closer to that of the 10” UEAV24, 1 cartridge (within 3.5%), but due 

to a reduced Am (Table 5-1) the 1” UEAVA had a 1000-fold lower feed material 

requirement. Based on these results the 1” UEAVA represents the best scale-

down approach for predicting large-scale cartridge throughput performance.

As well as being predictive of flux performance, the scale-down cartridge 

devices should also accurately replicate product transmission performance. Table 

5-1 lists the associated protein transmission data. All scales of pleated membrane 

cartridge were seen to give similar protein transmission levels of >90% w/w with 

the exception of the 1” UEAV24, 1 cartridge. The 1” UEAVA cartridge again gave 

a good prediction of protein transmission performance to the 10” UEAV24, 1

cartridge as it did with volume throughput prediction, this is likely to be because 

the blocking of the pores and build up of any cake takes place at a similar rate 

due to the pleat geometry remaining the same.
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Table 5-2: Typical Vmax values from various cartridge configurations. R2 values from the lines 
used to generate values of Vmax also listed.

Cartridge Configuration Vmax (L) R2

10” UEAV24, 1 161 >0.99

1” UEAV24, 1 15 >0.99

1” UEAVA 0.217 >0.99

Figure 5-7: Comparison of experimentally determined Vmax / Am values, a scaling factor for 
processing of a protein solution (10 gL-1 pepsin in 0.03 M Sodium Phosphate buffer, pH = 7.4), 
for the different cartridge configurations and a flat sheet disc. Supor® EAV membrane used in all 
configurations. For accurate scaling, the value of Vmax / Am should be the same for all size scales. 
Each bar represents a separate independent experiment. Experiments performed as described in 
Section 2.6.
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Figure 5-8: The percentage variation between the throughput performance (Vmax / Am) for each 
membrane configuration relative to the 10” UEAV24, 1 cartridge. The dashed line indicates 10% 
variation, which is considered here to be acceptable for accurate scale-up predictions. Error bars 
show one standard deviation about the mean (n=3). Experiments performed as described in  
Section 2.6.

5.4 Effect of Membrane Variability and Housing Design Upon 

Scale-Down Device Performance

In Section 1.6, studies were described that have previously shown measurable 

differences in the performance of membrane taken from different locations 

within a manufactured roll (Chandler et al., 2004; Jackson et al., 2006). Thus it 

may be expected that reduced pleat levels lead to an increase in experimental 

error when quantifying permeate flux and protein transmission. In Chapter 3, a 

detailed study on the hydrodynamics of fluid flow and mixing within the 

membrane housing has suggested there may be some limited radial and axial 

variation in the liquid distribution within the housing. This might suggest that 

inclusion of more than just one active membrane section and for these active 

pleat sections to be evenly distributed around the central core of the cartridge 
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might further improve the accuracy of the throughput prediction. To investigate 

if this is indeed the case, a number of further scale-down cartridge devices were 

fabricated which contained a range of active number of pleats and number of 

pleat bunches (see Figure 5-2 and Section 2.3.2. for a description of the 

cartridges used). Performance variation of the scale-down devices from that of a 

large-scale 10” cartridge was calculated from experimental data for a clean water 

feed and a fouling pepsin feed (described above in Sections 3.4.1 and 3.4.2 

respectively).

Figure 5-9: Effect of pleat number and pleat location upon scale-up performance of different 
scale-down pleated cartridge configurations compared to a standard 10” UEAV24, 1 cartridge.
Feed stock used was clean water. A description of the different configurations is given in Section 
2.3.2 and Figure 5-2. Solid bars represent the mean of independent experiments (n=3) while error 
bars represent the standard deviation of calculated Rm values. Experiments performed as 
described in Section 2.6.
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The variations in Rm calculated for the six cartridges investigated in clean water 

flux experiments are given in Figure 5-9. It can be seen that the percentage 

variation in calculated membrane resistance (Rm) in general decreased as more 

active pleats were incorporated into the pleat structure. This suggests that 

incorporating more membrane sections helps improve the accuracy of scale-up 

when working with a clean water feedstock. However, the accuracy of the scale-

up prediction measured for the scale-down device with the lowest active 

membrane area (1” UEAVA) was still acceptable in terms of scale-up 

performance, as it was less than 10% of that for the full scale 10” UEAV24, 1

cartridge. Hence, the increases in performance prediction seen with an increase 

in active membrane area are not sufficiently large to counteract the increase in 

feed volumes required for operation.

Figure 5-10: Effect of pleat number and pleat location upon scale-up performance of different 
scale-down cartridge configurations compared to a standard 1” UEAV24, 1 cartridge. Feed stock 
used was 10gL-1 pepsin in 0.03 M Sodium Phosphate buffer, pH = 7.4. A description of the 
different configurations is given in Section 2.2.2 and Figure 5-2. Solid bars represent the mean of 
three independent experiments (n=3), except for the 25 mm disc where n = 5. Error bars represent 
the standard deviation of measured Vmax/Am values. Experiments performed as described in 
Section 2.5.
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A similar outcome is shown in Figure 5-10 when the various scale-down 

cartridge designs were evaluated with a fouling pepsin feedstock. However, in 

the case of 1” UEAVB and 1” UEAVC variation form the large-scale target was 

seen to be greater. This may be due to hydrodynamic effects within the housing. 

It can be seen that the best performance for the scale-down devices was for the 

device that contained 1.5 active pleats. When this performance is coupled to the 

low feed volume requirements this scale-down device represents a superior 

option for scale-up over a flat sheet disc of membrane.

5.5 Impact of Woven Support Material Upon Performance of 

Flat Sheet Membrane

All previous flat sheet experiments have been conducted in the absence of the 

woven support material that a pleated cartridge contains above and below the 

membrane material (Section 2.3). It is possible that the large differences that 

have been measured in Section 5.2 between the pleated cartridge and the flat 

sheet disc may be due to the woven support material acting as a pre-filter, which 

removes fouling components that would otherwise foul the membrane. To test 

whether this was the case, a preparation of the pepsin feedstock was filtered with 

a 1” UEAV24, 1 cartridge and two flat sheet discs as per the protocol in Section 

2.5.2.2. Above one of the flat sheet discs was placed a 25 mm disc of the woven 

support material. The volume throughput measured for the two flat sheet discs is 

given in Figure 5-11. It can be seen that the addition of the woven support 

material above the membrane disc did lead to an increase in volume throughput, 

however this increase in performance was small. 



163

Table 5-3: Calculated scale-up parameters for a range of flat sheet configurations. For 
experiment with the woven support, a 25 mm disc was cut from the same woven material used 
within a cartridge and placed directly on top (upstream) of the 25 mm disc of membrane within 
the membrane holder.

Configuration Scale Vmax / Am

Lm-2

% variation in Vmax / Am

compared to 1” UEAV24, 1

1” UEAV24, 1 Large 56 NA

25 mm flat sheet disc with 

woven support above 

membrane disc

Small 10 82

25 mm flat sheet disc 

without woven support

Small 8 85
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Figure 5-11: Filtration of 10 gL-1 pepsin in 0.03 M phosphate buffer (pH = 7.4) with 25 mm flat 
sheet discs of membrane. Experiments conducted with a 25 mm disc of woven support material 
on top of the membrane (—) and without (▬). Experiment conducted as per protocol in Section 
2.5.2.2.
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The calculated Vmax / Am values are given in Table 5-3 for the configurations 

used to filter the pepsin feedstock. It can be seen that the addition of the woven 

support material reduced the variation between the performance of the flat sheet 

disc and 1” UEAV cartridge by 3%. However, this is not considered a significant 

enough improvement to explain the differences measured in this section and 

Section 5.3.

5.6 Use of Pmax Method to Calculate Vmax

It has been noted in Section 5.3 that two distinct operational regions existed 

during the filtration of the pepsin feedstock by a pleated cartridge. This is 

illustrated in Figure 5-12. For a Vmax test to be conducted, data must be collected 

from well within the region where volume throughput is variable and membrane 

performance is limited by the fouling that has occurred within the membrane 

pores. For the experiments performed with cartridges in Section 5.3, and reported 

in Figure 5-7, the feed pressure was recorded throughout the filtration operation. 

During the first period, when the volume throughput was at a constant rate, the 

feed pressure was seen to change, as shown in Figure 5-12. It can be seen that 

after an initial lag phase the feed pressure rapidly increased as the pores became 

blocked, until a maximum operating pressure of 0.8 bar(g) was achieved. At this 

point the pump was turned off to allow the feed pressure to decrease. After the 

pressure was less than 0.2 bar(g) the pump was turned on again and the cycle was 

repeated.

The Pmax test, discussed in Section 1.7.3 has been used with depth filters to 

enable the measurement of increasing feed pressure to predict Vmax. The same 

approach can be taken for the filters used in this study. Assuming a standard pore 

blocking fouling mechanism then based upon the theory outlined in Section 1.7.3 

the linear form of the fouling mechanism is:

Vba
P


2

1

1
(5.1)
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Figure 5-12: Measured outputs from filtration run. Change in pressure () and cumulative 
permeate volume () over the course of a filtration run with feedstock of 10 gL-1 pepsin in 
0.03M sodium phosphate buffer (pH = 7.4). Filter cartridge used was 10” UEAV24, 1. 
Experiments performed as described in Section 2.5.1.

Where: P is the feed pressure, V is the cumulative permeate volume collected. 

The constants ‘a’ and ‘b’ can be obtained from a plot of P-0.5 against V, where a 

is the y-intercept and b is the gradient of the line.

An example of a plot of P-0.5 against V is given in Figure 5-13 for the filtration of 

the pepsin feedstock by a 10” UEAV24, 1 cartridge. The data was seen to fit well 

to the linear form of the fouling mechanism (R2 = 0.95), as was the case for all of 

the cartridges tested. For Equation 5.1, as P goes to infinity, V approaches Vmax, 

therefore:

b

a
V
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max (6.2)
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Figure 5-13: Plot of P-0.5 against volume for filtration data reported in Figure 5-12. The y-
intercept and gradient of the line can be used in Equation 5.2 to calculate Vmax. 

Thus from the plot in Figure 5-13 the Vmax can be calculated once the y-intercept 

and gradient of the line are known. 

The Vmax / Am ratios were calculated using the Pmax method for a range of 

cartridge configurations. The values for three separate experiments are given in 

Figure 5-14.  The 1” UEAVA scale-down pleated cartridge was seen to have 

calculated Vmax / Am values that closely matched the Vmax / Am value of the large-

scale 10” UEAV24, 1 cartridge. This was the case for all three experiments 

conducted. The Vmax / Am value for the third experiment conducted was less than 

for the other two experiments. This is likely due to variation in the preparation of 

the feedstock. It should be noted that the decrease in Vmax / Am was also seen for 

the large-scale 10” UEAV24, 1 cartridge. The average variation in performance 

from the 10” UEAV24, 1 cartridge for the 1” UEAVA cartridge was within ± 10%.
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Figure 5-14: Vmax / Am ratios for the filtration of a 10 gL-1 Pepsin in 0.03M sodium phosphate 
buffer (pH = 7.4) feedstock by three cartridge configurations. Each colour of bar represents a 
separate experiment with a fresh preparation of the feedstock. Values of Vmax / Am generated 
using the Pmax method as described in Section 5.6.

5.7 Comparison of Pmax and Vmax Methodologies

The various performance aspects of the Pmax (Section 5.6) and Vmax (Section 5.3) 

methods are summarised in Table 5-4. It can be seen that for each cartridge 

configuration the Pmax method tends to underestimate the value of Vmax compared 

with its experimental determination using the standard Vmax method. This is not a 

significant problem as the predicted value of Vmax from the Pmax method lies well 

within the region where the membrane is fouled and performance is poor relative 

to the initial period. It is unlikely that a cartridge would actually be operated for 

long periods of time within this region.
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The percentage variation in Vmax/Am between the 10” UEAV24, 1 cartridge and 

the 1” UEAVA scale-down pleated device was lower for the Pmax method, than 

for the Vmax method, although in both instances the variation was well within the 

10% threshold set as the limit to show adequate large-scale performance 

prediction.

In terms of the volume of feed required to obtain the performance prediction then 

the Pmax method requires less feed to obtain an estimate of Vmax than does the 

standard Vmax method. For the 1” UEAVA cartridge this represented a 28% 

reduction in feed volume. However, at 131 mL the feed required is still higher 

than that required for the flat sheet disc (40 mL). Furthermore the feed volume 

requirement does not include housing or tubing dead volumes.

The R2 values for the standard blocking mechanism that was fitted to the datasets 

were higher for the Vmax test. However, the R2 values for the Pmax method were 

sufficiently high enough to justify using the standard blocking model.

In terms of matching the performance of the 10” UEAV24, 1 cartridge whilst 

minimising the amount of feed required, the Pmax method is suggested here to be 

better than the more established Vmax method.

Table 5-4: Comparison of performance characteristics for the Vmax and Pmax methodologies. Data 
generated for a range of cartridge configurations.

Cartridge 

Configuration

Vmax Method Pmax Method

Vmax / 

Am

(Lm-2)

R2 % variation Vfeed

(L)

Vmax / 

Am

(Lm-2)

R2 % variation Vfeed

(L)

10” UEAV24, 1 152 >0.99 0 137 140 0.95 0 83

1” UEAV24, 1 146 >0.99 4 13 123 0.95 12 8

1” UEAVA 144 >0.99 5 0.183 141 0.94 -0.8 0.131
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5.8 Discussion and Summary

The aim of this chapter was to test the scale-down pleated cartridge designed and 

fabricated in Section 2.3.2 with a range of feedstocks, so as to determine whether 

the performance prediction obtained matched that of the counterpart large-scale

fully pleated cartridge. This aim was achieved through a number of objectives 

that were fulfilled. The main findings and conclusions are:

 The scale-down pleated device was initially evaluated with a clean water 

feedstock (Figure 5-4). When the value of Rm for the scale-down pleated 

device with the smallest active membrane area (1” UEAVA) was 

compared to the Rm measured for a large-scale 10” UEAV24, 1 cartridge, 

the percentage variation between the two measurements was 8%, which 

represented a significant improvement over the 53% difference measured 

between the 10” cartridge and a flat sheet membrane disc (Table 5-1).

 The scale-down pleated device was subsequently evaluated with a fouling 

pepsin aggregate feedstock (Figure 5-5). When the value of Vmax / Am for 

the scale-down pleated device with the smallest active membrane area (1” 

UEAVA) was compared to the Vmax / Am measured for a large-scale 10” 

UEAV24, 1 cartridge, the percentage variation between the two 

measurements was 10% (Figure 5-7), which represented a significant 

improvement over the 41% difference measured between the 10” 

cartridge and a flat sheet membrane disc. Product transmission levels 

were also seen to be very similar between the large-scale target and the 1” 

UEAVA scale-down cartridge (95% and 93% respectively as reported in 

Table 5-1. The accuracy of the scale-up device with predicting the 

performance of the large-scale target would require verification with 

other feedstocks.

 Membrane variation and housing effects were seen to have a small effect 

on the performance of the scale-down pleated device. However, the effect 

was not significant enough to affect the robustness of the scale-up 
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performance prediction of the 1” UEAVA scale-down pleated device. 

Membrane variation and housing effects were not seen to have a 

significant effect when a fouling feedstock was used.

 A new application of the Pmax method was used to determine whether 

Vmax could be calculated using reduced feed volume requirements. When 

the Pmax and Vmax methods of generating the parameter Vmax were 

compared, then the Pmax method was seen to give a closer prediction of 

the performance of a large-scale 10” UEAV24, 1 cartridge (Table 5-4). 

This was achieved with a 28% reduction in the volume of feedstock used 

by the smallest scale-down pleated device. Whilst the standard pore 

blocking model was seen to give a better fit to the Vmax data, the fit to the 

Pmax data was still sufficiently high enough (R2 > 0.94) to not affect the 

validity of the results (Table 5-4). 

While the performance predictions of the scale-down pleated membrane 

cartridges have been shown to be good, this approach still requires some 130 mL 

of feed material for Vmax / Am quantification. This value also does not include the 

hold-up volume within the housing of ~300 mL. In order to try and reduce the 

feed volume requirements further, Chapter 6 describes an ultra scale-down 

approach, which will aim to correct the experimental data obtained from flat 

sheet membrane so as to improve the performance prediction relative to large-

scale pleated cartridges. The potential advantage of this method is that 

experiments could be conducted using small areas of membrane that require a 

lower feed volume. The scale-down pleated device evaluated in this chapter will 

be compared to the USD approach in the final discussion contained with the 

conclusion chapter of this thesis, so as to assess the relative merits of the various 

small-scale utilised during this work.
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6 Ultra Scale-Down (USD) Approach to Prediction of 

Pleated Cartridge Performance

6.1 Introduction and Aims

The pleated scale-down device fabricated and tested in Chapter 5 demonstrated 

good prediction of the performance of a large-scale pleated cartridge to within 

10% of both flux and transmission. However, the feed volume required (~180 

mL) remained higher than that required for the initial membrane evaluation using 

flat sheet discs (~4 mL). This was primarily due to the hold-up and dead volumes 

within the 1” cartridge housing and associated pipework, and the constant flow 

filtration method used. However, it has been seen in Section 4.2, and then in 

Section 5.2 and 5.3 that the flat sheet discs can make poor predictions of the 

performance of a large-scale pleated cartridge. Thus, in order to capitalise on the 

lower feed volumes requirements achievable with the flat sheet membrane the 

performance prediction needs to be improved. An ultra scale-down approach was 

discussed in Section 1.7.5. The USD approach seeks to provide a more accurate 

scale-down performance by focussing on the generation of key performance 

parameters that dominate during the large-scale operation (Titchener-Hooker et 

al., 2008). Importantly, the USD approach does not seek to miniaturise the large-

scale target, but uses modelling to bring the two scales into alignment (Tustian et 

al., 2007). The USD approach may offer a means of achieving an improvement 

in prediction of performance by combining models which account for pleating 

effects to the raw experimental data gathered using the flat sheet discs.

It has been previously shown in Section 4.3 that the effective area in pleated 

membrane cartridges available for filtration decreases due to pleat crowding and 

was seen to be a function of pleat height and pleat packing density. Incorporation 

of knowledge on the effect of pleating on the available membrane area into the 

USD flat sheet scale-up methodology, could help improve the robustness of the 
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flat sheet system for prediction of the performance of large-scale pleated 

cartridges.

This chapter covers the final step in the approach defined in Section 1.8. As 

illustrated in Figure 6-1, this chapter builds upon work carried out to characterise 

the effect of pleating in Section 4.3. A new methodology to improve USD 

predictions of pleated membrane cartridge performance is presented. The 

methodology can then be compared with the scale-down pleated cartridge device 

tested in Chapter 5.

The aim of this chapter is to develop and test a USD approach that improves 

predictions from small-scale flat sheet experiments by correcting for the pleating 

effects. The specific objectives of the chapter are:

 To investigate and model pleat crowding effects as a function of pleat 

height and pleat packing density.

 To develop USD methodology to improve scale-up predictions from a flat 

sheet disc by adjusting for the effects of pleating.

 To assess whether the USD methodology improves the performance 

prediction generated from a flat sheet membrane applied to large-scale 

pleated cartridge filters.
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Figure 6-1: Overview of thesis showing the strategy towards the development of scale-down and 
ultra scale-down methodologies. This chapter seeks to design and evaluate a novel scale-down 
pleated cartridge, which retains the geometrical characteristics of the large-scale target, whilst 
reducing the active area of membrane inside the cartridge.

6.2 Quantification of Pleat Crowding Effects

Pleat crowding has previously been discussed in Section 4.3. In general an 

increase in hP and PPD lead to decreased accessibility of solutes into the pleat 

due to the close proximity the membrane surface in each individual pleat 

(Section 4.3). This effect is illustrated in Figure 6-2. Pleat crowding has rarely 

been considered in the literature as a function of the pleat characteristics, and this 

is particularly the case for liquid feeds.

The standard approach to generate performance data for a non-fouling feedstock, 

such as clean water, is to assume that the membrane area is fully utilised as 

described in Section 3.4.1. It is then possible to determine values of membrane 

resistance. Figure 6-3 shows the systematic variation for a range of cartridges 

with varying pleat characteristics. It can be seen that the large-scale pleated 

cartridges exhibited a higher membrane resistance than the flat sheet disc. As 

pleat packing density decreased the membrane resistance decreased, and the 

same trend was seen for decreases in pleat height. Examples of cartridges with 

similar membrane resistance to the flat sheet membrane were seen however, such

as for the pleated cartridge with a star pleat configuration. The 1” cartridge with 

PPD of 0.65 matched the flat sheet Rm value most closely. Due to difficulties in 
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the fabrication of the pleated cartridges, it was not possible to fabricate cartridges 

with reduced PPD for the Ultipleat® type.

It has previously been shown in Chapter 4 that the effective membrane area (Aeff) 

within each cartridge may not be equal to the actual installed membrane area 

(Am) as a result of the pleat crowding effect. Therefore an alternate approach 

would be to maintain the membrane resistance as constant and alter the value of 

Am to reflect the change in the effective membrane area. 

Figure 6-2: Illustration of the effect of pleat packing density (PPD) and pleat height (hP) upon 
pleat crowding and solute accessibility into the pleat. Images shown represent a fan pleat design
with: (a) hP = 24 mm PPD = 1, (b) hP = 15 mm PPD = 0.85, (c) hP = 10 mm PPD = 0.85. Images 
shown are not to scale.
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Figure 6-3: The effects of pleat crowding on measured membrane resistance (RM, ×1010 m-1). 
The matrix shows the variation in Rm calculated from clean water flux data. Experimental 
protocols performed as described in Section 2.3.1. Membrane resistances arranged, so as to show 
the change in Rm as a function of pleat type, hP and PPD. Resistances calculated using Equation 
6.1 by assuming that all membrane area is utilised (Aeff = Am). Where possible the data is 
presented as one standard deviation about the mean (n=3). 

6.3 K- Factor Development

In order to account for the difference in effective and actual membrane areas an 

ultra scale-down factor will be used here, the K-Factor, which will be a function 

of the pleat geometry. The definition of the K-factor is described as follows.

The effective membrane area, Aeff, can be calculated from the experimental 

permeate flow data, which was originally used to calculate the Rm values in 

Figure 6-3, by using Equation 6-1:

P

RQ
A m

eff 





(6-1)

Where: Q is the permeate flow rate, µ is the viscosity, Rm is the membrane 

resistance, ΔP is the transmembrane pressure difference, and Aeff is the effective 

membrane area. The K-Factor is then used to relate Aeff to the actual membrane 



176

area, Am, to assess the degree of utilisation of membrane area as described 

below:

m

eff

A

A
K  (6-2)

The calculated K- factor values, derived from the data contained within Figure 6-

3 are presented in Figure 6-4. It can be seen that the K-factor, and thus the 

effective utilisation of the installed membrane area, varies with changes in hP and 

PPD. Reducing the heights of the pleat and pleat packing density eventually 

leads to a pleated cartridge (1” EAV10, 0.65) with a K- factor close to 1. At this 

point the membrane area is being fully utilised and there is little or no difference 

between the actual and effective membrane resistances.

Figure 6-4: The effect of pleat crowding on calculated K-factors for various membrane pleat 
configurations. K- Factors calculated using Equation 6.2 based on clean water flux data given in 
Figure 6-3.
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To further explore the effect of each of the pleat characteristics, on effective 

utilisation of the installed membrane area, the K-factor has been plotted as a 

function of hP (Figure 6-5) and PPD (Figure 6-6). In Figure 6-5 the three datasets 

plotted appear to converge at hP = 23 mm with a K-factor of 0.5. It can also be 

seen that as hP increases, the K- factor follows a non-linear decline. Figure 6-6

shows that a non-linear relationship is also seen when the calculated K-factor is 

plotted as a function of PPD. In general it can be seen that K- factor declines as 

the PPD increases. The decrease in K-factor as a function of PPD was seen to be 

greater for hP = 15 mm than it was for hP = 10 mm. 

Since the K-factor showed a non-linear decline with both hP and PPD, the 

datasets were fitted with an equation with the general form given below.

 xCBeAy  (6-3)
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Figure 6-5: Variation of K- factor as a function of hP. Data plotted is for: 10” cartridges with 
PPD = 1 (), 1” cartridges with PPD = 1 () and 1” cartridges with PPD = 0.85 (). The 
broken line shows a K- factor of 1, where all the membrane is fully utilised. Calculated K-Factor 
values taken from Figure 6-4. Solid lines fitted according to Equation 6-3.
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Where: y is the K-factor, x is hP or PPD, whilst A, B and C are fitted parameters. 

Equation 6-3 was fitted to the datasets using the built in function within 

Sigmaplot (Systat Software Inc., California, USA) that used a Marquardt-

Levenberg algorithm to predict values for the fitted parameters. The algorithm 

was used to minimise the sum of the squared differences between the values of 

the predicted and observed dependent variable (K-factor). The fitted parameters 

and R2 values for all of the datasets used are given in Table 6-1.

The fitted lines for the datasets where hP was varied is shown in Figure 6-5. It 

can be seen that Equation 6.3 gives a reasonable fit to the dataset with R2 values 

ranging from 0.89 to 1. These are acceptable given the limited number of 

cartridge configurations fabricated and hence K-factors determined. The 

experimental correlations could be used to calculate K-factors for any hP, 

providing pleat packing density remained constant. 
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Figure 6-6: Variation of K-factor as a function of PPD. Data plotted is for a 1” cartridge with hP

= 10 mm () and 1” cartridge with hP = 15 mm ().The broken line shows a K-factor of 1, 
where all the membrane is fully utilised. Calculated K-factor values taken from Figure 6-4. Solid 
lines fitted according to Equation 6-3.
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Table 6-1: Values of the fitted parameters generated for Equation 6-3 for various cartridge 
configurations. R2 values are given to show the closeness of the fit between the equation and the 
data. Yeast solution comprised of 7.7 gL-1 yeast, 1 gL-1 BSA in 0.03 M sodium phosphate buffer 
(pH 7.5)

Pleat

Characteristic

Cartridge 

Configuration

Test 

Fluid

Fitted Model Parameters R2

A B C

hP 10”, PPD = 1 Water 1.27 0.24 0.05 0.89

hP 1”, PPD = 1 Water 2.48 1.5 0.012 0.97

hP 1”, PPD = 0.85 Water 1.02 0.02 0.17 1

PPD 1”, hP = 10mm Water 1.03 0.0004 6.36 0.84

PPD 1”, hP = 15mm Water 1.08 0.08 1.78 > 0.99

PPD 1”, hP = 10mm Yeast 1.01 0.01 3.79 > 0.99

Similarly, Equation 6.3 also produced a reasonable fit to the datasets where PPD 

was varied. These were shown previously in Figure 6-6. R2 values ranged from 

0.84 to >0.99, which are again acceptable given the limited dataset. These 

experimental correlations could be used to calculate K- factors for any PPD, 

providing hP remained constant.

The reasonable fit of Equation 6-3 to the datasets used indicates that the model 

selected to describe the change in K-factor with a change in PPD or hp may be 

valid. However, the model fits are based upon limited experimental data. It was 

not possible to run further experiments as it was only possible to fabricate a 

limited number of cartridge/pleat configurations. Thus the model requires 

verifying with another alternative feedstock that is independent of the current set 

of experiments. Once verified the model can be used to generate improved scale-

up data from a flat sheet disc to compare against data for a large-scale pleated 

cartridge. This will be covered in Section 6.4.
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6.4 Verification of K-Factor Experimental Model

The K-factor model described in Section 6.3 is based on a reduction in effective 

membrane area due to pleat crowding effects. So as to try and experimentally 

verify the reduction in membrane area seen in Figure 6-5 and Figure 6-6, 

membrane experiments were performed as presented in Section 4.4 where yeast 

was used as a probe to highlight areas of unused membrane.

Colour images of the membrane taken from the pleated cartridges used in Section 

4.4 were captured and converted to an 8-bit grey scale image. The grey scale 

images were converted into a binary image using the protocol outlined in Section 

2.4.3. The various images used in this process are shown in Figure 6-7, Figure 6-

8, and Figure 6-9 for a 1” EAV10, 1, 1” EAV10, 0.85 and 1” EAV10, 0.65 pleated 

cartridges respectively. Areas of white within the binary image represent 

membrane area without yeast deposits. It can be seen from Figure 6-7 to Figure 

6-9 that the area of membrane without yeast deposits reduces as PPD decreases. 

This can be linked to the reduction in PPD leading to a more open pleat structure, 

which in turn allows greater accessibility for particles to enter the pleat and 

deposit upon the membrane surface.

Particle analysis was performed upon the binary images shown in Figure 6-7 – 6-

9, using the protocol defined in Section 2.4.3. This analysis, quantified the 

number of pixels of each colour contained within the binary images. In turn this 

allowed for quantification of the membrane area that contained yeast deposits. 

This is assumed to represent the effective membrane area (Aeff, IA) available for 

filtration. A summary of the results of the particle analysis are given in Table 6-2

from which it can be seen that Aeff decreased as a function PPD. In turn Equation 

6-2 was used to calculate K-factors, as the total area of the image represented 

Am. Calculated values of K-factor are also given in Table 6-2. As was seen to be 

the case for the water experiments Section 6.3, K-factor decreased as a function 

of PPD, due to the decrease in Aeff caused by the increase in PPD.
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A plot of K-factor as a function of PPD for the yeast suspension data is given in 

Figure 6-10. The data shows the same non-linear decline model found when 

evaluating the K-factors generated from clean water flow data. Equation 6.3 was 

fitted to the data points and the fit parameters are given in Table 6-1. The 

equation was seen to fit the data well and gave a curve with R2 > 0.99.

The threshold, which defines the point at which an image pixel represents either 

clean membrane or a yeast deposit, was set manually with reference back to the 

original colour image. The error bars show the impact that a 10% variation in the 

threshold value had upon the calculated K-factor. Whilst the error bars are 

relatively large, there is still a significant difference between the data points 

(Student’s t-test yields P<0.05).

Figure 6-7: Images used to experimentally determine K-factors for a 1” EAV10, 1 cartridge based 
on deposition of yeast particles. Images are: (a) colour photograph of yeast cell deposition, (b)
binary representation. Experiments were performed as described in Section 2.4.1. The generation 
of the binary images was carried out as per the experimental protocol outlined in Section 2.4.3.



182

The data points contained in Figure 6-10 have been combined with the data 

points contained in Figure 6-6 to compare the different approaches taken to 

generate K-factor. The results are shown in Figure 6-11. Whilst not exact, the 

trends in K- factor decline are similar for the datasets generated from water and 

yeast suspension experiments. This confirms that the models generated from the 

water system were reasonable and applicable. The models can now be used to 

improve the scale-up predictions from a flat sheet disc to a large-scale pleated 

cartridge using an ultra scale-down approach.

Figure 6-8: Images used to experimentally determine K-factors for a 1” EAV10, 0.85 cartridge
based on deposition of yeast particles. Images are: (a) colour photograph of yeast cell deposition, 
(b) binary representation. Experiments were performed as described in Section 2.4.1. The 
generation of the binary images was carried out as per the experimental protocol outlined in 
Section 2.4.3.
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Figure 6-9: Images used to experimentally determine K-factors for a 1” EAV10, 0.65 cartridge
based on deposition of yeast particles. Images are: (a) colour photograph of yeast cell deposition, 
(b) binary representation. Experiments were performed as described in Section 2.4.1. The 
generation of the binary images was carried out as per the experimental protocol outlined in 
Section 2.4.3.

Table 6-2: Results of particle analysis performed upon membrane samples given in Figure 6-7 –
6.9. Particle analysis performed as described in Section 2.4.3. K-factor calculated by dividing the 
sample area with yeast deposits (Aeff, IA) by the total area of the sample (Am). Values presented 
are averaged based upon generation of binary images as described in Section 2.4.3 with a 10% 
variation in the binary threshold value.

Cartridge 
configuration

Total area 
of sample 

(×105) 
(pixels2)

Sample area 
with yeast 

deposits (×105) 
(pixels2)

Sample area 
without yeast 

deposits (×105) 
(pixels2)

K-
factor 
(%)

1” EAV10, 1 12.6 6.6 6.0 52
1” EAV10, 0.85 12.5 9.1 3.4 73
1” EAV10, 0.65 11.5 10 1.15 88
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Figure 6-10: Variation of K-factor values based on image analysis with PPD. Data generated 
from yeast suspension experiments performed as described in Section 2.4.1. Quantification of the 
clean membrane area as described in Section 2.4.3. Error bars represent a 10% variation in the 
binary threshold value, set when converting from 8-bit grey scale to binary images. The solid line 
is a fit of Equation 6.3 to the dataset (the fitted parameters for the model are given in Table 6-1). 
The dashed line represents a K- factor of 1, where all the membrane area is effectively utilised.

So as to compare the degree of similarity seen in K-factor generated from either 

water flux experiments or image analysis the data points in Figure 6-11 were 

replotted as a parity plot, which is shown in Figure 6-12. It can be seen from this 

plot that there is a reasonable agreement between K-factor generated based upon 

Aeff, IA and Aeff, water obtained from cartridges containing a pleat height of 15 mm. 

The K-factors based upon Aeff, water for cartridges with hP = 10 mm were not seen 

to provide as good an agreement with those based upon Aeff, IA. 

Whilst not being seen for the same pleat height, the agreement between the K-

factor values obtained from  the two separate approaches suggests that for a 

given cartridge configuration an estimate of Aeff based on a quick and cheap 
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clean water flux experiment may be adequate for obtaining a quantitative and 

accurate value of the K-factor. 

The incorporation of this K-factor concept into a USD methodology aimed at 

improving the performance predictions of flat sheet membrane against the 

pleated cartridge counterpart will be presented in the next section. This new USD 

methodology will be tested against large-scale pleated cartridges used earlier in 

this thesis so as to assess whether an accurate scale-up can be achieved. 
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Figure 6-11: Datasets and fits of Equation 6.3 for the variation in K-factor as a function of PPD
for 1” cartridges with hP = 15 mm () and hP = 10 mm (,). Data generated from clean water 
flow experiments (,) and from the quantification of yeast deposits (). Experimental 
protocol for water flux experiments as described in Section 2.3.1. Experiments with yeast 
performed as described in Sections 2.4.1 and 2.4.3. The dashed line represents a K-factor of 1, 
where all the membrane area is effectively utilised.
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Figure 6-12: Parity plot of K-factor values obtained using either water flux measurements (Aeff, 

water) or image analysis after yeast suspension filtration (Aeff, IA). K-factor derived water flow 
experiments using cartridges with hP = 10 mm () and hP = 15 mm (). 

6.5 Definition and Testing of a K-Factor Based USD 

Methodology

Figure 6-13 illustrates the proposed USD methodology to improve the scale-up 

predictions from a flat sheet disc. The process is based on a quick and easy 

estimate of flux and product transmission with a minimum quantity of material 

using a flat sheet disk, followed by adjustment of the throughput performance 

using the K-factor approach, so as to quantitatively predict performance of a 

pleated membrane cartridge. A K-factor is selected that most closely matches the 

configuration of the large-scale cartridge in terms of hP and PPD.

To test the proposed USD methodology a yeast suspension (7.7 gL-1) containing 

BSA (1 gL-1) in a 0.03M sodium phosphate buffer (pH = 7.4) was filtered 
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through a range of flat sheet and cartridge configurations. This is the same 

feedstock that was used to characterise the performance of the 10” UEAV24, 1

cartridge in Section 3.4.3. An example of the throughput data obtained is given in 

Figure 6-14. The same Vmax methodology, based upon a standard pore blockage 

model, as was used in Chapter 5 was again used to predict the maximum volume 

(Vmax) that could be filtered by the membrane filters before blocking. A good fit 

(R2>0.98) to the standard pore blockage model was seen during the period in 

which the volume throughput was no longer constant (after 16 min) due to 

fouling of the membrane. This was also the case for all of the configurations 

used. The values of Vmax and R2 for all the configurations tested are given in 

Table 6-3.

The performance prediction from a flat sheet membrane to the large-scale pleated 

cartridge is normally based upon product transmission and volume throughput. 

The product transmission for the configurations studied is given in Table 6-3. 

The small-scale flat sheet disc was seen to give a good prediction to the large-

scale pleated cartridges with variations of 5% and 6% seen for the 10” EAV10, 1

and 10” UEAV24,1 cartridges respectively. 

Figure 6-13: Illustration of the proposed USD K-factor methodology for improved scale-up
prediction from a flat sheet disc to a pleated membrane cartridge.
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In a typical throughput scale-up scenario, the calculated parameter Vmax/Am

would be used to predict the large-scale performance from the small-scale 

performance prediction. Values of Vmax / Am parameters for the configurations 

used are given in Table 6-4. For the scale-up to be accurate, the value of the 

Vmax/Am for the flat sheet disc (57 Lm-2) should closely match that of the large-

scale counterpart. For scale-up prediction without the use of the K-factor 

approach, this is not seen to be the case for either of the large-scale 

configurations used in this study. The difference between the small-scale and the 

large-scale cartridge was 49% and 39% for the 10” UEAV24,1 and 10”EAV10,1

cartridges respectively.
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Figure 6-14: Volume throughput data for 10” UEAV24,1 pleated cartridge, when filtering 7.7 gL-1

yeast solution containing 1 gL-1 BSA in a 0.03M phosphate buffer solution (pH=7.4). Data 
plotted is collected permeate volume () and time / collected permeate volume (). Experiment 
conducted as described in Section 2.4.1.
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Table 6-3: Calculated Vmax values from experimental data. High R2 values show good fit between the standard blocking model and the experimental data.

Cartridge configuration

Standard performance data USD method parameters

Vmax

(L)

R2 Product Transmission 

(%)

AM

(m2)

K-factor 

(water)1

Aeff, water

(m2)

K-factor 

(yeast)2

Aeff, IA

(m2)

10” UEAV24, 1 28 0.98 87 1.06 0.49 - 0.52 -

10” EAV10, 1 28 0.99 88 0.68 0.79 - 0.52 -

25mm flat sheet disc 1.8×10-2 >0.99 91 3.8×10--4 1 3.8×10—4 1 3.8×10--4

1 K-factors taken from Figure 6-4. K-factor selected based upon closest match to configuration of hP and PPD measured for the 1” cartridges used.
2 K-factors taken from Figure 6-10. K-factor based upon closest match to configuration of hP and PPD. Note that only K-factors derived for a hP of 10 mm was available 
for this method.

Table 6-4: Comparison of performance prediction from a flat sheet disc to 10” pleated cartridges using the K- factor methodology outlined in Figure 6-13.

Cartridge configuration Actual Vmax /A 

(Lm-2)

Flat sheet predicted Vmax / A 

(Lm-2)

% Difference between predicted and 

actual Vmax / A (%)

AM Aeff, IA Aeff, water AM Aeff, IA Aeff, water

10” UEAV24,1 30 57 30 28 47 -2 -9

10” EAV10,1 35 57 30 43 39 -17 23
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So as to investigate whether use of the K-factor could improve the accuracy of 

the scale-up prediction, the methodology defined in Figure 6-13 was applied to 

the throughput performance data given in Table 6-3. K-factors derived from both 

the water flow and image analysis techniques presented in Section 6.3 and 6.4 

respectively were used independently to assess their relative merits in improving 

the performance prediction of the flat sheet membrane. The selection of K-factor 

was based upon the closest match in terms of hP and PPD to the large-scale 

cartridge that was the subject of the performance comparison. The K-factors used 

and the corresponding value of Aeff are given in Table 6-3 for all the 

configurations used.

The USD predictions based on the flat sheet disc experimental data were 

obtained by multiplying the value of Vmax / Am by the K-factor selected for each 

of the large-scale configurations. This generated a scale-up factor based upon 

Aeff and not Am, and is a better reflection of the available membrane area within 

the pleated cartridge. The modified scale-up parameters are given in Table 6-4

based either on using Aeff, IA or Aeff, water. Generally, an improvement in scale-up 

prediction was seen when the K-factor were used to adjust the experimentally 

derived performance data obtained from the flat sheet disc experiments. The K-

factors generated using the image analysis technique in Section 6.4 (Aeff, IA), 

were seen to give the greatest improvement in the performance prediction. 

However, when the K-factor obtained from water flow experiments (Aeff, water) 

was used then improvements in performance prediction were still seen relative to 

the uncorrected performance prediction from the flat sheet. This was particularly 

seen to be the case for performance prediction of the 10” UEAV24,1 cartridge 

which was seen to be within 10% of the large-scale performance.

It can be generally stated that, based upon the limited number of experiments 

conducted in this study, the performance prediction based upon a K-factor 

derived from Aeff, IA gives is better than that generated by Aeff, water, which in turn 

gives a better performance prediction than for uncorrected experimental data 

collected from flat sheet membrane.
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6.6 Discussion and Summary

Based upon the improved performance predictions presented in Section 6.5, the 

USD methodology shows good promise as a means of improving the scale-up 

prediction made using flat sheet membrane, particularly when using a K-factor 

based upon Aeff, IA.

The improved performance predictions are based upon a limited number of 

experiments, and thus further validation of the technique would be required to 

establish the robustness of the technique. Furthermore, Aeff, IA was based upon 

image analysis performed upon a cartridge with a hP of 10 mm. As such it is not 

necessarily intuitive to use the effective area generated from cartridges with hP = 

10 mm to predict the performance of a large-scale cartridge such as 10” UEAV24, 

1 which has hP = 24 mm.

As described in Section 6.1, the aim of this chapter was to develop and test a 

USD approach that improves the scale-up from a flat sheet by correcting for the 

pleating effects. This aim was partially achieved through a number of objectives 

that were fulfilled. The main conclusions are as follows:

 Pleat crowding was seen to reduce solute accessibility into the pleat, 

which in turn was seen to be a non-linear function of hP and PPD. As both 

hP and PPD increased, accessibility decreased leading to a reduction in 

effective membrane area, Aeff (Section 6.2).

 An USD methodology as shown in Figure 6-13, was developed and 

tested. The USD methodology used Aeff calculated from water flow 

experiments (Aeff, water) (Section 6.3) or image analysis (Aerr, IA) (Section 

6.4) to generate a scale-up parameter, K-factor, which in turn can be used 

to correct experimental data generated on the small-scale using flat sheet 

membrane (Section 6.5). 
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 The USD methodology was used to predict the performance of large scale 

pleated cartridges (Section 6.5). In some instances performance 

predictions were within -2% and -17% of a 10” UEAV24, 1 and 10” 

EAV10, 1 cartridge respectively. This represented a significant 

improvement over using flat sheet experimental data without any 

correction.

 Based upon a limited number of initial experiments the USD approach 

appears to work well for K-factors calculated from Aeff, IA and to a lesser 

extent for Aeff, water. However, further experimental study is required to 

validate these results.

In the next chapter the commercial and validation aspects of the scale-down 

pleated cartridge evaluated in Chapter 5 will be considered, which is a 

requirement for the award of an Engineering Doctorate (EngD).
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7 Challenges to the Commercialisation and Validation 

of the Scale-Down Cartridge‡

7.1 Introduction and Aims

The scale-down pleated device designed and evaluated in Chapter 5 currently 

exists as a prototype (Section 2.3.2) that has shown good scaleable performance 

with fouling (Section 5.2) and non-fouling (Section 5.3) feedstock. Despite these 

promising initial findings many challenges remain to conversion of the prototype 

device into a robust commercial product.

The aim of this chapter is to discuss the key challenges to commercialisation of 

the scale-down pleated device and the steps required in technical, commercial 

and validatory areas to overcome them. The specific objectives of the chapter 

are:

 To describe a means by which the hold-up volume of the cartridge can be 

minimised (as noted in Section 5.8 through the optimisation of the 

housing and the experimental rig).

 To define the quality assurance and testing procedures that would be 

required to bring the scale-down pleated device to market as a product.

 To define the key commercial benefits of the scale-down pleated device 

over the currently used flat sheet discs, and present an economic case to 

support the strategy to maximise exploitation of these benefits.

                                                
‡ This chapter is included in partial requirement for the award of the UCL Engineering Doctorate 
in Bioprocessing.
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7.2 Technical Issues Involved with Product Development

In Section 5.8 it was concluded that further technical work was required to test 

the general applicability of the scale-down pleated device with more feedstocks. 

However, there are other technical challenges that exist and require further 

product development work. Foremost is the requirement involved in the 

optimisation of a housing to hold the scale-down pleated device, and the 

pumping rig into which the device will be inserted. If these are not optimised 

then the scale-down pleated device will not be feasible as a small-scale device 

for utilisation with low volumes of a customer’s feedstock.

7.2.1 Development of an Optimised Housing

Throughout this study the scale-down pleated device has been contained within a 

standard 1” stainless steel housing. This does not represent an optimised solution 

for the scale-down device as the hold-up volume within the housing is large 

(~300 mL). This increases the amount of a customer’s feedstock that would be 

required for each experiment, which is undesirable. Alternatively, a molded 

plastic housing could be used with the scale-down cartridge permanently fused 

around the pleated membrane. By using a molded plastic housing, the dead 

volume of the housing could be filled in with a plastic insert so that only the 

volume around the active pleated section was exposed to the feed (Figure 7-1). 

Such measures would likely reduce the dead volume by a factor of 20 down to 

just 5-10 mL.

Construction of the housing from plastic would have the added advantage that 

the device would be single-use (Bardo, 2008) and allow the user to simply 

connect the device into an existing experimental rig. Upon completion of the 

experiment the scale-down device would be easily disconnected from the rig and 

disposed of by incineration. There would be no need for the user to come into 

contact with the pleated cartridge and the material that may have built up upon 

the surface of the cartridge leading to enhanced operator safety. The single-use 

nature of the product would also reduce cleaning costs and allow for the device 
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to be treated with gamma radiation to achieve sterility instead of through steam 

sterilisation. This strategy aligns well with the current use of disposable filter 

cartridges within the industry (Galka, 2007).

Figure 7-1: Illustration of cross-section of scale-down cartridge housed within a plastic housing 
containing a plastic insert to fill a section of the annulus between the outer casing of the scale-
down pleated cartridge and the inner surface of the plastic housing.
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7.2.2 Integration Within an Experimental Design Regime

The scale-down pleated device operates with the same constant flow regime as 

the large-scale pleated membrane cartridge filters (Section 5.3). As a result, a 

pump is required to supply the correct flowrate to the pleated cartridge. An 

experimental set-up can easily be produced into which the cartridge can be fitted. 

However, as the objective is to reduce hold-up volume, then an optimised 

pumping rig set-up is required to obtain the full benefits of scale-down 

experimentation. Such a set-up would require a pump able to supply a range of 

flow rates, a flow indicator upon the permeate line, all with a minimum hold up 

in tubing but without excessively large pressure drops. Two pressure indicators 

are required to provide the necessary transmembrane pressure and, based upon 

the results in Section 3.2.1, it would be advantageous if they were able to read 

the pressure from inside the housing, close to the surface of the scale-down filter 

cartridge. Such a rig, would provide a simple, optimised set-up into which the 

scale-down pleated cartridges could quickly be connected into. This would in 

turn give accurate prediction for large-scale performance using the minimum 

liquid volume.

7.3 Validation of Quality of Scale-Down Cartridge

7.3.1 Need for Validation

Validation in the bioprocess industry is the act of establishing documented 

evidence which provides a high degree of assurance that a specific process will 

consistently produce a bioproduct to pre-determined specifications and quality 

attributes (MHRA, 2007). Validation is necessary as the bioproduct will 

ultimately be used within humans and as such if not tightly controlled could 

generate serious side-effects including the potential to cause death (MHRA, 

2007). Furthermore, the bioproduct itself is inherently complex as is the process 

that is required to produce it. The intended use of the scale-down pleated device, 

however, is not to form part of the process to generate the bioproduct. Instead it 

is a device intended to be used in the design, optimisation and scale-up of new 
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bioprocesses, as well as troubleshooting of existing processes, so as to remove 

the need for extensive pilot-scale process development. Thus the output from 

scale-down process development could be used to support the design and 

operation qualification of a process, and as such the device must provide 

performance predictions of the large-scale equipment that are robust and 

consistent. Hence, validation of these performance predictions to ensure that they 

are robust would be required. It is not envisaged that the scale-down cartridge 

would impact upon installation qualification or performance qualification as 

installation qualification is focussed on the validating the correct installation of 

critical components of the system (ISPE, 2001), whilst performance qualification 

is focussed on integrating equipment with correct procedures and systems (ISPE, 

2001).

A summary of the key performance requirements for scale-down pleated devices 

are as follows:

 Consistent manufacture without leaks and consistent values for bubble 

test or forward flow test.

 Successful completion of specified filtration duty requirement, e.g. 

complete removal of microbial material for sterile filters, or 10 log 

reduction in virus levels for viral filters.

 Make no chemical change to the process stream before or after filtration, 

also avoiding the leaching of new components into the process stream.

 Provide accurate scale-up to the large-scale pleated cartridge.

The fourth point is especially important if companies are conducting the majority 

of their process characterisation and process validation using scale-down models, 

before qualification using full-scale lots (Thompson et al., 2007).
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7.3.2 Troubleshooting of Failures in Performance Functions

In order to understand the ways in which failures in performance functions can 

take place and, more importantly, put in place activities to avoid them, a Failure 

Modes and Effects Analysis (FMEA) can be conducted by a team within the 

filter production company. A FMEA is a process for identifying likely defects 

before they occur, using a rating scale (Thomsett, 2005). The aim of the study is 

to identify areas at an early stage of product development where preventative 

measures will be useful in a process.

Whilst a FMEA study would normally be conducted by an experienced team, an 

example study for a scale-down pleated device containing a sterile rated 

membrane is given in Table 7-1 to illustrate the methodology. Function failures 

are arbitrarily rated on a 1-10 scale in terms of severity, occurrence and 

detection. The ratings are collected together in the Risk Priority Number (RPN) 

term. Failure modes with high ratings require investigation to ensure that there 

are activities in place to avoid the failures. 

In Table 7-1 it can be seen that there are several failures with high risk priority 

numbers, making them important issues to deal with during a validation study. 

These failures have a high RPN primarily because they introduce new features 

into the manufacturing process. Recommended activities to reduce the impact of 

failures that show an RPN>100 will be discussed further. In Section 7.3.3.
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Table 7-1: Example failure modes and effects analysis for the performance qualification of a scale-down pleated device containing sterile rated membrane.

Function Failure Mode Effects SI Cause OII Current Controls DIII RPNIV

Sterile 

Filtration

Filter cartridge 

contains leak

Microbial material 

allowed to pass

8 Membrane not fully sealed into the 

cartridge

7 Leak test all cartridges 3 168

Membrane pore size too large 2 Leak test all cartridges 3 48

Exposure to high pressure 3 Rate cartridges for maximum operational 

pressure. Operate within rating.

5 120

Process stream affects membrane 

structure

2 Test process stream with cartridge, 

followed by leak test.

3 48

Degradation of membrane porous 

structure due to steam sterilisation

2 Forward flow testing before and after 

steam sterilisation

3 48

Filter Inert to 

Process Fluid

Leachates enter 

process stream 

from filter 

cartridge

Foreign materials 

enter a process 

stream with no 

means of removal

7 Filter cartridge materials of 

construction sensitive to stream

2 Selection of cartridge filters tested for 

leachables. Source of materials of 

construction tightly controlled.

5 70

Composition of stream changes 2 Test variation in process stream 

conditions with filter cartridges.

4 70

Performance 

prediction

False large-scale 

performance 

prediction

Wrongly sized 

large-scale 

equipment

6 Leak in membrane 7 Leak test all cartridges 3 126

Variation in active membrane area 5 None 10 300

Notes: I S = Severity rating. II O = Occurrence rating. III D = Detection rating. IV RPN = Risk priority numbers = S  O  D 
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7.3.3 Recommended Activities

7.3.3.1 Reduce Risk of Cartridge Leaking

There is the potential for an increased risk of leaks in the scale-down cartridge 

format for a number of reasons. Multiple side seals have been introduced where 

previously there was only one. The side seals used also involve a new material, 

the hydrophobic material of the inactive cartridge areas. Finally, the scale-down 

pleated device is a 1” cartridge, which does not have a fully validated 

manufacturing procedure to support the production of the cartridges.

To help overcome these issues, the following are recommended to be carried out 

in a validation plan:

 Leak test (see Section 1.5.3) heat seals present within the 1” scale-down 

pleated devices at a range of heat seal temperatures, with an aim to 

correlate cartridge hydraulic integrity against heat seal temperature. Thus, 

the heat seal temperature that gives the greatest hydraulic integrity would 

be identified.

 Carry out leak test with a range of cartridges containing different active 

membrane types, such as virus removal membranes. The aim here is to 

ensure that all membrane types envisaged for use in the scale-down 

cartridge can be sealed against the hydrophobic packing material.

 Develop a robust manufacturing procedure with well-defined procedures 

and operating ranges for production of the cartridges in a 1” format.

All of these options would require the generation of large numbers of scale-down 

cartridges to ensure that a low failure rate is achieved.
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7.3.3.2 Reduce Risk of Failure Due to High Pressure

Whilst the scale-down pleated devices would be rated for a maximum operating 

pressure, the sensitivity of a failure to exposure above this maximum operating 

pressure can be pre-determined. Thus, a study would be required to test the 

strength of the membrane and heat seals to operation at a range of pressures close 

to and above the maximum specified operating pressure. A leak test could then 

be used to identify failures in the cartridges, which could be further linked to 

selection of membrane materials and the temperature used to achieve the heat 

seal. This study would require repetition for all membrane types to be installed 

within the scale-down cartridge.

7.3.3.3 Reduce Variation in Active Membrane Area

As the scale-down pleated device is a small-scale device containing a low active 

membrane area, the sensitivity of the device to changes in membrane area is 

high, particularly as all performance predictions are scaled-up based on the 

installed membrane area. However, well defined manufacturing procedures 

where by the exact length of pleated membrane are repeatedly used, and the 

trimming of the membrane area is precise would reduce the occurrence of 

variation in the membrane area. Once again, robust testing of the manufacturing 

process would be required whereby several hundreds of cartridges would be 

required without the addition of end caps (see Section 1.4) so that the cross-

section of the pleated cartridge could be seen and the membrane area calculated.

Thus, whilst numerous areas exist whereby the quality of the scale-down 

cartridge and the scale-down approach could fail, there are many steps that can 

be implemented to reduce the occurrence of the failure. These steps can be 

documented in a master file to provide assurance to the customer and, where 

required, the regulator of the robustness and consistency of the devices and the 

scale-down approach.
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7.4 Commercialisation Strategy

The market for pleated cartridge filters is populated by a large number of 

companies (Allegrezza et al., 2008), such that a new product would require 

significant improvements and benefits to the customer in order to further capture 

market share. This section outline a strategy to achieve this break into the market 

for the scale-down pleated device.

7.4.1 Benefits of the Device

It was discussed in Section 1.7.5.1 that the scale-down approach allows for 

process development to be carried out at an earlier stage in product development 

(see Figure 7-2), as it allows for the generation of process related data using 

small volumes of a feedstock that is likely to be scarce at this stage. This 

provides more time for process development related activities and removes the 

need for carrying out process design at the pilot-scale where it is more time-

consuming and expensive. Such an approach would make a valuable proposition 

to a biopharmaceutical company. For the filter manufacturer, the scale-down 

approach allows for interaction with a potential customer at an earlier stage, 

when it is likely that the customer would be more receptive to new filter 

technologies. Also, the process development activities provide an opportunity to 

capture the later large-scale custom of the company should the drug under 

development be successful in clinical trials.

The scale-down approach also offers advantages for the biopharmaceutical 

companies who already have a process in place, as the scale-down pleated 

devices offers an opportunity to conduct process improvements, or trouble-

shooting of the process using a small-scale device that closely matches the 

performance of the large-scale, whilst requiring significantly less feedstock.
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Figure 7-2: Typical timeline for biopharmaceutical drug development. Scale-down studies allow
for process development to take place at an early stage during drug product development. This is 
compared with current practice, which would involve pilot plant trials using existing equipment 
from year 3 to year 4.

The benefits to both the filter company selling the scale-down pleated device and 

potential customers are summarised in Table 7-2. Specific performance 

advantages are such that at present the scale-down pleated device is about 45% 

better at predicting the performance of the large-scale 10” cartridge, than is the 

flat sheet disc (Figure 5-9). At the very least this will remain the same in the 

future, as there is room for improvement in the method of scaling from flat sheet 

discs. However, the scale-down pleated device is likely to improve in its 

performance relative to the 10” cartridge over time as greater consistency is 

achieved in installing the same area of active membrane area inside of each 

cartridge and in reduction of hold-up volume. The only foreseeable method to 

improve the performance of the flat sheet disc relative to a 10” cartridge is the 

USD approach outlined in Chapter 6 of this thesis. However, as discussed in the 

Section 6.6, there is considerable development work required to make the 

method robust in its prediction of performance. Thus, the scale-down device 

should enjoy a number of years of competitive market advantage, which should 

be exploited at the earliest opportunity to gain maximum financial benefit..
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Table 7-2: Benefits of the scale-down approach to the filter manufacturer and their potential 
customers.

Benefits to the Filter Manufacturer Benefits to the Customer

Improved confidence in prediction of 

performance of cartridge filters with 

the customer feedstock.

Improved scale-up to large-scale, 

optimising the use of the large-scale 

cartridge.

Competitive advantage against rival 

manufacturers who rely upon flat sheet 

discs and over-predictions of 

performance to sell to customers.

Ability to conduct meaningful process 

development studies at an early stage 

of drug development.

Enhanced tool for troubleshooting 

customer feedstock without requiring a 

fully pleated cartridge.

Reduce the scale of pilot-plant studies, 

such that only conformational batches 

are required.

Troubleshoot existing processes 

without a requirement to use large-

volumes of feedstock.

7.4.2 Commercial Exploitation of Benefits

It is considered unlikely that the scale-down pleated device cold be sold in 

sufficient volumes that it would generate enough revenue as a standalone 

product. This is due to the requirement for the device to be sold at a low enough 

price to make it acceptable as a small-scale process development tool. However, 

as discussed in the Section 7.4.1, the scale-down pleated device can be used to 

facilitate the capture of the large-scale pleated cartridge market, where cartridges 

are disposable and thus replaced on a regular basis. The strategy to capture more 

of the market would be to exploit the improved performance prediction of the 

scale-down pleated device to offer a more accurate and robust scale-up 

prediction to the large-scale cartridge. It is likely that the predicted size of the 

large-scale cartridge will be lower as the scale-down pleated device does not 

require over-designing of the large-scale process to account for the reduced 

confidence in scale-up prediction. This would present an attractive proposition to 
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potential customers to reduce their costs. An analysis of the economics of this 

strategy for a flat sheet disc and the scale-down pleated device are given below.

7.4.2.1 Economic Case for Flat Sheet Disc

The flat sheet disc represents the base case scenario, as it is the device currently 

in use in the biopharmaceutical industry. Key data from an economic case carried 

out to predict the cost of large-scale cartridges required annually is given in 

Table 7-3. It can be seen that whilst the cost of the study is relatively low, the 

cost of the over-prediction of the membrane area required for the large-scale 

process is high.

Table 7-3: Key data from the economic case for use of flat sheet disc for large-scale membrane 
process design. Assumptions for the study are given in Appendix B.

Cost of study £500 per study

Variation from actual large-scale performance 55%I

Scale-up factor 50%II

Total over-prediction of large-scale performance 105%

Cost of over-prediction £1050 per cartridge

Total cost of over-predictionIII £12,600 per year

Total revenue from cartridgesIII £24,600 per year

I Based on Figure 5-10
II Assumed factor based upon uncertainty of prediction
III Assuming use of 12 cartridges per year.
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7.4.2.2 Economic Case for Scale-Down  Pleated Device

The same economic case as for the flat sheet disc (Section 7.4.2.1) has been 

applied to the scale-down pleated device described in Section 2.3.2. Key data 

from the case is given in Table 7-4. In this scenario it can be seen that the cost of 

the study is higher due to the increased cost of the scale-down device and an 

increase in the cost of the feed used. However, the scale-down pleated device 

significantly lowers the cost of over-prediction due to a more accurate scale-up. 

In this scenario a saving of over £10,000 would be achieved on a yearly basis, by 

the customer.

Table 7-4: Key data from the economic case for use of scale-down pleated device disc for large-
scale membrane process design. Assumptions for the study given in Appendix B.

Cost of study £2100 per study

Variation from actual large-scale performance 10%I

Scale-up factor 10%I

Total over-prediction of large-scale performance 20%

Cost of over-prediction £200 per cartridge

Total cost of over-predictionIII £2400 per year

Total revenue from cartridgesIII £14,400 per year
I Based on Figure 5-10
II Assumed factor based upon uncertainty of prediction
III Assuming use of 12 cartridges per year.
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7.4.2.3 Discussion of the Economic Cases

By using the scale-down pleated device and based upon the experimental results 

described in Section 5.4, and also the data provided in Appendix B, a cost 

reduction of some £10,200 is achieved for the customer. This makes a valuable 

proposition for the customer to adopt the filter cartridges on the large-scale, thus 

allowing the filter manufacturer to capture a greater share of the market. 

Ironically, however, the reduction in customer filter costs will affect the revenues 

of the filter manufacturer. Thus, to make-up for the loss in revenue the filter 

manufacturer must capture another new customer of the same size for every two 

customers that have had their costs reduced. As a minimum, this is achievable 

and it is likely that with the potential cost reductions available to a customer the 

actual increase in adoption will be considerably more. The economic cases do 

not account for the opportunities to sell higher value cartridges to the customer 

during the early stages of process development. This would likely increase 

revenue further, if customers could be convinced of the advantages of adopting 

these new technologies by the scale-down study.

7.5 Discussion and Summary

The aim of this chapter was to present a discussion of the key challenges to

commercialisation of the scale-down pleated device and the steps required in 

technical, commercial and validatory areas to overcome them. This aim was 

achieved through the proposition of solutions to a number of objectives that were 

outlined in Section 7.1.

 By using a molded plastic housing into which the scale-down pleated 

device is permanently fused it should be possible to reduce the hold-up 

volume in the housing from 300 mL to 10 mL (Section 7.2.1). Tubing 

should be minimised within the pumping rig so as to further minimise 

hold-up volume.
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 A quality assurance study would be required to show that any risk to the 

quality of the scale-down pleating device is very low, and that the area of 

membrane in the scale-down pleated device can be reproducibly 

manufactured (Section 7.3.3). Otherwise these two effects would have 

considerable impact upon the robustness of the device, and its application 

in the marketplace.

The key benefits that the scale-down pleated device has over a flat sheet disc, is 

the similarity in performance with a large-scale pleated cartridge (Figure 5-10). 

Thus a more robust and accurate scale-up can be achieved, vastly reducing large-

scale over-prediction. This could reduce over-prediction by over 80%. The scale-

down approach also allows for process development to take place at an early 

stage, offering the filter manufacturer the opportunity to engage with potential 

customers at an earlier stage in their process development activities, when they 

are likely to be more open to new membrane technologies.
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8 Summary and Conclusions

8.1 Overall Discussion and Conclusions

The production of therapeutic drugs using bioprocesses based upon recombinant 

expression systems is now a well established technique within industry and 

generates products that address conditions that previously had no treatment or 

were poorly treated (Titchener-Hooker et al., 2008). These drugs are typically 

complex proteins and require a large number of operations to achieve a purity 

level suitable for administration to patients (Kalyanpur, 2000). Within a typical 

bioprocess platform, as illustrated in Figure 1-1, it can be seen that pleated 

microfiltration cartridges are used extensively in many different areas. These 

microfiltration cartridges perform different roles depending upon whether the 

filter is rated for sterile filtration or just for bioburden reduction filtration

(Campbell, 2005). The method by which the membrane filtration cartridges are 

manufactured was described in Figure 1-4. Flat sheet membrane is first 

corrugated, before packs of corrugated membrane are wrapped around a 

perforated core. For filters that face liquid feedstock, the typical manufacturing 

approach is to maximise the membrane area within the cartridge, which is 

achieved by packing a large number of pleats into the unit (high PPD), increasing 

the height of the pleat (hP) and in some cases by folding it over.

Although the microfiltration cartridges contain pleated membrane, flat sheet 

membrane formats are currently used to conduct small-scale process 

development experiments that seek to predict the performance of the large-scale, 

pleated counterpart. These bioprocess development activities typically occur 

when the feedstock is limited in availability and is also expensive to produce

(Zhang et al., 2007). However, a number of studies have reported that there are 

significant differences between the performance prediction of the flat sheet 

membrane when compared to the large-scale pleated cartridge (Chandler et al., 

2004; Rajniak et al., 2008). This leads to inaccuracy in the scale-up prediction 

with cartridges over-sized so as to account for uncertainty in the small scale 
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trials. In turn this increases the cost of the large-scale process, as the cartridge 

filters are used extensively within the process and also are typically only used 

once before disposal (Bardo, 2008).

The reasons why there is such a difference between the performance of the flat 

sheet membrane and the pleated cartridge is not at present clearly understood. 

Previous studies have taken a simulation approach to model the characteristics of 

the pleat and the effect that this can have upon permeate flux (Waghode et al., 

2007; Wakeman et al., 2005). However, these studies are not validated by 

experimentation, and do not produce a means by which performance predictions 

of the pleated membrane cartridge can be made on the small-scale. As such, a 

robust and accurate small-scale method by which the performance of large-scale 

pleated cartridges can be predicted, still remains to be identified. More accurate 

small-scale studies would also reduce the size of pilot-scale confirmation studies, 

increasing bioprocess development efficiencies further. Consequently, as 

described originally in Section 1.8, the aim of this thesis is to develop scale-

down and ultra scale-down approaches to the rapid design and optimisation of 

microfiltration processes using pleated membrane cartridges. An overview of the 

approach taken to achieve this aim is shown in Figure 8-1, along with a summary 

of the key findings from this work.

For the purpose of this study the 10” UEAV24, 1 0.2 µm rated pleated cartridge 

filter was selected as the large-scale target due to its widespread use in industry. 

Initial studies sought to characterise the performance of the large-scale target 

within a standard cartridge housing (Chapter 3). Pressure drop and hydrodynamic 

housing effects were investigated (Section 3.2), to assess whether they should be 

accounted for when measuring the performance of the large-scale cartridge. 

However, the magnitude of the effects was considered small relative to the 

operation of a real filtration process. Consequently, it is concluded that the 

hydrodynamic effects related to the cartridge housing can most probably be 

neglected in the design of any scale-down cartridge device. 



211

Figure 8-1: Overview showing approach taken for the creation of scale-down and USD methods for prediction of large-scale pleated membrane cartridge performance. 
The main findings of this work are summarised within for each of the chapters.
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As protein solutions have typically been seen to foul microfiltration membranes 

during filtration (Kelly et al., 1997), an investigation was conducted (Section 3.3) 

to investigate this effect with the 0.2 µm rated EAV membrane that was used 

within the large-scale target. It was seen that both storage time and temperature 

had an impact the filterability of two protein solutions: 1 gL-1 solution of BSA in 

0.03 M phosphate buffer (pH 7.4) (Figure 3-15 – 3-16); and 10 gL-1 pepsin in 

0.03 M phosphate buffer (pH 7.4) (Figure 3-17). As such, it is concluded that for 

this study, fresh preparations of the protein solution should be used for filtration 

experiments so as to ensure that  consistent feedstock properties were used 

throughout. Pepsin was chosen as a representative feedstock as the fouling 

potential was higher than BSA reducing the volume of feedstock required to 

conduct filtration studies on the large-scale. The performance of the large-scale 

target was characterised (Section 3.4) for three feedstocks: water (non-fouling), 

pepsin solution (fouling), yeast and BSA solution (fouling). This provided the 

basic flux, volume throughput and transmission data against which the small-

scale approaches studied were compared.

The effect that pleating had upon the performance of the large-scale target was 

systematically investigated next, so as to understand which pleat characteristics 

might require further consideration when designing new small-scale approaches. 

Unlike the previous studies described in Section 1.6 this was achieved on an 

experimental basis using novel cartridges specifically fabricated with varying 

pleat characteristics. These differing characteristics were: pleat packing density 

(PPD), pleat height (hP), and pleat type. The range of cartridges used is described 

in Table 2-1. The measured normalised clean water flux of the large-scale target 

was 53% lower than that measured for a flat sheet disc (Figure 4-2), which 

compared well to the difference reported by other researchers (Rajniak et al.,

2008). It was seen that by reducing both PPD and hP, the measured clean water 

flux increased (Figure 4-3 and 4-4) and that a cartridge with a PPD of 0.5 and hP

of 10 mm gave comparable clean water flux to that of the flat sheet membrane. 

Thus, it is concluded that pleating does impact upon the performance of the 

large-scale cartridge, and that the effect varies as a function of PPD and hP. 
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To investigate the impact of pleating further, a yeast suspension was used as a 

probe to investigate particle access into the pleat. After filtration of this 

feedstock, inspection of the surface of the membrane showed, that, for cartridges 

with PPD beyond 0.85 (Figure 4-6) there were areas of limited or no evidence of 

particle deposition. Further analysis of the surface of the membrane revealed that 

the position of the areas without deposits were situated primarily towards the 

base of the pleat (Figure 4-14). It is concluded that pleat crowding, caused by 

high PPD, lead to areas within the pleat structure that were inaccessible to the 

yeast cell challenge. Furthermore, it is concluded that any small-scale technique 

must account for the effects of pleating by either incorporating the same pleat 

characteristics or modelling for the effects of pleating.

In Section 1.7.4, an approach taken by other researchers was described, in which 

they sought to scale-down the performance of a centrifuge by rendering areas of 

the centrifuge inaccessible to the process fluid. This approach lead to a reduction 

in the separation area and hold-up volume, which in turn lead to a reduction in 

feed volume requirements. However, as the key characteristic for separation 

(bowl diameter) of the centrifuge remained the same, the performance 

predictions obtained at the smaller scale were comparable to the large-scale 

centrifuge. A similar philosophy was taken in this work whereby areas of the 

pleated cartridge were rendered inactive for filtration by introducing hydrophobic 

material into the pleated membrane pack. This lead to a reduction in the active 

filtration area, whilst the characteristics of the pleat (PPD, hP and pleat type) 

remained the same as for the large-scale target. The smallest scale-down pleated 

device contained 1.5 pleats of membrane (Figure 2-8) have an active membrane 

area of 1.51 × 10-3 cm2. The performance prediction from these scale-down 

cartridges was assessed with two of the feedstocks used to characterise the large-

scale target in Section 3.4: clean water; and a 10 gL-1 Pepsin solution in 0.03 M 

phosphate buffer (pH 7.4). The clean water flux of the small-scale pleated device 

was within 8% of the large-scale target, as seen in Figure 5-4. This represented a 

significant improvement over the 53% variation measured between flat sheet 

membrane and the large-scale target. For the pepsin solution, the performance of 

the small-scale pleated device was within 10% of the large-scale target as shown 
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in Figure 5-7. Again, this represented a significant improvement over the 41% 

variation measured between the flat sheet membrane and the large-scale target. 

Measured product transmission levels were within 2% from the measured level 

of the large-scale target. These performance predictions were obtained with a 

feedstock requirement 1000-fold less than the large-scale target (Table 5-1), 

however the feedstock requirement remained 10-fold higher than for the flat 

sheet membrane. 

Further reductions in the feed volume requirement were achieved by applying a 

method typically used for predicting the performance of depth filters (Wang et 

al., 2006; Yavorsky et al., 2003) (Pmax method), where the measured changes in 

feed pressure is used to calculate the maximum volume throughput of the 

cartridge (Section 5-6). This technique also generated performance predictions 

within 1% of the large-scale target, although the feed volume requirement still 

remained larger than for the flat sheet membrane.

Based upon these new findings it is concluded that the small-scale pleated device 

fabricated here represents an excellent scale-down technique for the generation 

of accurate performance predictions for pleated microfiltration cartridge filters. 

Thus, the scale-down device has applications in the design of new processes for 

the production of biopharmaceuticals, as an alternative to the current practice 

involving flat sheet membrane. The improvement in the predictive performance 

reduces the need to over-estimate large-scale membrane area requirements, 

which in turn should reduce the cost of the large-scale process and increase 

confidence in process development activities. The current scale-down pleated 

cartridge operates with feed volumes less than 200 mL, with the Pmax method 

seen to use the least volume of feedstock. This reduction in volume would enable 

process studies to be performed earlier and to a certain extent more rapidly. 

However, further feed volume reductions would be difficult to achieve whilst 

maintaining the same pleat characteristics within the scale-down pleated 

cartridge as exists within the large-scale device. 
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To reduce the feed volume requirements even further, an approach whereby 

small-scale performance predictions based on flat sheet membrane data are 

corrected using key performance parameters was described in Section 1.7.5. This 

ultra scale-down (USD) approach was previously seen to improve the 

performance predictions achieved on the lab scale for centrifugation operations. 

This technique uses a small-scale technique that is not dependent upon 

maintaining the same configuration as the large-scale (Titchener-Hooker et al., 

2008). Adoption of this philosophy was considered in Chapter 6 of this thesis, 

whereby experimental data generated using flat sheet membrane would be 

corrected for the effects of pleating seen in Chapter 4, thus improving the 

performance prediction from flat sheet membrane, whilst maintaining the low 

feed volume requirements.

Based on the results generated in Figure 4-3, 4-4 and 4-6 a new parameter, 

effective membrane area (Aeff) was calculated. As both PPD and hP increased, 

accessibility to the membrane within the pleats decreased leading to a reduction 

in Aeff (Figure 6-4). Relating Aeff to the actual membrane area (AM) lead to the 

generation of a scaling parameter, K-factor. Thus a USD methodology was 

developed, described in Figure 6-13 that allowed for the correction of 

experimental performance data generated from flat sheet membrane by using a 

K-factor based upon the pleat characteristics of the large-scale target.

The USD methodology was used to predict the performance of the large-scale 

target for a system containing 7.7 gL-1 yeast suspended in 0.03 M phosphate 

buffer solution (pH 7.4), which also contained 1 gL-1 BSA. In one instance this 

performance prediction was within 2% of the large-scale target (Table 6-4), 

representing a significant improvement over the un-corrected flat sheet 

membrane, which showed a 47% variation from the large-scale target. However, 

the accuracy of the performance prediction depended upon the means by which 

the K-factor was obtained. Two methods were used; one using the results of 

clean water flux experiments (Section 6.3) and the other using image analysis of 

particle deposition upon the surface of the membrane (Section 6.4). The K-factor 

obtained by the image analysis method gave a better correction to the 
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performance data. Thus, based upon the limited number of experiments 

conducted in this final aspect of this work it is concluded that the USD approach 

works well for the K-factors calculated using the image analysis method. 

A number of scale-down approaches have been presented in this thesis. In 

Chapter 4, the current practice of using flat sheet membranes was seen to give 

discrepancies in performance prediction when compared to large-scale pleated 

membrane cartridges. In Chapter 5 a new scale-down pleated cartridge was 

presented and tested as a potential new scale-down approach. Finally in Chapter 

6 a USD methodology was described and tested to improve the scale-up 

prediction from flat sheet membrane. Table 8-1 compares various aspects of 

these different small-scale techniques. The scale-down pleated device currently 

gives a good performance prediction for a range of feedstocks. However, as has 

been previously noted, the feed volume requirements are such that the device 

could not be integrated with other USD techniques which typically operate with 

10-fold less volume of feedstock (Titchener-Hooker et al., 2008). The USD 

methodology was seen to also give a good performance for K-factor generated 

using Aeff, IA. However, this was based only upon the results from experiments 

using just one feedstock, and as such the accuracy of the USD method requires 

further experimental verification with different feedstocks. Furthermore, the K-

factor used was based upon the results from a cartridge with a different hP to the 

large-scale target. As such further development work is required to generate k-

factor for a wider range of hP and PPD, ideally leading to the definition of a 

single model that defines K-factor as a function of PPD and hP. Until these 

developments have been achieved then it remains difficult to recommend the 

technique as a robust small-scale approach. Consequently, it is concluded that 

based upon the findings of this work, the small-scale pleated device represents 

best current practice method for obtaining performance predictions of large-scale 

pleated membrane cartridge filters on the small-scale.
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Table 8-1: Summary of key performance factors for the small-scale approaches studied within this thesis.

Scale-up Approach Feed Volume 

Requirements

Accuracy of Scale-up 

Prediction

Integration With 

Other USD Methods

Development Status

Performance 

prediction generated 

using flat sheet 

membrane

Very Low 

(<20ml)

Poor for throughput. 

Variation of 53% and 41% 

seen for water and pepsin 

feedstocks respectively. 

Good Current standard practice within 

industry for wide range of 

membrane materials.

Performance 

prediction generated 

using scale-down 

pleated cartridge 

device

Low (<150ml) Experimentally shown to be 

very good; 8% and 10% for 

water and pepsin feedstocks 

respectively.

Poor due to high 

feedstock requirement.

Would require validating 

accuracy of performance 

prediction with other membrane 

types before being accepted by 

industry.

Performance 

prediction based on 

USD methodology

Very Low 

(<20ml)

Good for K-factor based on 

Aeff, IA. Requires further 

experimental verification 

with other feedstocks..

Good Requires further development 

and verification studies
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So as to meet the requirements of the Engineering Doctorate award, commercial 

and validation aspects were considered for the scale-down pleated device that 

was designed and evaluated in Chapter 5. In Section 7.1 it was concluded that 

further development work would be required to minimise the hold-up volume of 

the system that the scale-down cartridge device would be part of. In section 8.2 it 

was concluded that a quality assurance study would be required as part of the 

commercialisation process to ensure that the scale-down cartridges can be 

reproducibly manufactured such that there is minimal risk of the cartridge 

leaking and that any variation in batch to batch performance is low.

8.2 Future Work

This work has shown the application of new small-scale techniques to accurately 

predict the performance of large-scale pleated cartridge. Any future studies 

should build upon this work to make the small-scale techniques more robust and

applicable for use on a wider scale.

In Chapter 4 novel cartridges were fabricated with different PPD and hP. Due to 

limitations in manufacturing, it was only possible to produce cartridges with 

pleat heights of 10 mm or 15 mm. New tooling would be required to produce 

other pleat heights, but having these cartridges may help to better understand the 

effect that pleat height has upon the performance of pleated cartridges. Also, 

again due to manufacturing issues, no cartridges were fabricated with a PPD less 

than 0.65. It would be a valuable exercise to fabricate similar cartridges with 

PPD less than 0.65 so as to verify whether the non-linear decline displayed in 

Figure 6-11 is accurate.

In Chapters 4 and 6 the probing of particle accessibility into a pleat and effective 

area was achieved through the examination of yeast particle upon the surface of 

the membrane. However, the size of yeast particles is large and another tracer 

material, such as a protein modified with a luminescence tag may offer an 

alternative probe more representative of target biopharmaceutical proteins. This 
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could yield a more accurate picture of protein deposition in the pleats and the 

effective membrane area. Also, in Figures 4-6 and 6-7 – 6-9 only a limited 

number of pleats were used to determine the level of deposition. As a proof of 

concept, this approach is reasonable, however a more accurate approach would 

be to fully map the deposition across the whole membrane surface held within 

the cartridge.

Very little is presently understood at the microlevel about the hydrodynamics of 

flow of a fluid and particles within a pleat. The simulations run to date look at 

building factors which correct for the mismatch between flat sheet and pleated 

performance (Nassehi et al., 2005; Nassehi et al., 2006). More complete 

computational fluid dynamic models may offer a means by which a greater 

understanding of the flow within a pleat can be understood in terms of the 

driving forces that transport the particle from the bulk fluid to the membrane 

surface. This in turn could give insight into how and why particles deposit upon 

the surface of the membrane with a non-linear degree of deposition for high pleat 

packing densities and increased pleat heights. Particle size and concentration 

may play an important role in this non-linear deposition and incorporating these 

properties may provide a means by which pleating models can be further 

improved. CFD studies could also give greater insight into the optimal design of 

pleated cartridges for filtration of liquid feedstock.

The scale-down device presented in Chapter 5 has been tested with multiple 

feedstocks and was seen to give good performance predictions to the large-scale 

target. However, further work is required to verify whether the accuracy of the 

performance prediction can be maintained when the technique is applied to 

different membrane materials, such as: sterile filters (0.1 µm pore size) or viral 

filters (40 or 60 nm pore size). If successful, this would provide compelling 

evidence for the adoption of the scale-down pleated devices as a standard 

technique within industry.

The USD methodology described in Chapter 6 offered a means by which a more 

accurate prediction could be made using flat sheet membrane. However, the most 
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accurate predictions were made using Aeff, IA which was derived from particle 

deposition patterns upon pleated membrane with hP of 10 mm. These K-factors 

were subsequently used to correct for predictions to large-scale cartridges with hP

of 24 mm. It is not necessarily intuitive to use the effective area generated from 

cartridges with hP = 10 mm to predict the performance of a large-scale cartridge 

containing a different hP, thus further work is required to clarify this issue. 

The accuracy of the USD methodology was only tested with one experimental 

system (yeast/BSA), testing of the methodology with further ranges feedstock 

systems would be required to validate the technique. Such a, system could be the 

pepsin feedstock used in Chapter 5. However, for this feedstock it should be 

noted that the flat sheet was seen to under-predict the performance of the large-

scale target, as opposed to over-predict for the yeast/BSA system, and water 

system. This remains an issue, as in order for the USD method to be robust, 

knowledge of the large-scale is still required. Thus, further work is required to 

understand why the flat sheet membrane under-predicts some feedstocks, and not 

others.

The USD methodology at the moment depends upon selection of the K-factor 

from a limited number of PPD and hP configurations. Generating these values is 

a time consuming process that requires large volumes of feedstock. Improving 

the accuracy of Aeff derived from water experiments would be an easier method 

for enlarging the matrix, however, if this cannot be achieved then work will need 

to continue with a particle suspension or a tracer system. 

Experimental models have been presented that correlate the experimental data 

that has been obtained, but a more useful model would be one which combines 

both the effect of PPD and hP into a single model that can be used to generate K-

factor for a range of PPD and hP. Such a model would be useful for the 

correction of performance predictions from flat sheet membrane, but may also 

provide a means by which the design of pleated cartridges can be optimised. 
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Ultimately it would be advantageous to use a robust pleating model with 

experimental data obtained from microwell flat sheet experiments, as these 

experiments allow for parallel and high throughput experimentation (Jackson et 

al., 2006). However, at the microwell scale, variation in the membrane porosity 

can become a dominant feature, such that membrane variation would have to be 

accounted for when carrying out the scale-up. Typical approaches have been to 

carry out a range of microwell experiments that use samples of flat sheet 

membrane from a number of locations with the roll of membrane. This may be 

an approach that will have to adopted if a pleating model was to be incorporated 

with microwell experiments.

As bioprocesses are typically a train of batch operations, it is convenient to think 

of them as discrete unit operations, however it is only by considering the 

development of the process as a whole that the entire process can be optimised, 

and that the interactions between unit operations can be understood (Pampel et 

al., 2008). Successful integration with other small-scale techniques would require 

a low feedstock requirement. A robust USD method for the prediction of pleated 

cartridge filters could be integrated with other USD techniques, with the aim 

being to achieve a full design of bioprocess using less than a litre of feedstock. 

To achieve this, further work may be required to develop ultra scale-down 

techniques for chromatography and cross-flow filtration.
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Appendix A: Additional Datasets for 10” UEAV 

Cartridge

Clean water flux data for the large-scale target (10” UEAV24, 1) has been 

obtained from two other sources other than the experimental data generated at 

UCL. The first source was by using an experimental rig at Pall Portsmouth 

described in Section 2.4.1.1. The second source is data taken from the product 

specification sheet for the 10” Supor® UEAV cartridge (Pall Life Sciences, 

2004). The advantage of the two alternative sources of data is that they were 

obtained at higher transmembrane pressure differences, which corresponds to 

higher fluxes. The two data sources for the 10” UEAV24,1 cartridge are given in 

Figure A-1.

Figure A-1: Clean water flux data for 10” UEAV24,1. Data obtained from two sources () 
generated using Pall dP rig using protocol described in Section 2.4.1.1. () Taken from 10” 
UEAV24, 1 product specification sheet (Pall Life Sciences, 2004).
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Appendix B: Assumptions and Calculations for 

Economic Cases

The assumptions and calculations for the economic cases presented in Section 

7.4.2.1 and Section 7.4.2.2 are outlined below.

Assumptions
Operating Costs 60 %
Cost of Feed 1000 £/L
# FS experiments 4
Cost of 10" cartridge £1,000 each

BASE CASE: Flat Sheet Disc

Costs
Flat Sheet Disc 25 £ per disc
# Experiments 4
Total Cost FS 100 £
Feed Volume 0.025 L per experiment
Total Feed Volume 0.1 L
Feed Cost 100 £
Ancillary Equipment 350 £

Total Cost 550 £ per study

% Difference in Prediction 55 %
Uncertainity estimate 50 %

Total over-prediction 105 %

Cost of over prediction 1050 £ Per 10" cartidge

Number of runs per year 12

Total cost of over-prediction 12600 £ per year

Revenue from Cartridges £24,600.000 Saving to customer due to over-prediciton



234

Scale-down pleated cartridge

Costs
USD Pleated Device 100 £ each (10% of 10" cartridge)
# Experiments 4
Total Cost USD 400
Feed Volume 0.3 L per experiment
Total Feed Volume 1.2 L
Feed Cost 1200 £
Ancillary Equipment 500 £

Total Cost 2100 £ per study

% Difference in Prediction 10 %
Uncertainity estimate 10 %

Total over-prediction 20 %

Cost of over prediction 200 £ Per 10" cartidge

Number of runs per year 12

Total cost of over-prediciton 2400 £ per year

Saving to customer due to over-prediction 10200 £ per year
Revenue from USD Sales 400 Per study
Revenue from Cartridges 14400


